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On Dropout Modelling for Stability Analysis of
Networked Control Systems

J.J.C. van Schendel, M.C.F. Donkers, W.P.M.H. Heemels, N. van de Wouw

Abstract— This paper presents three discrete-time modelling
approaches for networked control systems (NCSs) that incorpo-
rate time-varying sampling intervals, time-varying delays and
dropouts. The focus of this work is on the extension of two
existing techniques to describe dropouts, namely (i) dropouts
modelled as prolongation of the delay and (ii) dropouts mod-
elled as prolongation of the sampling interval, and the presenta-
tion of a new approach (iii) based on explicit dropout modelling
using automata. Based on polytopic overapproximations of the
resulting discrete-time NCS models, we provide LMI-based
stability conditions for all three approaches. Herewith, we
compare the extensions of the existing approaches and the newly
proposed method in terms of modelling accuracy, conservatism
and complexity of the stability analysis. Using an illustrative
example, we provide a thorough numerical comparison of the
alternative modelling approaches.

I. INTRODUCTION

The literature on modelling, analysis and controller design
of networked control systems (NCSs) expanded rapidly over
the last decade. The reason for the interest in the research
area is that the use of networks offers many advantages, such
as low installation and maintenance costs, reduced system
wiring (in the case of wireless networks) and increased flex-
ibility of the system. However, from a control theory point
of view, the presence of the network also introduces sev-
eral disadvantages such as time-varying networked-induced
delays, aperiodic sampling and/or packet dropouts.

Before deploying NCS in industrial environments, a deep
understanding of the effects of packet dropouts, time-varying
sampling intervals and time-varying delays on the stability
and performance of the NCS is needed. Most of the literature
that deals with stability and stabilisation of NCSs focuses
only on one of these phenomena, while ignoring the others.
Clearly, it is important to consider the combined presence of
dropouts, time-varying sampling intervals and time-varying
delays, as in any practical NCS these communication imper-
fections typically occur simultaneously.

Some results are available that consider at least two of
these network phenomena. In [1]-[3] stability and stabilisa-
tion of NCSs with packet dropouts and delays are investi-
gated, based on discrete-time NCS representations. However,
they assume that the delay is constant, which is often not
realistic. In [4], the stability and disturbance attenuation of
a NCS with time-varying delays and packet dropouts are
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investigated, based on a switched system approach. Therein,
it is assumed that both the controller and sensor act in a time-
driven periodic manner resulting in the fact that the delays
take values in a finite set only, which is upper-bounded by
the sampling interval.

Continuous-time modelling approaches, based on (impul-
sive) delay-differential equations, including packet dropouts
and time-varying delays, are described in [S]-[7]. For these
models, both stability analysis and controller synthesis meth-
ods are proposed and time-varying delays both smaller and
larger than the sampling interval are included. Recently,
in [8] a discrete-time approach was proposed for stability
analysis and state feedback synthesis for NCS with both
delays and dropouts. Typically, in the latter approaches
based on either discrete-time or continuous-time models the
inclusion of packet dropouts is modelled as prolongation
of the maximum sampling interval of the maximum delay.
As this does not truly model the effect of dropouts and
introduces spurious solutions, these approaches have some
degree of conservatism in the sense that the models allow
for sequences of control updates, which cannot occur in
real NCSs. In [9], also the problem of stability analysis
of NCS with dropouts and variable delays is considered
based on a discrete-time modelling approach. The occurrence
of dropouts is modelled as prolongation of the sampling
interval, which also leads to spurious solutions, and in the
stability analysis a common quadratic Lyapunov function
(LF) approach is adopted, which is conservative when com-
pared to a parameter-dependent LF. In addition, the effect
of varying sampling intervals and a systematic method for
transforming the infinite set of linear matrix inequalities
(LMlIs) (due to the infinite number of possibilities for the
delays) into a finite set are missing in [9].

This paper will provide a general stability analysis method
based on a discrete-time modelling approach for NCS in-
cluding the three mentioned network phenomena: packet
dropouts, varying sampling intervals and varying delays.
In particular, we provide three different models that each
accommodates for packet dropouts in a different way. In
doing so, the above mentioned drawbacks of existing ap-
proaches will be studied in detail. We assume that delays are
time-varying and take values in a bounded set, containing
an infinite number of values, i.e., T4 € [Tmin, Tmax], time-
varying sampling intervals hy taking values in [Amin, Pmax]
and dropouts for which we only bound the maximal number
of successive dropouts by J. By adopting a discrete-time
hybrid automaton modelling approach (see, e.g., [10], [11]),
we truly describe the effect of packet dropouts instead
of incorporating it (artificially) using prolongations of the
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maximal delay or maximal sampling interval as done in
the mentioned references. We compare this newly proposed
explicit approach with two (adapted) methods from [8], [9].
These adaptations consider small delays, time-varying sam-
pling intervals and mode-dependent (i.e. dropout-dependent)
Lyapunov functions (LFs), which lead to LMI-based condi-
tions for stability of the NCS that alleviate the conservatism
in the existing approaches.

The remainder of this paper is organised as follows: In
Section II, we introduce two discrete-time NCS models from
the literature, and extend them, and propose a novel way
to model packet dropouts. In Section III, we introduce our
polytopic overapproximation method. Based on an overap-
proximated model, we provide conditions for stability in
terms of LMIs in Section IV. The drawbacks of the existing
approaches and the motivations for the extensions are dis-
cussed in Section V. Finally, we illustrate the results using
a numerical example in Section VI and present concluding
remarks in Section VIIL.

II. THE NCS MODEL

In this section, the discrete-time description of a NCS
including unknown and time-varying delays, unknown and
time-varying sampling intervals and packet dropouts is pre-
sented. The NCS is depicted schematically in Fig. 1. It
consists of a linear continuous-time plant

i(t) = Az(t) + Bu*(t), (1)

with A € R"*™ and B € R™ ™, and a discrete-time static
time-invariant controller, which are connected over a com-
munication network that induces network delays (namely the
sensor-to-controller delay 7°¢ and the controller-to-actuator
delay 7°*). The state measurements are sampled at the
sampling times s:

se=0"Th VE>1, =0, )

which are non-equidistantly spaced in time due to the time-
varying sampling intervals hy > 0. The sequence of sam-
pling instants sg, S1, So, . . . is strictly increasing in the sense
that sg41 > si for all k € N. We denote by x := x(s)
the kth sampled value of = and by wuj the corresponding
control value. Packet dropouts may occur (see Fig. 1) and
are modelled by the parameter my. This parameter denotes
whether or not a packet is dropped:

0,
mp = 1

In (3), we make no distinction between packet dropouts
that occur in the sensor-to-controller connection and the
controller-to-actuator connection in the network. This can
be justified by realising that, for static state-feedback con-
trollers, the effect of packet dropouts on the control updates
implemented on the plant is the same in both cases. Indeed,
for packet dropouts between the sensor and the controller
no new control update is computed and thus no new control
input is sent to the actuator. In the case of packet dropouts
between the controller and the actuator no new control update
is received by the actuator either. Finally, the zero-order-
hold (ZOH) function (in Fig. 1) is applied to transform the

if zy and uy are received,
if x; and/or uy is dropped.

3)

Tk ZOH M plant H sensor }—}}ky’“

¢

Fig. 1: Schematic overview of the NCS with variable sam-
pling intervals, network delays and packet dropouts.

discrete-time control input ug to a continuous-time control
input u*(t) being the actual actuation signal of the plant.
In the model, both the varying computation time (7)),
needed to evaluate the controller, and the varying network-
induced delays, i.e. the sensor-to-controller delay (7;;) and
the controller-to-actuator delay (77%), are taken into account.
We assume that the sensor acts in a time-driven fashion (i.e.
sampling occurs at the times s;, defined in (2)) and that both
the controller and the actuator act in an event-driven fashion
(i.e. responding instantaneously to newly arrived data). Under
these assumptions, all three delays can be captured by a
single delay 7, := 7;;¢ + 7 + 75, see also [12] and [13].
To include these effects in the continuous-time model, let
us define the parameter k*(t) that denotes the index of
the most recent control input that is available at time ¢
as k*(t) := max{k € N|sp + 7, < t A my = 0}. The
continuous-time model of the plant of the NCS is then given
by
at) =
ur(t) =

Ax(t) + Bu*(t),
uk*(t)

“4)

Here, we assume that the most recent control input remains
active in the plant if a packet is dropped.

We assume that the delays are bounded and contained in
the set [Tmin, Tmax)> With Tmax > Tmin > 0, the sampling
intervals are also bounded and lie in the set [Amin, Pmax]s
with hpax > hmin, and that delays are equal or smaller than
the sampling intervals 73, < hy, for all k¥ € N. Therefore, we
have that (hy, ) € ©, for all k € N, where

e = {(h7T) € RQ ‘ h € [hmin; hmax];
T € [Tmin, min{h,TmaX})}. 5)

Furthermore, the number of subsequent packet dropouts is
upper bounded by d. This means that

S 5my <0, ©6)

and guarantees that from the sequence of control inputs
Up_ 5y Up_Gyqs- - Uk AL least one is implemented.

In this work, we consider three different approaches for
modelling dropouts in which we use an exactly discretised
version of the model in (4) that includes varying delays,
varying sampling intervals and packet dropouts: (i) dropouts
modelled as prolongation of the delay (see, e.g., [8], [14]),
(i) dropouts modelled as prolongation of the sampling
interval (see, e.g., [9]) and (iii) a novel explicit dropout
modelling approach. The essence of the three methods is
presented schematically in Fig. 2. In this figure, a circle
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Fig. 2: Different dropout modelling approaches.

represents a sample that is not dropped and a cross a sample
that is dropped. As shown, the discrete-time NCS model in
methods (i) and (iii) describe the state evolution from s
to Sk+1, while method (ii) discards the dropped samples
and does not include the corresponding states x(sg) in
the discrete-time model. This results in prolonged sampling
intervals in case of method (ii). Method (i) includes the
drops through prolongation of the delay using the parameters
th, j =0,1,...,0 4+ 2, which indicate the control update
times, see [14]. Method (iii) keeps track of dropouts using an
explicit automaton model. We describe these three methods
in more detail in this section. In addition, we present an
extension to the existing approach of [9] in section II-B.
Before presenting the three techniques, let us first intro-
duce the variable J;, which denotes the number of subse-
quent dropouts at sample instant si, i.e. 0 = § means that
Up—1, Uk—2,. .., Up—s are dropped and uy_s5_; is received
at the plant. Note that 0, € {0,1,..., 5}. Given the fact that
my, € {0,1} (see (3)), we can write the evolution of Jj, as

Optr1 = mi (0 +1). @)

Equation (7) expresses that 11 is increased by one if at
the kth sampling instant the packet dropped and is reset to
zero if the packet arrived. The variable d;, will be used in the
second and third modelling method that are described next.

A. Dropouts as Prolongation of Delays

In [14], NCSs are studied including delays that are larger
than the sampling intervals (7, > hy) and dropouts, which
are modelled as prolongations of the transmission delays. For
the sake of simplicity, this approach is adapted to the case
where delays are smaller than the sampling intervals (75, <
hi) here. The NCS model (4) including the assumptions on
the sampling intervals, delays and dropouts in (5) and (6) can
be captured in a discrete-time representation, based on an
exact discretisation of (4) at the sampling instants {sj }ren.
From sy to sp this yields

g""l hkft?

xk-‘rl = GAhkxk + Z/
h

A
€ *dsBuyy;_5_1, (8)
=0 hk—t5 1,

where x;, := z(sg) is the discrete-time state at the kth
sampling instant s, and h, > t? > 0, for all j €
{0,1,...,8+ 1}, represent the control update instants in the
sampling interval [sy, s11], in the sense that u; ;5 ; is

active in [s, + t¥, sy + t¥,,). See [14] for more details.

Applying a static state feedback controller uj, = —Kx}, to
system (8), defining the augmented state vector by & =
[x;— ul u;cr_ 5_1} and introducing the vector pj
of uncertain parameters consisting of the sampling and the
actuation update instants py == (hy, 1, ..., 15, ), results in
the following discrete-time NCS model
€1 = Ar(pr)ér, )
where
Alpr)  Mg(pr) Ms_1(pr) Mo(px)
-K 0 0 .. 0
A= 0 1 ¢ YA
0 0 I 0
In (10), A(px) = e — M;., 1 (pr) K and
}Lk—t?
M;(py) = / e%dsB, (11)
hg —t?+1

for all j € {0,1,...,0 4 1}. The actuation instants ¢} lie in
the set t;? € [t min; tj,max], Where t; min and ¢; max are defined

as _

ba.min = { (T)min g{ z (]5:15# 1, (12)
and -

v { g T 0
Additionally, t& := 0 and t§+2 := hy. See [8], [14] for the

proof of the validity of the bounds on .

B. Dropouts as Prolongation of Sampling Intervals

In [9], Garcia-Rivera and Barreiro model dropouts as
prolongations of the constant sampling intervals h, by using
the dropout counter J; from (7). Basically, the idea is that
a sampling instant s; corresponding to a sample that is
dropped (my = 1), is not used as a sampling instant in
the discrete-time model of [9]. In this perspective, a new
(longer) sampling interval is considered to be the difference
between the sampling instants of two successive samples that
are not dropped. Since the dropped samples are ignored, we
introduce a new counter / and a new sampling interval h;.
For each [ there exists a corresponding sample k; given by

k‘l+1 = min{k >k | my = 0}, (14)

for all [ € N. Defining now states and inputs on these new
sample instants sy, as Z; := xy, and % := uy,, results in the
following discrete-time NCS model

hi—7

— Al A - by A -
Tip1 =€ T + fO e**dsBu; + fibl—ﬁ e**dsBuj_1.

. (15)
B b
In (15), hy € U (64+1)[hmin, Pmax] is the prolongated sam-

6=0
pling interval. By applying a static state feedback controller
u; = —KZz; to (15) and introducing the augmented state
vector & = [z, ﬂﬁl]T, we obtain

&1 = Ao (hy, 7)1, (16)
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where

eAhy 7‘]‘0}1[—77'1 eAsdsBK f}{bl . eAsdsB
A .

As(hu,m) = % ; (17)

C. Explicit Dropout Modelling

Let us now present a third method using a hybrid discrete-
time NCS model that explicitly describes the occurrence of
packet drops. As shown in (3), at each sampling instant
k a packet may drop or not. Exact discretisation of (4) at
sampling instants s for both cases results in the following
discrete-time uncertain NCS model

j—
e gy + Jo" ™ 45 dsBuy,

hi . .
Tpg1 = 2— S esdsBud® if my =0,
eAligy, + [ et dsBugl if my :(1%3,)

with uy := u(sy) the controller output at the kth sampling
instant and uzld = uy, where [ = max{l € N|s; < sy Amy =
0}, the previously computed and successfully implemented
control value.

The model in (18) will form the basis for a new model.
We apply a static state feedback control law of the form

uy = — Ky, to the model and define the state of the closed-
loop NCS model as & := [xz (ugd)q
in the following discrete-time hybrid system

, Which results
er1 = Az(u, T, M), (19)
which explicitly depends on my, with

-K 0 ’
(20a)
(20b)

~ Ahy _ (hk—Tk _As 7> hp As
A3(hk77—k70) _ |:e Jo Fe dsBK f’lkfnce dsB

~ Ahy, Pk oAsgeB
Ag(hk,’i'k,l) = {60 Jo e[ I

Combining this with (6) and (7), we obtain the complete
hybrid model, consisting of two modes in which the dynam-
ics are described by uncertain linear systems, as depicted
in Fig. 3. Loosely speaking, the semantics of this model are
given as follows. After each update of & and dy to €41 and
Or+1 following the dynamics inside the current mode being
either gy or q;, one of the transitions, as indicated by the
arrows, is taken. This transition can also be a transition to
the same mode. A transition can only be taken if the corre-
sponding guard is satisfied. For instance, after the update to
€ry1 and 041 to go to mode q;, the condition dj 1 < &
must be satisfied. To stress once more, the discrete-time
hybrid automaton in Fig. 3 behaves periodically with updates
according to the difference equations always followed by a
transition to another or the same mode.

III. OVERAPPROXIMATION OF MODEL

Direct stability analysis on the models from Section II
is difficult as the infinite number of delays and sampling
intervals in [Timin, Tmax] and [Rmin, Pmax), respectively, and
the exponential appearance of these uncertain parameters in
the discretised system matrices obstruct derivation a finite
number of (checkable) stability conditions. One remedy is to
overapproximate systems (9), (16) and (19) by a system in
which the uncertainties appear in a polytopic and/or additive

_ - initial condition ~ .

0o

k1 = Ag(ha, 70, 1)8

packet dropped

packet arrived
my =0 my =1

Fig. 3: A hybrid dynamical model with two subsystems.

manner. This can be achieved by using one of the available
overapproximation methods (for an overview of existing
methods, see, e.g., [15]). Here, we take the method from [§]
that is based on the real Jordan form of the continuous-time
system matrix A, although the other methods can be used as
well. We apply this overapproximation method on the hybrid
model from (19) and (20) and provide the corresponding
stability conditions. A similar approach is applied to the
models from Sections II-A and II-B as well, to obtain the
numerical results in Section VI. For the sake of brevity, we
only work out the details for the model presented in Section
II-C. However, the results can also be applied to the models
of Sections II-A and II-B in a similar fashion.

Basically, we express the matrix A, as in (1), as A =
TJT~! with J the real Jordan form of A and T an invertible
matrix that contains the (generalised) eigenvectors of A. With
this real Jordan matrix, the exponential term eAs = TelsT—1
has an useful general structure that can be used to obtain a
model in which the uncertain parameters hy, 7, and my
appear explicitly, i.e.

2v
Eh1 = (Fo(mk-) "’Zai(hkaTk)Fi(mk)) & (2D

i=1

where 2v is the number of time-varying functions «; (hg, 7% ),
k € N, with v < n, where n is the dimension of the state
vector . We have v = n when each distinct eigenvalue of A
corresponds to one Jordan block only and v < n otherwise.
The first v functions a;(hy, 7)) are of the form R teA,
if A is a real eigenvalue of A, and hifle“h’“ cos(bhy) or
hi_leahk sin(bhy), when A corresponds to a pair of complex
conjugate eigenvalues (A = a £ bi) of A, where j =
1,2,...,r, in which r is the size of the largest Jordan block
corresponding to A. The latter v functions «;(hg, 7) are of
the form (hj — 73,)7 " 'e*™ =) if X is a real eigenvalue
of A, and (hy, — 1)~ e®s =) cos(b(hy — 11)) or (hy —
)7~ Lehe=Tk) gin(b(hy, — 73)), when A corresponds to a
pair of complex conjugate eigenvalues of A. For more details
the reader is referred to Appendix B of [16]. Note that there
are some useful tricks in the literature (see, e.g., [15], [17],
[18]) by which the number of exponential terms 22" can be
reduced to v + 1, although the polytopic overapproximation
becomes less tight. In particular, for large systems (large v)
this might be necessary to use, as otherwise the LMIs become
prohibitively complex for today’s LMI solvers.

By using bounds on the uncertain parameters hy, and hg —
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Tk, we obtain the following sets of matrices

¢
Fo = {Fo(O) + D ai(he, ) F(0) | (hy, ) € @} (22)
and
Fi= {Fo(l) + Zai(hk)Fi(l) | (hg, i) € @} , (23)

that contain all possible matrix combinations in (21) corre-
sponding to my = 0 or my = 1. Note that the set in (23)
only has v uncertainty functions «; as (20b) only depends
on hy and not on hy — 7. To overcome the infinite size of
the sets Fy and F;, a polytopic overapproximation of the
sets is pursued. Denote the maximum and minimum value
of «;, respectively, by

. — a (h
Qy (;ﬂ)g@%( ' T,

o, =

i min o (h, 1),

24
(h,7)€EO 24

with © as in (5). Then it is readily seen that the sets of
matrices Fy and F7, are subsets of the convex hulls co{H ~, }
and co{H £, }, i.e. Fo C co{Hx,} and F; C co{Hz, }, with

Hr, = {Fo(0) + X5, aiFi(0) |

a; € {Qiaai}7i:1727"'7c} (25)
and
Hr, = {Fo(1) + X7_, i Fi(1) |
a; € {a;,a@;},i=1,2,...,v}. (26)

IV. STABILITY ANALYSIS OF NCS

Stability analysis can be performed on the overapproxi-
mated NCS with the set of vertices in (25) and (26). For
enumeration purposes, we will write the set of vertices Hr,
as Hr, = {Hzryuo | lo =1,2,...,2%} and Hr, as Hr, =
{Hg, 1, | 11 = 1,2,...,2"}. Using these finite sets of 2¢ and
2¥ vertices, respectively, a finite number of LMI conditions
to analyse stability is formulated in the following theorem.
Note that the LMIs given in this theorem are only applicable
for the model of Section II-C. For the LMI conditions of
the other two approaches, after using the overapproximation
based on the real Jordan form as above, the reader is referred
to [9], [14] .

Theorem 1 Consider the NCS model (4) and its discrete-
time representation (19) with (20) for sequences of sampling
instants, delays and packet dropouts {hy, Ty, my }ren, satis-
fing (hg, ) € ©, k € N, with © as in (5), and (6) for all
k € N. Consider the equivalent representation (21) based on
the real Jordan form of A and the set of vertices Hr,, as
in (25) and Hr, as in (26).

If there exist a set of matrices {P,, ..., Ps} satisfying

P, HE ZOPO]
’ =0 27
[Pono,lg B @7)
forall i € {0,...,6} and lp € {1,2,...,2°}, and
P] H;1 11P]+1:|
J =0, 28
{PJHH&II Pjna 29

forall j €{0,...,6 —1} and I, € {1,2,...,2"}, then the
closed-loop NCS (4) is globally asymptotically stable.

The conditions in Theorem 1 result from showing that
V (&, o) = fZngfk, 5 € [0,0], is a parameter-dependent
LF for the system in (21).

V. DISCUSSION

In this section, the advantages and drawbacks of the
existing approaches are discussed and we explain why we
proposed the presented extensions of the existing methods.

In Section II-A, dropouts are modelled as prolongations
of the delays based on [8] and [14]. In [14] a model is given
for large delays incorporating dropouts, whereas in Section
II-A a model is presented that includes small delays and
dropouts. Due to the general case considered in [14] (large
delays), it is possible that § 4 2 different control values are
active in the interval sy, sk1], while in case of small delays
this can be at most two. As a consequence, at most two
M;’s are nonzero in the model in (9) and (10) from Section
II-A. Here, we use the general result as presented in [8],
[14] in which more than two Mj;’s can be nonzero, although
it can be easily remedied of course. Moreover, in [14] the
dropout counter dy is not used in the model. To be precise,
the relation between d;1 and 0 as in (7) is not exploited
to reduce conservatism. Therefore, the number of successive
dropouts at the next sampling instant s ; is not related to
the number of dropouts at the current instant si. This may
lead to spurious effects, e.g., dx+1 = 6 = 1 is possible,
which means that a particular control input is considered to
be dropped in one sampling interval while it is considered
not to be dropped in the next. Clearly, this is not possible in
reality.

If we would resolve these two issues, which is rather
straightforward for the case of small delays, the result
becomes actually of a similar nature as the method of Section
II-C. For comparison reasons we kept here the general
method of [8], [14], without these resolutions, that also
applies to the large delay case in which such simplifications
are not so obvious or even impossible.

In Section II-B, dropouts are modelled as prolongations
of the sampling intervals. Regarding the work in [9], it is
unclear which overapproximation method is used to arrive
at a polytopic embedding of the system as in (25) and
(26). To implement this approach, we have proposed the real
Jordan overapproximation technique discussed in Section III.
Secondly, [9] uses a NCS with constant sampling intervals.
We extended this to a discrete-time NCS model with varying
sampling intervals, as shown in (15). The transformation
of the range of sampling intervals can be taken as hj; €
Hj := [hmin, (6 + 1)hmax], which contains spurious values
for hy, when hpi, > 0, because all intervals are merged into
one large interval instead of considering them as separate
intervals. We reduced this source of conservatism by defining
the range as h; € H, := Ug:0(5+ 1)[Amin, hmax) such that
no spurious sampling intervals occur when h.,;, > 0. Con-
sidering H,, requires to perform the overapproximation for
each individual (non-overlapping) interval and one can assign
one Lyapunov function (LF) to each interval such that a
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TABLE I: Number of LMIs for the different modelling
methods for varying sampling intervals and delays.

| cor | SDLF
[14] small delays 9(6+2)v X
[9] with H, 92v X
[9] with H,, 20(5 4 1) 20112
Explicit model X 22,,(5 T+ 273

dropout-dependent LF V' (Z;41,0;) is obtained as in the proof
of Theorem 1. In case subsequent intervals d[Amin, Pmax]
and (6 + 1)[Amin, Pmax] Overlap, one can actually unite
them in one new interval [6hmin, (6 + 1)hmax] and use only
one LF for this united interval, which reduces the number
of LMIs (but increases conservatism). Of course, one can
also consider one common LF V(Z;). With a common P
and taking one large interval as in Hj, the least number of
LMIs is obtained, but the conservatism is generally increased
significantly. Note that in case of Ay, = 0, the interval
ranges H; and H,, are equal.

A general remark is that both [14] and [9] use a common
quadratic Lyapunov function (CQLF) to perform stability
analysis on the models. As shown in Section IV, we propose
to use a d(dropout)-dependent Lyapunov function (6DLF)
that depends on the dropout counter J. Below we will apply
this dDLF to an example. Note that ¢ is not used in the
model based on [14] and thus no JDLF can be applied to
that approach. As already mentioned, although §DLFs reduce
the conservatism of the stability of NCSs!, they also lead to
more LMIs than CQLFs. This higher number of LMISs results
in a more complex stability analysis. The number of LMIs
for all modelling methods are given in Table I for CQLFs and
0DLFs. Note that, the explicit dropout modelling approach
(Section II-C) is not feasible for CQLFs, because the second
mode of the automaton is always unstable.

VI. ILLUSTRATIVE EXAMPLE

In this section, we show the results of the stability analysis
for the double integrator example, given by & = Ax + Bu,
where

0 1
A:

0 0

and B= 29)

Here, we limit ourselves to a constant sampling interval
h = Rmin = hmax = 1072, where a different number
of subsequent packet dropouts ¢ can occur, in combination
with a time-varying delay that is upper bounded by Tmax,
which is equal or smaller than the fixed sampling interval
(0 = Tmin < Tmax < h). The gain of the static state feedback
controller u, = —Kuxy, is given by K = {6000 K| We
are interested in the stability region, i.e., all values of K that
guarantee stability for each combination of delays, satisfying

'One can reduce the conservatism of NCSs further by using parameter
dependent Lyapunov functions that also depend on the delay and sampling
(or actually on the vertices of the polytopic overapproximation in (25) and
(26)) at the cost of more LMIs. For ease of exposition, we use dependency
on ¢ only.
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Fig. 4: Upper bounds of the stability region for

K = [6000 K| for different values of § and 7 € [0, Tmax]-

I I I
200 400 600 800

Tr € [0, Tmax) and sequences of packet dropouts, satisfying
(6). Based on the conditions in [19] and the ones in Theorem
1, we obtain the stability regions in Fig. 4 and Fig. 5, given
by an upper bound for Kj, for § = 0, i.e. no packet dropouts,
6 =1 and & = 2. Note that K}, also has lower bounds, which
are not shown in Fig. 4 and Fig. 5. The reason for this is
that these are small (K}, < 20 for all approaches and for all
values of Tyay and 4) in comparison with the upper bounds
on K.

Clearly, packet dropouts decrease the allowable controller
gains that stabilise the NCS. To illustrate that the presented
explicit dropout modelling approach reduces conservatism
with respect to the approach presented in [14], their results
are also shown in Fig. 4. Note that, in the approach of
[14] the maximal controller gain K for which stability
is guaranteed, for a maximal delay equal to the sampling
interval (Tax = h) without dropouts (5 = 0), is the same as
the gain for one dropout with no delay (0 =1, Toax = 0),
denoted by the dash-dotted line in Fig. 4. The same holds for
more dropouts, e.g. K} corresponding to (Tyax = h, 6 = 1)
for which stability can be proven, equals K} corresponding
to (Tmax = 0, 6 = 2). This is a consequence of the
modelling technique as discussed in Section II-A, ie. a
dropout without delay is modelled as a delay that is equal to
the sampling interval 7,,x = h. Essentially, this is caused
by the computation of the bounds t; nin and ?; max or the
control update instants.

Fig. 4 also shows that the approach from [9] (extended
with H,) gives similar stability regions as the newly pro-
posed explicit modelling approach, i.e. for some Ty ax the
extension of [9] is less conservative and for some Tiax
the newly proposed explicit modelling method is less con-
servative. Note that, as mentioned in Section V, Garcia-
Rivera and Barreiro use a common quadratic LF and the
newly proposed method uses a dDLF. Introducing a JDLF
to the extended approach from [9], results in slightly less
conservative stability regions than the CQLF results. Though,
the results are still comparable with the results of the newly
proposed method, as shown in Fig. 5. This observation turns
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out to be true for various examples.

As such, from a conservatism point of view, the newly
proposed method and the extended method based on [9]
seem to be comparable. Therefore, to decide which method
you will use can be best be determined by the numerical
complexity (number of LMIs) as given in Table I. In case you
are interested in the least conservative approaches, (either
[9] with H,, and dDLF or the newly proposed method) it is
better to use the newly proposed method when dropouts are
present as the comparable stability regions can be obtain with
less computationally demanding computations. However, if
a more conservative approach is acceptable, e.g., [9] with
H,, and CQLF or even [9] with H;, then the computational
burden for these methods is much lower than for the newly
proposed method. This might be particularly relevant when
the size of the problems becomes too large (large v). How-
ever, in general, this is a natural tradeoff between numerical
complexity and desired conservatism of the results and the
choice for the method will depend on the particular problem
at hand.

VII. CONCLUSIONS

In this paper, we studied the stability of networked control
systems (NCSs) using a discrete-time model that incorpo-
rates time-varying sampling intervals, time-varying delays
and packet dropouts. Existing approaches modelled packet
dropouts as prolongations of the delay or prolongations of
the sampling interval. Here, we proposed a third method
based on modelling packet dropouts explicitly leading to a
discrete-time hybrid automaton-based NCS model. By doing
so, the phenomenon of packet dropouts is truly modelled
and no spurious effects are introduced as in the case of
modelling the dropouts as prolongation of the delays or
sampling intervals. Based on this new model, in which
hybrid modelling plays an important role, constructive LMI
conditions for analysing stability of the closed-loop system
are derived. In addition, we extended the method from [9]
that is based on prolongation of the sampling interval in three
ways, namely (i) sampling intervals are now time-varying in
a continuous range, (ii) the model is overapproximated using

the real Jordan form and (iii) a dropout-dependent Lyapunov
function is introduced.

After reviewing the three modelling methods based on
their perspectives, we compared them numerically using
an double integrator example. We showed that the newly
proposed approach reduces conservatism when compared to
the delay prolongation approach from [14]. We also showed
that the newly proposed method, in combination with a
parameter-dependent LF, gives similar stability regions as
the extended sampling interval prolongation technique from
[9], in combination with a common quadratic or parameter-
dependent LF. Numerical complexity of the methods (as
computed in Table I) can be used to choose between the
methods.
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