
Tracking control of mechanical systems with impacts

J.J.B. Biemond, N. van de Wouw, W.P.M.H. Heemels, H. Nijmeijer

Abstract— In this paper controllers are designed such that the
state trajectories of mechanical systems with impacts converge
to a reference trajectory that contains impacts. The impact
times of the plant will typically not coincide with those of the
reference, such that the Euclidean tracking error intrinsically
behaves in an unstable manner. Therefore, an alternative
approach is needed and we propose to study the convergence of
a non-Euclidean tracking error measure that corresponds to the
intuitive notion of tracking: impact times of the plant converge
to those of the reference, and the plant follows the reference
away from the impacts. Sufficient conditions for asymptotic
stability in terms of this tracking error are presented, and the
results are illustrated with a bouncing ball example.

I. INTRODUCTION

In hybrid systems, such as robotic systems with impacts,

digitally controlled physical systems, and electrical circuits

with switches, the continuous-time dynamics and discrete

dynamics are intertwined. Due to this ambivalent nature,

hybrid systems can show more complex behaviour than can

occur in ordinary differential equations (ODEs) or discrete

systems, and conventional control approaches are not directly

applicable.

Most existing results in the literature of hybrid control

systems deal with the stability of time-independent sets

(especially with equilibrium points), such that the stability

can be analysed using Lyapunov functions, see e.g. [1]–

[8]. Essentially, such a set is asymptotically stable when a

Lyapunov function decreases both during flow and jumps

(i.e. discrete events), cf. [2], [3], [5]. Extensions of these

results allow for Lyapunov functions that increase during

jumps, as long as this increase is compensated by a larger

decrease during flow, or vice versa. Using these stability

results, several control strategies have been developed for

the stabilisation of a time-independent set, see e.g. [5], [8].

Few results exist where controllers are designed to make

a system track a given, time-varying, reference trajectory,

that contains both continuous-time behaviour and discrete

events. When the jump times of the plant trajectories can

be guaranteed to coincide with jumps of the reference,

then stable behaviour of the Euclidean tracking error is

possible and several tracking problems have been solved in

this setting, see, e.g., [9]–[11], [11], [12]. In [13], observer

problems are considered for a class of hybrid systems where
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a similar condition is exploited, namely, that the jumps of the

plant and the observer coincide. Requiring the jump times

of plant and reference (or plant and observer) to coincide is

a strong condition that limits the number of problems that

can be solved in this manner.

In hybrid systems with state-triggered jumps, such as

mechanical systems with unilateral constraints and impacts,

the jump times of the plant and jump times of the reference

are in general not coinciding. To illustrate this behaviour, we

consider the bouncing trajectories of a ball with unit mass

on a table as an example. The continuous-time solutions are

described by the following ODE, where x1 represents the

position and x2 the velocity with respect to the table surface:

ẋ =

[

x2

−G+ u+ λ(x1, x2)

]

, x1 ≥ 0, (1a)

where G is the gravitational acceleration, u is a force that

can be applied to the system, and the contact force λ between

the ball satisfies the following set-valued force law, cf. [14],

λ(x1, x2) ∈

{

0, (x1 x2) 6= (0 0),
[0,∞) , (x1 x2) = (0 0),

(1b)

and avoids penetration of the table by the ball. Motion

according to (1a) is only possible when the distance x1

between the table and the ball is non-negative. If the ball

arrives at the surface x1 = 0, then a Newton-type impact law

with restitution coefficient equal to one is assumed, modelled

as

x+ =

[

x1

−x2

]

, x1 = 0 and x2 < 0.

We consider the following reference trajectory:

r =

[

τ + G
2 τ

2

1−Gτ

]

, τ = t mod 2
G
.

Suppose that a control signal u is designed such that a plant

trajectory x tracks the reference r (in fact, such a controller

will be constructed in Section IV), then we expect behaviour

as given in Fig. 1, where the positions x1 and r1 converge to

each other and the jump times show a vanishing mismatch.

During the time interval caused by this jump-time mismatch,

the large velocity error |x2 − r2| implies that the Euclidean

error |x−r| is large, as shown in Fig. 1c. Since this behaviour

also occurs when the initial error |x− r| is arbitrarily small,

the Euclidean error displays unstable behaviour in the sense

of Lyapunov. This “peaking behaviour” was observed in

[7], [9]–[11], [13], [15], and is expected to occur in all

hybrid systems with state-triggered jumps when considering

tracking or observer design problems. However, although

the Euclidean error behaves in an unstable fashion, from
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Fig. 1. a),b) Exemplary trajectories of (1). c) Euclidean tracking error
|x− r|.

a control engineering point of view, the trajectories shown

in Fig. 1 display desirable behaviour. For this reason, we

formulate a tracking problem that considers the behaviour

shown in Fig. 1 as a solution, since the jump times of

the plant converge to the jump times of the reference and

the distance between the plant and reference trajectories

converges to zero during time intervals where no jumps

occur. This tracking problem is less restrictive compared to

problems where stability of the Euclidean error is required

(see [9], [10], [12]), such that the class of tracking problems

that can be considered is widened significantly.

Several solutions have already been presented to formalise

tracking problems that consider behaviour as shown in Fig 1

as desired. However, these approaches are either tailored

to specific systems, or it is not clear how to formulate

conditions under which such tracking problems are solved.

Most notably, in [15], [16], the tracking of a billiard system is

considered, where the position of the ball is always required

to be close to the reference, but the error in velocity is not

studied for a small time interval near the jump instances. In

addition, the convergence of jump times is required.

In order to study tracking problems with non-matching

jump times, we propose an alternative approach using a non-

Euclidean distance between the plant and reference states,

where stable behaviour of this distance corresponds to the

desired and intuitive notion of tracking. Since this distance

incorporates information on the velocity during the time

interval near jumps, the tracking problem can be formulated

based on this error only. This step is instrumental in our

approach as it allows us to derive sufficient conditions under

which the tracking problem is solved that are based on the

instantaneous state, the time-derivatives of the states, and

the possible jumps that can occur. Since this behaviour is

given directly in the description of the hybrid system, our

approach is advantageous to the approach in [15], [16], where

a return map is required to prove convergence of jump times.

In addition to this novel formulation of the tracking problem

for systems with jumps, we indeed present such sufficient

conditions for the stability of the tracking error defined

using the novel distance. Finally, tracking controllers are

designed for mechanical systems with unilateral constraints.

For ease of exposition, we focus in this paper on mechanical

systems with one degree of freedom and impacts, but we

advocate that our general philosophy is also applicable for

other classes of hybrid systems.

The outline of this paper is as follows. In Section II, we

introduce the class of systems under study. In Section III,

the new perspective on tracking is formulated by requiring

asymptotic stability with respect to a non-Euclidean tracking

error measure, and sufficient conditions for asymptotic stabil-

ity are formulated. Controllers solving the tracking problem

are designed in Section IV, and are illustrated in Section V

with an example. Section VI presents the conclusions.

II. MECHANICAL SYSTEMS WITH IMPACTS

In this paper, we consider mechanical systems with one

degree of freedom and a single unilateral constraint with

impact, see Fig. 2a). Such systems can be modelled with

ẋ =

[

x2

f(t, x) + u+ λ(x1, x2)

]

, x ∈ C := [0,∞)× R

(2a)

x+ = g(x) =

[

x1

−ǫx2

]

, x ∈ D := {0} × (−∞, 0). (2b)

Here, (2a) describes the continuous-time flow of trajec-

tories with control signal u, λ the contact force in the

constraint, and f(t, x) representing other forces. Equation

(2b) models the impact such that the velocity changes sign,

where parameter ǫ ∈ (0, 1] takes into account the energy

dissipation during impact. The unilateral constraint force

λ(x1, x2) satisfies (1b) and ensures that x ≥ 0 is not violated.

a)

f(t, x) + u

x1

b)

Fig. 2. a) Example of a mechanical system described by (2). b) Neighbour-
hoods {x ∈ C ∪ D : d(x, ri) < δ} for two distinct points ri, i = 1, 2,
where d is given in (4).

In this paper, we will present controllers that solve a local

tracking problem for a reference trajectory r that is non-

Zeno, and bounded away from the origin. For all trajectories

near this reference the contact force λ vanishes, such that

the trajectories are described with the simpler hybrid system

ẋ=F (t, x, u):=

[

x2

f(t, x) + u

]

, x ∈ C:=[0,∞)×R (3a)

x+= g(x):=

[

x1

−ǫx2

]

, x ∈ D:={0}×(−∞, 0). (3b)

Throughout this paper, we assume that u is bounded and

f is continuous in x and locally essentially bounded in t.

Solutions of (3) are considered in the sense of [5].
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III. TRACKING CONTROL

A. Formulation of the tracking problem

For certain classes of hybrid systems with state-triggered

jumps, such as the hybrid system given in (3), the exact

properties of the jumps can be used to compare a reference

trajectory with a plant trajectory, when one of them just

experienced a jump, and the other did not. A distance func-

tion between two trajectories that allows such a comparison

incorporates the structure of the jumps, as described in (3b).

In this paper we employ such distance functions to formulate

and solve the tracking problem. Let us first illustrate the

main idea by constructing an appropriate distance function

for systems of the form (3) in the case of fully elastic

impacts, i.e., ǫ = 1, for example the system (1) presented

in the introduction. We use the property that the velocity

x2 changes sign at impacts, and the position x1 is zero, see

(3b). Hence, if we want to compare a reference r with plant

state x when one of them just experienced a jump, then the

distance |x + r| is appropriate. Away from jump instances,

typically, the conventional distance |x − r| can be used. To

distinguish when the distance |x − r| or |x + r| should be

considered, we use the minimum of both, such that the novel

distance is given by

d(r, x) = min(|x− r|, |x + r|). (4)

In Fig. 2b), the neighbourhoods {x ∈ C ∪D : d(x, ri) < δ}
of two different points ri, i = 1, 2, are shown. Essentially,

the tracking error measure d allows to compare a reference

trajectory with a plant trajectory, “as if” both of them already

jumped, cf. the points with positive x2 in Fig. 2b), where the

measure d corresponds to the error |x− g(r2)|.
Now, to account for a non-ideal impact, i.e., ǫ 6= 1, we

reshape the space C ∪ D using a function Me : C ∪ D →
C∪D as follows. Essentially, we aim to employ the distance

function (4), but, since trajectories jump from (0, x2) to

(0,−ǫx2) when x2 < 0, we will “stretch” the positive

x2−axis, such that Me((0, x2)) = (0, 1
ǫ
x2) for x2 > 0, and

Me((0, x2)) = (0, x2) for x2 ≤ 0. Using an interpolation

which is linear with respect to arctan x2

x1

, we define a

continuous function

Mǫ(x):=
(

1
2+

1
π
atan(x2, x1)

)

1
ǫ
x+

(

1
2−

1
π
atan(x2, x1)

)

x,

for all x ∈ C ∪ D, with atan(a, b)=arctan(a
b
), b 6=0 and

atan(a, 0)=π
2 sign(a). Using Mǫ, we define the tracking error

for the system (3) as

d(r, x) := min(|Mǫ(x) −Mǫ(r)|, |Mǫ(x) +Mǫ(r)|). (5)

For ǫ = 1 this distance is equal to (4) since M1(x) = x. Note

that the distance (5) is not equivalent with the Euclidean

distance |x − r|, such that asymptotically stable behaviour

of d does not imply asymptotically stable behaviour of the

Euclidean distance. Analogous to the common approach in

tracking control for ODEs, we consider reference trajectories

r that are solutions to (3) for a given feedforward signal

u = uff(t) and design a state-dependent control law u =
ud(t, r, x).

In order to study the stability of the closed-loop system,

we compare the dynamics of the reference with the dynamics

of the plant and evaluate d(r, x) along trajectories. For this

purpose, we create an extended hybrid system with state q =
(r⊤, x⊤)⊤. The dynamics of this hybrid system is given by

q̇ = Fe(t, q), q ∈ C2 (6a)

q+ = col(q1,−ǫq2, q3, q4), q ∈ D × (C ∪D) (6b)

q+ = col(q1, q2, q3,−ǫq4), q ∈ (C ∪D)×D, (6c)

where col(a, b) = (a⊤ b⊤)⊤, and

Fe(t, q):=col(q2, f(t, r)+uff(t), q4,f(t, x)+ud(t, r, x)). (7)

The main advantage of considering this extended hybrid

system is that a joint hybrid time domain is created, such

that hybrid times (t, j) ∈ dom q denote the continuous-

time t lapsed, and j gives the total number of jumps

that occurred in both x and r. Hence, we can evaluate

r̄(t, j) := (q1, q2)
⊤(t, j) and x̄(t, j) := (q3, q4)(t, j) at any

time (t, j) ∈ dom q to evaluate d(r̄(t, j), x̄(t, j)). If two

distinct trajectories x and r from (3) would be considered,

then dom r 6= dom x. In this case, if one defines a time-

dependent tracking error at time (t, j) ∈ dom x, then it is not

clear what time (tr, jr) ∈ dom r is appropriate to compare x

with r. Such problems are avoided by studying the extended

dynamics in (6).

We will formulate a tracking problem by requiring the de-

sign of a state-dependent tracking control law u = ud(t, r, x)
such that the reference r has the asymptotic stability property

as formalised as follows.

Definition 1 (Stability with respect to distance d) Let d

be given in (5). A reference trajectory r(t, j) of (3) is

• stable with respect to d if for all t0, j0 ≥ 0 and ε > 0
there exists a δ(t0, j0, ε) > 0 such that ∀t ≥ t0, ∀j ≥ j0:

d(r̄(t0, j0), x̄(t0, j0)) < δ(t0, j0, ε) ⇒ d(r̄(t, j), x̄(t, j)) < ε;
(8)

• asymptotically stable with respect to d if it is stable with

respect to d and δ in (8) can be chosen such that:

d(r̄(t0, j0), x̄(t0, j0)) < δ(t0, j0, ε) ⇒

lim
t+j→∞

d(r̄(t, j), x̄(t, j)) → 0.

We formalise the tracking problem as follows.

Definition 2 (Tracking problem) Given a hybrid system

(3) with reference trajectory r, design a control law

ud(t, r, x) such that the trajectory r is asymptotically stable

with respect to d given in (5).

We note that asymptotic stability of the reference with

respect to the distance d, as given in Definition 1, directly

implies that the difference between the jump times of the

reference and plant vanishes when trajectories of (3a) arrive

at D in a non-tangential fashion. Additionally, the function

d(r, x) is designed such that, when d(r, x) is small and r is
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away from D∪g(D), then |x−r| is small. Hence, a controller

solving the tracking problem in Definition 2 induces the

intuitive notion of tracking: jump times of reference and plant

converge to each other, and, away from the jump times, the

Euclidean tracking error converges to zero.

The tracking problem in Definition 2 does allow the

occurrence of the peaking phenomenon of the Euclidean

error, as depicted in Fig 1c. The reason of this fact is found

in the novel definition of the tracking error as in (5) and the

related stability notion in Definition 1. Namely, it embeds a

more intuitive and less restrictive notion of the closeness of

jumping trajectories. Moreover, the tracking problem defined

here can be solved with a state-dependent controller that does

not induce jumps directly.

The distance d depends only on the current state of the

plant and the reference, and not on the complete trajectories.

For this reason, the evaluation of Lyapunov-like functions

along trajectories can be used to study the behaviour of d

and to analyse whether a given control law ud(t, r, x) solves

the tracking problem formulated in Definition 2.

B. Sufficient conditions for stability of hybrid trajectories

In this section, we formulate sufficient conditions that

guarantee that trajectories of the closed-loop dynamics are

defined for t → ∞ and the hybrid tracking problem is

solved for a given control law ud(t, r, x). Hereto, Lyapunov

functions are employed that are non-increasing over jumps

and converge to zero during flow when t → ∞.

In order to guarantee that trajectories of (6) have hybrid

time domains that are unbounded in t−direction, we require

that r is non-Zeno and bounded:

Assumption 1 The reference trajectory r =
[

r1 r2
]⊤

is

non-Zeno, bounded, and the unique solution of (3) with

feedforward signal uff(t) and initial condition r(0, 0).

The required uniqueness of the reference trajectory implies

that (q1, q2)
⊤ = r̄ when the initial condition (q1, q2)

⊤ =
r̄(0, 0) is chosen. This implies that if the set {q ∈ (C∪D)2 :
d(r̄, x̄) = 0} is asymptotically stable with respect to d under

the dynamics (6), then the tracking problem in Definition 2

is solved, since the initial condition can be chosen such that

r̄(0, 0) is appropriately initialised. In the following theorem,

we present sufficient conditions under which the tracking

problem is solved, and in addition, an estimate of the basin

of attraction of r is given. We note that this theorem is

proven by evaluation of d along trajectories q(t, j) of (6)

for t → ∞. For this reason, x should not display Zeno

behaviour, which, for the estimate of the basin of attraction,

is ensured in statement (ii) of Theorem 1 by a technical

condition. Note, that the time-dependency in the theorem

originates from the reference signal r(t, j), which is known

a priori in the tracking problem.

Theorem 1 Consider a hybrid system (3), distance d given

in (5), reference trajectory r, and feedforward signal uff

satisfying Assumption 1. Let the control law ud(t, r, x) be

given. If we let Fe(t, r, x) be defined in (7), then the following

statements hold:

(i) The reference r is asymptotically stable with respect to

d for the system (6) if there exist functions α1,2 ∈ K∞,

a continuously differentiable function V (r, x) and scalars

c, δ > 0 such that

α1(d(r(t, j), x)) ≤ V (r(t, j), x) ≤ α2(d(r(t, j), x)) (9a)

holds for all x ∈ C ∪D, (t, j) ∈ dom r, and

V (g(r(t, j)), x) ≤ V (r(t, j), x), for r(t, j) ∈ D (9b)

V (r(t, j), g(x)) ≤ V (r(t, j), x), for x ∈ D (9c)

〈∇V, Fe(t, (r(t,j)
⊤, x⊤)⊤)〉<−cV(r(t,j), x),

for x, r(t, j) ∈ C
(9d)

hold for all (t, j) ∈ dom r and all x ∈ C ∪ D such that

d(x, r(t, j)) < δ.

(ii) If (9) holds for all (t, j) ∈ dom r, all x ∈ A :=
{x ∈ C ∪ D : V (r(t, j), x) ≤ K} and if the origin is not

contained in the set A for any (t, j) ∈ dom r, then the

domain {x ∈ C ∪ D : V (r(0, 0), x) ≤ K} is contained in

the basin of attraction of r.

Proof: First, we prove stability by evaluating V (r̄, x̄) along

trajectories of (6). Let ε ≥ 0, as given in Definition 1, be

chosen arbitrarily. In the following argument we select initial

conditions such that along closed-loop trajectories, firstly, the

tracking error d(x̄, r̄) satisfies d(x̄, r̄) < δ, such that (9b)-

(9d) hold, and secondly, d(x̄, r̄) < ε, proving stability.

Consider a trajectory x̄ with initial conditions x̄(t0, j0)
satisfying d(x̄(t0, j0), r̄(t0, j0)) ≤ δ∗, where δ∗ <

α−1
2 α1(min(δ, ε)). For the sake of contradiction, assume

that for such initial conditions, there exists times (t†, j†) ∈
dom q, (t†, j†) > (t0, j0) such that

d(r̄(t†, j†), x̄(t†, j†)) ≥ min(δ, ε). (10)

From the structure of (5) it follows that d, when evaluated

along trajectories of (6), changes continuously with respect to

continuous-time t and remains constant over jumps. Hence,

(10) implies that there exists a (t∗, j∗) ∈ dom q, with t∗ ≤ t†

and j∗ ≤ j†, such that

d(r̄(t∗, j∗), x̄(t∗, j∗)) = min(δ, ε) (11)

and d(r̄(t, j), x̄(t, j)) < min(δ, ε), ∀(t, j) ∈
(dom q ∩ [t0, t

∗) × [j0, j
∗]). In the time interval

(dom q ∩ [t0, t
∗) × [j0, j

∗]), the function V (r̄, x̄),
evaluated over trajectories of (6), is non-increasing

both over jumps, as given in (9b)-(9c), and over

flow, as given in (9d), such that we conclude

V (r̄(t∗, j∗), x̄(t∗, j∗)) ≤ V (r̄(t0, j0), x̄(t0, j0)).
Using (9a), this implies d(r̄(t∗, j∗), x̄(t∗, j∗)) ≤
α−1
1 α2(d(r̄(t0, j0), x̄(t0, j0))), and by design of

δ∗, we obtain d(r̄(t∗, j∗), x̄(t∗, j∗)) < min(δ, ε),
which contradicts (11). Hence, we have proven that

d(r̄(t, j), x̄(t, j)) < min(δ, ε), ∀(t, j) ∈ dom q, such that,

first, statement (i) implies that the local conditions (9b)-(9d)

hold along trajectories from initial conditions satisfying
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d(x̄(t0, j0), r̄(t0, j0)) ≤ δ∗, and second, stability as given in

Definition 1 is proven with δ(t0, j0, ε) = δ∗.

Now, we prove that the trajectory q has a time domain

which is unbounded in t-direction when x̄(0, 0) is sufficiently

close to r̄(0, 0). By Assumption 1, the trajectory r̄ is unique

and non-Zeno. This directly implies r̄(t, j) is bounded away

from the origin, i.e., there exists a d0 > 0 such that

|r̄(t, j)| > d0, ∀(t, j) ∈ dom q. (12)

For initial conditions x̄(0, 0) with d(x̄(0, 0), r̄(0, 0)) ≤ δ†,

with strictly positive δ† < min(δ∗, α−1
2 (α1(d0))), it follows

from the same reasoning as used to prove stability that

d(r̄(t, j), x̄(t, j)) ≤ d0, ∀(t, j) ∈ dom q, such that the

definition of d yields |x̄(t, j)| ≥ |r̄(t, j)| − d0. Combination

with (12) implies that x̄(t, j) 6= 0, ∀(t, j) ∈ dom q, such

that x̄ is non-Zeno. Boundedness of x̄ follows from stability

and implies that, at any time instant, the time-evolution of

(3a) can be extended for increasing t unless x̄ leaves C.

Finally, trajectories x of (3) can not leave C ∪D, such that

the time domain dom x is unbounded in t-direction. Since

both x and r have a time domain which is unbounded in

t-direction, dom q is unbounded in t-direction.

Now, we prove asymptotic stability. From

(9b)-(9d) it follows that V (r̄(t, j), x̄(t, j)) ≤
e−ctV (r̄(0, 0), x̄(0, 0)), ∀(t, j) ∈ dom q.

Hence, (9a) implies that d(r̄(t, j), x̄(t, j)) ≤
α−1
1 (e−ctα2(d(r̄(0, 0), x̄(0, 0)))), proving (i).

Consider an arbitrary initial condition x̄(0, 0) ∈ {x ∈
C ∪ D : V (r(0, 0), x) ≤ K}. When (9) holds for

all x such that V (r̄, x̄) ≤ K , then evaluation of V

along trajectories of (6) proves that V (r̄(t, j), x̄(t, j)) ≤
V (r̄(0, 0), x̄(0, 0)), ∀(t, j) ∈ dom q. The assumption

that the origin is not contained in the set {x ∈ C ∪
D : V (r(t, j), x) ≤ K} for any (t, j) ∈ dom r, as

posed in (ii), directly implies x̄ is non-Zeno, such that

dom q is unbounded in t-direction. From (9b)-(9d) it follows

that V (r̄(t, j), x̄(t, j)) ≤ e−ctV (r̄(0, 0), x̄(0, 0)), ∀(t, j) ∈
dom q, which proves asymptotic convergence of d to zero

using (9a). Since x̄(0, 0) ∈ {x ∈ C ∪ D : V (r(0, 0), x) ≤
K} is chosen arbitrarily, all trajectories from these initial

conditions converge asymptotically to r, proving (ii).

IV. CONTROLLER DESIGN

In this section, we design a tracking control law ud(t, r, x)
for system (3), based on the definition of the tracking error

measure d in (5), for the case of fully elastic impacts (ǫ = 1).

When the trajectory x is sufficiently close to r and neither of

them experiences a jump in the near future or past, then the

tracking error d(r, x) given in (5) is given by |x− r|. Along

flowing solutions, this error could accurately be controlled

using a controller with PD-type feedback, given by:

u = uff(t)− (f(t, x)− f(t, r))− [kp kd](x− r), (13)

where kp, kd > 0. Implementation of this controller yields

the error dynamics ẍ1−r̈1 = −kp(x1−r1)−kd(ẋ1−ṙ1), such

that
[

x1 − r1 ẋ1 − ṙ1
]⊤

=
[

0 0
]⊤

is an asymptotically

stable equilibrium point of this error dynamics.

However, if either the reference or the plant just expe-

rienced a jump, d(r, x) as in (5) is given by |x + r|. The

dynamics of x + r is stable during flow when this error

dynamics satisfies ẍ1 + r̈1 = −kp(x1 + r1) − kd(ẋ1 + ṙ1),
which is obtained by the controller design:

u = −uff(t)− f(t, x)− f(t, r)− [kp kd](x+ r). (14)

Based on these insights, we propose a controller that

switches between (13) and (14). To choose the partitioning of

the state space where either (13) or (14) are applied, the fol-

lowing candidate Lyapunov function V (r, x) is considered:

Vd(r, x)=
1
2 (x−r)⊤P (x−r); Vm(r, x)= 1

2 (x+r)⊤P (x+r)

V (r, x) = min(Vd(r, x), Vm(r, x)), (15)

where a positive definite matrix P is chosen such that

A⊤P + PA ≺ −cP, (16)

with c > 0 and A =

[

0 1
−kp −kd

]

. For strictly positive

kp, kd, the matrix A is Hurwitz, which implies that such P

and c exist, cf. [17, Theorem 4.6]. The function V remains

constant during jumps, such that (9b) and (9c) in Theorem 1

are satisfied. The lower and upper bounds (9a) are satisfied

with α1(d(x, r)) = 1
2λmin(P )d(x, r)2 and α2(d(x, r)) =

1
2λmax(P )d(x, r)2 , where λmin(P ) and λmax(P ) are the

minimum and maximum eigenvalue of P , respectively.

Based on the Lyapunov function candidate V , a control

law u = ud(t, r, x) is designed, such that V decreases when

Vd(r, x) 6= Vm(r, x):

u=

{

uff(t)+f(t,r)−f(t,x)−[kp kd](x−r), Vd≤Vm

−uff(t)−f(t,r)−f(t,x)−[kp kd](x+r), Vd>Vm.
(17)

Using the Lyapunov function (15), the following theorem

is derived, that shows that the control law (17) solves the

tracking problem.

Theorem 2 Consider a hybrid system (3), tracking error d

given in (5), reference trajectory r, and feedforward signal

uff satisfying Assumption 1. Application of the control law

ud(t, r, x) as defined in (15) and (17), with kp, kd > 0,

to the hybrid system (3) makes the reference trajectory r

asymptotically stable with respect to d. In addition, the set

{x ∈ C ∪D : V (r(0, 0), x) ≤ K} is contained in the basin

of attraction of r, where K is chosen to satisfy

K < min
(t,j)∈dom r

V (r(t, j), 0). (18)

Proof: This proof can be found in [18] and is omitted here

due to length restrictions.

V. ILLUSTRATIVE EXAMPLE

Consider system (3) with ǫ = 1, f(t, x) = −G, where

G = 9.81. Let the reference r be given by

r=















[

3
4G(τ − τ2)
3
4G(1− 2τ)

]

, τ = t mod 4 ∈ [0, 1]
[

3G
4 (τ − 1)− G

4 (τ − 1)2
3G
4 − G

2 (τ − 1)

]

, τ = t mod 4 ∈ [1, 4],
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Fig. 3. Reference r and plant trajectory x of (3), where f(t, x) = −9.81,
uff given in (19), and the control law (17) is applied with [kp kd] = [1 0.5].
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Fig. 4. Tracking error expressed in Euclidean distance |x−r| and distance
function d(r, x) given in (4) for system (3), where f(t, x) = −9.81, uff

given in (19), and control law (17) is applied with [kp kd] = [1 0.5].

which is shown with a solid line in Fig. 3 and satisfies

Assumption 1 for the initial condition r(0, 0) =
[

0 3G
4

]⊤

and feedforward signal u:

uff(t) =

{

−G
2 , τ = t mod 4 ∈ [0, 1]
G
2 , τ = t mod 4 ∈ [1, 4].

(19)

The control law ud(t, r, x) given in (17) with [kp kd] =

[1 0.5] and P =

[

2.25 0.5
0.5 2

]

is applied to system (3)

with initial condition x(0, 0) =
[

4 3G
4

]⊤
. This trajectory

is shown with the dashed line in Fig. 3. Observe that the

hybrid trajectory x converges to r during flow, and the jump

instances of r and x converge to each other.

Both the Euclidean distance |x−r| and the distance d(r, x)
between both trajectories are shown in Fig. 4. Clearly, the Eu-

clidean distance displays the unstable “peaking” behaviour.

During the time period where Vd(r, x) < Vm(r, x), the

first case of controller (17) is active, which has a con-

ventional feedback action of PD-type. However, during the

time intervals that are depicted gray in Fig. 3, the reference

experienced an impact and the plant not, or vise versa,

such that Vm(r, x) < Vd(r, x), and consequently, the second

case of (17) is active. Hence, the feedback action is not

disturbed by the peaking phenomenon of the Euclidean

tracking error, and the controller (17) solves the tracking

problem as formulated in Definition 2.

VI. CONCLUSION

In this paper, tracking problems were considered for a

class of hybrid systems, which model mechanical systems

with a unilateral constraint. In these systems, plant trajec-

tories generically exhibit state-triggered jumps that do not

coincide with the jumps of the reference trajectory. As a

consequence, the Euclidean tracking error behaves in an un-

stable manner, even though the trajectories behave desirably.

Therefore, we provided a new and appropriate formulation

for the tracking problem in terms of a novel distance between

the reference and the plant state. Sufficient conditions were

formulated that guarantee local asymptotic stability of the

reference trajectory with respect to this tracking error. In

addition, a controller design procedure was proposed that

solves the tracking problem for the class of systems with

elastic impacts. Finally, the results were illustrated through

simulations.
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