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Abstract— In this paper we are concerned with the stabil-
ity analysis and the design of stabilizing compensation-based
control algorithms for networked control systems (NCSs) that
exhibit packet dropouts. We propose a new type of model-based
dropout compensator, which depends on the local dropout his-
tory, and we provide LMI-based conditions for their synthesis.
The analysis and design framework includes stochastic models
to describe the packet dropout behavior in both the sensor-to-
controller and controller-to-actuator channel. Via examples we
demonstrate the significantly improved robustness with respect
to packet dropouts using the proposed dropout compensator,
compared to using the zero strategy and the hold strategy.

I. INTRODUCTION

Networked control systems (NCSs) are feedback control

systems, in which the communication between spatially

distributed components, such as sensors, actuators and con-

trollers, occurs through a shared communication network.

The use of networks offers many advantages for control

systems, such as low installation and maintenance costs,

reduced system wiring (in the case of wireless networks) and

increased flexibility of the system. However, from a control

theory point of view, the presence of a communication net-

work also introduces several, possibly destabilizing, effects,

such as packet dropout, time-varying transmission intervals

and delays. In this paper we focus on packet dropouts, which

can occur, for instance, if there are transmission failures or

message collisions. As packet dropouts are a potential source

of instability in NCSs, it is of interest to investigate measures

to mitigate the influence of dropouts on the stability and also

performance of a NCS.

In the literature several different strategies have been

proposed to deal with packet dropouts. These strategies can

be categorized into three groups: strategies for dropouts in

the sensor-to-controller channel, strategies for dropouts in

the controller-to-actuator channel and strategies for dropouts

in both the sensor-to-controller and controller-to-actuator

channel. For dropouts in the sensor-to-controller channel,

typically model-based observers are used to alleviate the

effect of dropouts. For dropouts in the controller-to-actuator

channel, a solution proposed in [12] is the zero strategy,

in which the actuator input is set to zero if a packet is

dropped. The hold strategy, in which the actuator holds the

last received control input instead of setting it to zero, is
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used in [11]. Instead of holding the previous control input or

setting the control input to zero, dynamical predictive outage

compensators have been presented in [9]. The latter approach

is related to our approach, but considers only dropouts in the

controller-to-actuator channel. An alternative scheme based

on sending future predicted control values to the actuator was

proposed in, e.g., [1], [2], [3]. For packet dropouts in both

the controller-to-actuator channel and sensor-to-controller

channel, so-called generalized hold functions, which extend

the basic hold strategy have been studied in [10], where the

optimal hold function is found by solving a LQG problem.

The approach in [10] is based on a TCP protocol, and re-

quires acknowledgements of successful packet transmissions.

In [15] Markov chains are used to model the stochastic

packet dropout behavior in both channels. This approach

uses the hold strategy to compensate for packet loss in

both channels, but in addition, designs a dropout-dependent

controller.

In this paper, we provide systematic design methodologies

for a novel dropout compensation strategy that minimizes the

influence of dropouts on the stability of the NCS. This new

compensation strategy applies for NCSs in which both the

controller-to-actuator and the sensor-to-controller channel are

subject to dropouts, and does not require any acknowledge-

ment of successful transmissions. In modeling the dropout

behavior, we consider a stochastic approach that employs

stochastic information on the occurrence of dropouts, given

in the form of the well-known Bernoulli or Gilbert-Elliott

models [6], [7]. For these dropout models we design dropout

compensators, which act as model-based, closed-loop ob-

servers if information is received and as open-loop predictors

if a dropout occurs. These compensators, designed for each

lossy channel, depend only on a single channel’s dropout

history, and hence, we require no additional information to

be sent over the network. The conditions for the stability

analysis and design of the compensators are given in terms of

linear matrix inequalities (LMIs) and can therefore be solved

efficiently. The effectiveness of the proposed compensation

strategy and the design tools will be illustrated through a

numerical example. In particular, we will show that the

designed compensators outperform the zero strategy and

the hold strategy (see [11], [12]) significantly in terms of

robustness of the stability with respect to dropouts.

A. Nomenclature

The following notational conventions will be used. Let

R and N denote the field of real numbers and the set

of non-negative integers, respectively. For a square matrix

A ∈ R
n×n we write A ≻ 0, A � 0, A ≺ 0 and A � 0

when A is symmetric and, in addition, A is positive definite,

positive semi-definite, negative definite and negative semi-
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Fig. 1. Scheme of the NCS.

definite, respectively. For x ∈ R
n we denote the Euclidean

norm as ‖x‖2 :=
√
xTx. For a matrix A ∈ R

n×m we denote

its transpose by AT . For the sake of brevity, we sometimes

write symmetric matrices of the form
[

A BT

B C

]

as
[

A ⋆
B C

]

. We

use diag(A1, A2, . . .) to indicate a block diagonal matrix

with matrices A1, A2, . . . on its diagonal. With some abuse

of notation, we will use both (z0, z1, . . .) and {zl}l∈N with

zl ∈ R
n, l ∈ N, to denote a sequence of vectors in R

n. Let

X and Y be random variables. We denote by P(X = x)
the probability of the event X = x occurring. The expected

value of X is denoted by E(X). The (conditional) probability

of event X = x occurring, given event Y = y, is denoted by

P(X = x|Y = y). The conditional expectation of X given

the event Y = y is denoted E(X |Y = y).

II. PROBLEM FORMULATION

This section has the following outline. In Section II-A,

we define the NCS with the lossy communication links. In

Section II-B, we present stochastic dropout models for the

lossy communication links. In Section II-C, we discuss and

develop the novel dropout compensation strategy. Finally, in

Section II-D we define the problem considered in this paper.

A. Description of the NCS

In this paper, we consider a NCS consisting of a plant and

a controller communicating over a network, see Fig. 1. The

plant is given by a discrete-time linear time-invariant system

of the form

P :

{

xk+1 = Axk +Bua
k,

ysk = Cxk,
(1)

where xk ∈ R
n is the state, ua

k ∈ R
m is the input to the

actuator and ysk ∈ R
p is the output measured by the sensor,

at discrete time k ∈ N. The controller is given by a discrete-

time static output feedback law

C : uc
k = Kyck, (2)

where yck is the information of the plant output available

at the controller and uc
k is the desired actuator command

computed by the controller, at time k ∈ N. The reason

for introducing both ys and yc, and both uc and ua, is the

fact that, due to a non-ideal communication network, ys and

yc (and uc and ua) are typically not equal. Therefore, we

sometimes call yc the networked version of ys and ua the

networked version of uc. In this paper, we are interested in

the situation where the differences between ys and yc, and

uc and ua, are caused by the fact that the network links

between the controller and the actuator, and between the

sensor and the controller, are lossy, meaning that packet loss

can occur. To model packet loss, we introduce the binary

0
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(drop)

p0,0

p0,1

p1,0 p1,1

1

GOOD
(receive)

Fig. 2. Gilbert-Elliott model of a lossy network link.

variables δk ∈ {0, 1} and ∆k ∈ {0, 1} , k ∈ N. In case of

a successful transmission in the sensor-to-controller channel

at time k ∈ N, ∆k = 1, and otherwise ∆k = 0. Similarly in

case of a successful transmission in the controller-to-actuator

channel, δk = 1, and otherwise δk = 0.

Using the binary variables δk and ∆k, k ∈ N, we can

now relate yc to ys, and ua to uc. If a transmission over

a channel is successful at time k ∈ N, the networked

version of a signal will be equal to the original signal, i.e.,

yck = ysk in case ∆k = 1 and ua
k = uc

k in case δk = 1. If

however, the transmission fails at time k, there are multiple

strategies for selecting the values yck and ua
k. Some basic and

existing strategies, such as the “zero” strategy and the “hold”

strategy, are used in [11], [12]. In Section II-C, we will

propose a novel “compensation-based” strategy. The latter

strategy employs observer-like compensators on both sides

of the network to mitigate the effect of packet loss on the

stability of the NCS as much as possible. However, before

doing so, first we provide models for the dropout behavior.

B. Dropout Models

In describing packet dropouts in both network links,

stochastic models are used. The simplest stochastic model

of random packet losses over each of the network channels

is to describe the packet loss as a Bernoulli process [12].

In this case, a packet sent over the network from controller

to actuator can be lost with probability pa ∈ [0, 1] and can

arrive with probability 1 − pa, i.e., P (δk = 0) = pa and

P (δk = 1) = 1 − pa, k ∈ N. Similarly for the packets sent

from sensor to controller, we have P (∆k = 0) = pc, pc ∈
[0, 1] and P (∆k = 1) = 1− pc, k ∈ N. This setup models a

memoryless channel, since the probability of dropouts at a

certain time instant is independent of the channel’s dropout

history.

The situation in which packet losses occur in bursts can

not be captured with this memoryless model [7]. Therefore,

in this paper we also consider the packet losses in each

of the two channels being governed by different two-state

Markov chains, as depicted in Fig. 2. This model is known

as the Gilbert-Elliott model for fading channels and consists

of a good and a bad network state, see e.g., [6], [7]. The

probability of packet loss at a certain time instant now

depends on the success or failure at the previous transmission

instant, i.e., for k ∈ N,

P(δk+1 = δ | δk = δ−) = pa
δ−,δ

,

P(∆k+1 = ∆ | ∆k = ∆−) = pc∆−,∆,
(3)

where pa
δ−,δ

and pc∆−,∆ denote the transition probabilities

in the controller-to-actuator and sensor-to-controller channel,

respectively, for δ, δ−,∆,∆− ∈ {0, 1}. Obviously, pa
δ−,0 +
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Fig. 3. Scheme of the compensation-based strategy NCS.

pa
δ−,1 = 1 and pc∆−,0 + pc∆−,1 = 1 for all δ−,∆− ∈ {0, 1}.

As for each channel the packet loss is modeled by a separate

Gilbert-Elliott model, we can use that

pδ−,∆−,δ,∆ := P(δk+1=δ ∧∆k+1=∆ | δk=δ− ∧∆k=∆−)

= P(δk+1=δ | δk=δ−)P(∆k+1=∆ |∆k=∆−)

= paδ−,δp
c
∆−,∆, (4)

where δ, δ−,∆,∆− ∈ {0, 1}.

C. Compensation-Based Strategy

In addition to the existing basic dropout compensation

strategies such as the zero strategy and the hold strategy,

in this paper we propose a new compensation-based strat-

egy consisting of two packet loss compensators situated

before the controller and the actuator, denoted by Cc and

Ca, respectively (see Fig. 3). The main idea behind the

functioning of the compensator is that if a packet arrives,

the compensator just forwards the packet and, additionally,

acts as a model-based closed-loop observer, i.e., the received

signal information is also used to innovate the compensator’s

estimate of the state of the plant. In case of a packet drop, the

compensator acts as an open-loop predictor and, additionally,

forwards its best prediction of ysk or uc
k, based on its estimate

of the plant state. To formalize this idea, we propose to give

the compensators Cc and Ca the following structures:

Cc :







xc
k+1 = Axc

k +Buc
k +∆kL

c
j̃k−1

(ysk − Cxc
k)

yck =

{

Cxk (= ysk) if ∆k = 1
Cxc

k if ∆k = 0 ,

(5)

Ca :







xa
k+1 = Axa

k +Bua
k + δkL

a
ĩk−1

(uc
k −KCxa

k)

ua
k =

{

Kyck (= uc
k) if δk = 1

KCxa
k if δk = 0 .

(6)

In (6), we use the fact that the compensator Ca is col-

located with the actuators and, hence, has access to the

true implemented control signal ua
k, which is beneficial for

the closed-loop observer design. This is not the case for

compensator Cc, which is collocated with the controller C,

and, consequently, can only employ the controller output uc
k

at time k ∈ N. Note that uc
k is typically not equal to the

true control signal ua
k that is implemented at the actuators

at time k ∈ N. This complicates the closed-loop observer

design considerably. The gains Lc
j̃k−1

and La
ĩk−1

are designed

to improve the robustness of the stability of the NCS in

the presence of dropouts. Note that in (5) and (6) these

gains are only effective (i.e. innovation is applied) at time

k ∈ N, if a packet is received, i.e., ∆k = 1 or δk = 1.

Moreover, these compensator gains depend on the counters

ĩk−1 and j̃k−1, which are related to the number of successive

dropouts that occurred just before and including time k− 1,

in the controller-to-actuator channel (ik−1) and sensor-to-

controller channel (jk−1), respectively. More specifically,

the cumulative dropout counters after the latest successful

transmission are defined as

ik := min {la ∈ N | δk−la = 1, k − la ≥ −1} ,
jk := min {lc ∈ N | ∆k−lc = 1, k − lc ≥ −1} , (7)

for k ∈ N, where we set δ−1 := 1 and ∆−1 := 1. However,

the gains Lc
j̃k−1

and La
ĩk−1

do not depend directly on ik−1 and

jk−1, but on “saturated” versions of ik−1 and jk−1 denoted

by ĩk−1 and j̃k−1, respectively. We will explain next the

reasons why and introduce ĩk and j̃k formally.

The adopted Gilbert-Elliott models allow for the occur-

rence of an infinite number of successive dropouts in the

controller-to-actuator channel if pa0,0 6= 0, and in the sensor-

to-controller channel if pc0,0 6= 0. Having compensators

depending on the counters ik and jk would lead to designing

infinitely many compensator gains La
i and Lc

j , i ∈ N, j ∈ N.

Clearly, for practical reasons it is desirable to have a finite

number of compensator gains, and therefore we choose the

compensators to depend on saturated dropout counters ĩk and

j̃k subject to the saturation levels δ̃ and ∆̃, respectively, i.e.,

ĩk = min(ik, δ̃),

j̃k = min(jk, ∆̃),
(8)

for k ∈ N, where ik and jk are defined as in (7). The number

of compensators gains, La
ĩ
, ĩ ∈ {0, . . . , δ̃}, and Lc

j̃
, j̃ ∈

{0, . . . , ∆̃}, to be designed for each channel is now finite.

The exact number can be chosen freely by selecting δ̃ and ∆̃
in a desirable manner. A direct consequence of these choices

is that for all ik ≥ δ̃, k ∈ N we apply the same gain La

δ̃
in

(6). Similarly, for all jk ≥ ∆̃, k ∈ N we apply the same

gain Lc

∆̃
in (5). Increasing δ̃ and ∆̃ increases flexibility of

the compensators, however, the complexity of the synthesis

problem also increases.

Remark 1: Note that the compensator proposed in (6)

is more complex than the controller. If the actuator has

enough computational power to run the compensator, the

controller could also be collocated with the actuator, thereby

effectively removing the controller-to-actuator channel. As

a consequence, packet loss between the controller and the

actuator is eliminated. In this paper we discuss the general

case of a non-collocated controller, i.e., the link between the

controller and actuator is subject to packet loss. The situation

where a controller collocated with the actuator is used is a

simpler problem, which fits as a special case in the general

framework and analysis described in this paper.

D. Problem Formulation

The main objectives of this paper are to study the stability

properties of the NCS with the compensation-based strategy,

as presented in Section II-C, for the stochastic dropout

models, as presented in Section II-B. In addition, we aim

at deriving effective design conditions for the compensator

gains La
ĩ

and Lc
j̃

leading to the largest regions of stability in

terms of the largest dropout probabilities that can be allowed

while still guaranteeing stability.
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Acb
δ,∆,i,j =





A+BKC − (1− δ)BKC −δ (1−∆)BKC

On×n A− δLa
iKC δ (1−∆)La

iKC

On×n − (1− δ)BKC A+ (1− δ) (1−∆)BKC −∆Lc
jC



 (10)

III. MARKOV JUMP LINEAR SYSTEM MODEL

In this section, we combine the NCS (Section II-A), the

compensation based strategy (Section II-C) and the dropout

models (Section II-B) to obtain a Markov Jump Linear

System (MJLS), see, e.g., [5].

To obtain a closed-loop model for the control system

including the compensators, we denote the estimation errors

at time k ∈ N corresponding to the compensators Cc and Ca
as eck := xk−xc

k and eak := xk−xa
k, respectively, and define

the augmented state ξk := [ xT
k (eak)

T (eck)
T ]T . The

closed-loop dynamics for the compensation-based strategy

can then be given by

ξk+1 = Acb
δk,∆k ,̃ik−1,j̃k−1

ξk, (9)

with Acb
δ,∆,i,j as in (10), for δ ∈ {0, 1}, ∆ ∈ {0, 1}, i ∈

{0, . . . , δ̃} and j ∈ {0, . . . , ∆̃}. We also define

µ̃k := (δk,∆k, ĩk−1, j̃k−1) ∈ M̃, (11)

where M̃ = {0, 1}2 × {0, . . . , δ̃} × {0, . . . , ∆̃}. This allows

a compact representation of (9) as

ξk+1 = Acb
µ̃k
ξk. (12)

Consider now the closed-loop representation (12) and note

that not all transitions from µ̃k ∈ M̃ to µ̃k+1 ∈ M̃ are

possible. In fact, for k ∈ N, it holds that

ĩk+1 = g̃δ̃ (̃ik, δk), j̃k+1 = g̃∆̃(j̃k,∆k) (13)

δk+1 ∈ {0, 1}, ∆k+1 ∈ {0, 1}, (14)

where the parameterized set-valued map

g̃r : {0, . . . , r} × {0, 1} ⇉ {0, . . . , r} for r ∈ N is given by

g̃r(s1, s2) :=







0 , s2 = 1
s1+1 , s2 = 0 , s1 ∈ {0, . . . , r−1}
s1 , s2 = 0 , s1 = r.

, (15)

We combine the maps in (13) and (14) to obtain

µ̃k+1 ∈ Gδ̃,∆̃(µ̃k) (16)

for all k ∈ N, where the set-valued map Gδ̃,∆̃ : M̃ ⇉ M̃ is

defined for µ̃ = (δ,∆, ĩ, j̃) ∈ M̃ as

Gδ̃,∆̃(µ̃) := {0, 1}2 ×
{

g̃δ̃ (̃i, δ)
}

×
{

g̃∆̃(j̃,∆)
}

. (17)

A final step to model the complete NCS with the

compensation-based strategy using the compensators Cc and

Ca, as defined in (5) and (6), respectively, is to include

the transition probabilities from µ̃k to µ̃k+1 ∈ Gδ̃,∆̃(µ̃k)
based on the Gilbert-Elliott models for the dropout behavior

in each channel. These probabilities combined with (12)

and (16) will lead to a MJLS model. To obtain these

probabilities, observe that the probability of going from

µ̃k = (δk,∆k, ĩk−1, j̃k−1) to µ̃k+1 = (δk+1,∆k+1, ĩk, j̃k)
is completely determined by the probability of going from

δk to δk+1 and ∆k to ∆k+1 as already expressed in (4). As

a consequence, the probability pµ̃−,µ̃ of going from µ̃− =
(δ−,∆−, i−, j−) ∈ M̃ to µ̃ = (δ,∆, i, j) ∈ Gδ̃,∆̃(µ̃

−)
is given by pa

δ−,δ
pc∆−,∆, and thus we obtain the transition

probabilities

pµ̃−,µ̃ =

{

pa
δ−,δ

pc∆−,∆ ,when µ̃−∈M̃, µ̃∈Gδ̃,∆̃(µ̃
−),

0 ,when µ̃−∈M̃, µ̃∈M̃\Gδ̃,∆̃(µ̃
−).
(18)

Note that with these probabilities a Markov chain with state

µ̃ ∈ M̃ is obtained. The discrete-time system (12) with Acb
µ̃

as in (10) combined with the Markov chain (18) forms the

overall model of the NCS in the form of a MJLS, with initial

conditions ξ0 ∈ R
3n and µ0 ∈ M̃. We denote this MJLS for

brevity by ΣMJLS .

IV. STABILITY ANALYSIS

In this section, we provide conditions to analyse stability

of ΣMJLS .

Definition 1 ([4], [13]): The MJLS given by ΣMJLS is:

1) mean-square stable (MSS) if for every initial state

(ξ0, µ̃0), lim
k→∞

E
(

‖ξk‖22 |ξ0, µ̃0

)

= 0;

2) stochastically stable (SS) if for every initial state

(ξ0, µ̃0), E
(
∑

∞

k=0 ‖ξk‖22 |ξ0, µ̃0

)

< ∞;

3) exponentially mean square stable (EMSS) if for every

initial state (ξ0, µ̃0), there exist constants 0 ≤ α < 1
and β ≥ 0 such that for all k ≥ 0, E

(

‖ξk‖22 |ξ0, µ̃0

)

≤
βαk‖ξ0‖22;

4) uniformly exponentially mean square stable (UEMSS),

if it is EMSS with α and β independent of ξ0 and µ̃0;

5) almost surely stable (ASS) if for every initial state

(ξ0, µ̃0), we have that P

(

lim
k→∞

‖ξk‖ = 0

)

= 1.

It is shown in [4] that the first four stability properties in

Definition 1 are equivalent and any one implies almost-sure

stability, i.e.,

MSS ⇔ SS ⇔ EMSS ⇔ UEMSS ⇒ ASS. (19)

In the remainder of this section, we present conditions under

which ΣMJLS is EMSS. To do so, we observe that in the

closed-loop description of the resulting NCS, as given in

(12) with Acb
µ̃ given in (10) for µ̃ = (δ,∆, ĩ, j̃) ∈ M̃, the

states eak+1 and eck+1 are independent of xk . Therefore, we

can split (12) in two subsystems, one related to xk, the other

to ek :=
[

(eak)
T (eck)

T
]T

, for k ∈ N. This yields the two

subsystems

xk+1 = Āxk + wk, (20a)

ek+1 = Eδk,∆k ,̃ik−1,j̃k−1
ek, (20b)
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Eδ,∆,i,j =

[

A− δLa
iKC δ (1−∆)La

iKC

− (1− δ)BKC A+ (1− δ) (1−∆)BKC −∆Lc
jC

]

(23)

Ωδ,∆,i,j =

[

P a
δ,iA− δRa

iKC δ(1−∆)Ra
iKC

−(1− δ)P c
∆,jBKC P c

∆,jA+ (1− δ)(1−∆)P c
∆,jBKC −∆Rc

jC

]

(27)

where wk := B̄δk,∆k
ek, k ∈ N,

Ā := A+BKC, (21)

B̄δ,∆ :=
[

− (1− δ)BKC −δ (1−∆)BKC
]

, (22)

∆ ∈ {0, 1}, δ ∈ {0, 1},
and where Eµ̃ is given in (23) for µ̃ ∈ M̃. To prove that

ΣMJLS is EMSS, we use that (20) is in the form of a

cascaded system. In Theorem 1, we will provide a result that

can be used to conclude that if Ā = A + BKC is a Schur

matrix and if the e-system (20b) with (18) is EMSS, then

the system ΣMJLS given by (20) with (18) is EMSS. Note

that all stability properties in Definition 1 can be defined

similarly for (20b) with (18). In Theorem 2, we will present

necessary and sufficient matrix inequality conditions for

EMSS of the e-system (20b) with (18), which are proven in

[4]. Combining Theorems 1 and 2 will result in EMSS of

ΣMJLS as will be formulated in Theorem 3.

Theorem 1 ([8]): Consider system (20a) where {wk}k∈N

is a sequence of random variables such that for some c1 ≥ 0
and 0 ≤ ρ < 1 it holds that, for any w0 ∈ R

2n, E(‖wk‖22) ≤
c1ρ

k‖w0‖22, k ∈ N. If Ā = A + BKC is a Schur matrix,

then there exist c2 ≥ 0, c3 ≥ 0 and 0 ≤ r < 1 such that

E
(

‖xk‖22 |x0

)

≤ c2r
k‖x0‖22 + c3r

k‖w0‖22 (24)

for all x0, w0, k ∈ N.

Theorem 2 ([4]): The MJLS given by (20b) with (18), is

EMSS if and only if there exists a set {Pµ̃|µ̃ ∈ M̃} of

positive definite matrices satisfying

Pµ̃− −
∑

µ̃∈G
δ̃,∆̃

(µ̃−)

pµ̃−,µ̃E
T
µ̃ Pµ̃Eµ̃ ≻ 0, µ̃− ∈ M̃. (25)

We now combine Theorem 1 and Theorem 2 to obtain the

main result of this section, which formulates conditions

under which ΣMJLS is EMSS. For the proof see [8].

Theorem 3 ([8]): Consider system ΣMJLS given by (20)

with (18). System ΣMJLS is EMSS if and only if there exists

a set {Pµ̃|µ̃ ∈ M̃} of positive definite matrices satisfying

(25) and Ā = A+BKC is a Schur matrix.

V. COMPENSATOR SYNTHESIS

Using Theorem 3, one can analyse stability of ΣMJLS

for given compensator gains La
ĩ

and Lc
j̃
, ĩ ∈ {0, . . . , δ̃},

j̃ ∈ {0, . . . , ∆̃}. Since we are interested in designing La
ĩ

and

Lc
j̃

to obtain stability with a large robustness with respect

to dropouts, Theorem 4 will state LMI-based conditions for

the synthesis of La
ĩ

and Lc
j̃
, based on Theorem 3.

Theorem 4 ([8]): Consider the system ΣMJLS given by

(20) with (18). Suppose Ā = A+ BKC is a Schur matrix,

and there exist a set {Pµ̃|µ̃ ∈ M̃} of symmetric matrices,

with Pµ̃ of the form Pµ̃ = diag
(

P a
δ,̃i
, P c

∆,j̃

)

, µ̃ ∈ M̃
and a set {Rµ̃|µ̃ ∈ M̃} of matrices, with Rµ̃ of the form

Rµ̃ = diag
(

Ra
ĩ
, Rc

j̃

)

, µ̃ ∈ M̃ satisfying

[

Pµ̃− ⋆

Ξ1(µ̃
−) Ξ2(µ̃

−)

]

≻ 0, µ̃− ∈ M̃ (26)

with for µ̃− = (δ−,∆−, ĩ−, j̃−)

Ξ1(µ̃
−) :=

















√

pa
δ−,0p

c
∆−,0 Ω0,0,̃i,j̃

√

pa
δ−,0p

c
∆−,1 Ω0,1,̃i,j̃

√

pa
δ−,1p

c
∆−,0 Ω1,0,̃i,j̃

√

pa
δ−,1p

c
∆−,1 Ω1,1,̃i,j̃

















,

Ξ2(µ̃
−) := diag(P0,0,̃i,j̃ , P0,1,̃i,j̃ , P1,0,̃i,j̃ , P1,1,̃i,j̃),

where ĩ = g̃δ̃ (̃i
−, δ−), j̃ = g̃∆̃(j̃

−,∆−) and Ωµ̃ as in (27).

Then ΣMJLS is EMSS for the compensator gains La
ĩ

and Lc
j̃

given by

La
ĩ

= (P a
1,̃i
)−1Ra

ĩ
, ĩ = 0, . . . , δ̃,

Lc
j̃

= (P c
1,j̃

)−1Rc
j̃
, j̃ = 0, . . . , ∆̃.

(28)

Remark 2: In case dropouts only occur in the sensor-to-

controller channel (see also Remark 1) the above result can

be improved as there is no need to enforce structure on Pµ̃

and Rµ̃, µ̃ ∈ {0, 1} × {0, . . . , ∆̃}.

VI. NUMERICAL EXAMPLES

In this section, we illustrate the presented theory using

a well-known benchmark example in the NCS literature

consisting of an unstable batch reactor [14]. Here, we will

assume that the full state can be measured. We sample the

unstable batch reactor as presented in [14] at 100 Hz to

obtain a discrete-time plant of the form (1) with

A =





1.0142 −0.0018 0.0651 −0.0546

−0.0057 0.9582 −0.0001 0.0067

0.0103 0.0417 0.9363 0.0563

0.0004 0.0417 0.0129 0.9797



,

B =





0.0000 −0.0010

0.0458 0.0000

0.0123 −0.0304

0.0123 −0.0002



, C = I4.

In our analysis, based on Section IV, we will assume that

the state feedback gain K in (2) is designed a priori, more

specifically, K is designed such that all the eigenvalues of

A+BKC are 0.9.
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Fig. 4. Results for various dropout compensation strategies where K is
designed such that all eigenvalues of A+ BKC are placed at 0.9.

We assume that the dropouts in the sensor-to-controller

and controller-to-actuator channels are governed by Gilbert-

Elliott models. For illustrative purposes, we assume that

pa
s−,s

= pc
s−,s

=: ps−,s, for s, s− ∈ {0, 1}. To obtain maxi-

mal robustness of the stability property for the compensation-

based strategy, we design the compensator gains based on

Theorem 4 for various values of ps−,s, s, s− ∈ {0, 1}. If

we satisfy Theorem 4 for certain ps−,s, then the NCS can

be rendered stable by the compensator gains as provided

in (28). Note that Theorem 4 provides sufficient conditions

for the existence of stabilizing compensator gains due to the

imposed structure on the Lyapunov function. We compare the

obtained results for the zero strategy and the hold strategy

to the compensation-based strategy for counter saturation

levels δ̃ = ∆̃ = 1. To compute the stability regions of

the zero strategy and the hold strategy we apply a result

similar to Theorem 2, which provides necessary and suf-

ficient LMI-based conditions for stability, see, e.g., [13].

This leads to Fig. 4, in which we compare the region for

which stability can be proven for the different strategies.

The results are based on analysing an equidistant grid of

ps−,s, s, s− ∈ {0, 1}, i.e, p0,0 ∈ {0, 0.01, . . . , 0.99, 1},

p1,1 ∈ {0, 0.01, . . . , 0.99, 1}, p0,1 = 1 − p0,0 and p1,0 =
1− p1,1. Closed-loop stability is guaranteed for all the grid

points to the left of each line. Even though the results

for the compensation-based strategy are based on sufficient

conditions, we observe that the region for which stability can

be guaranteed is (much) larger than the regions for the zero

strategy and the hold strategy. Hence, for this example it is

clear that the compensation-based strategy is providing more

robustness against packet dropouts (at the price of higher

computational requirements for the implementation).

VII. CONCLUSIONS

In this paper, we presented a new compensation-based

strategy for the stabilization of a networked control system

(NCS) with packet dropouts. The main rationale behind the

novel dropout compensators is that they act as model-based,

closed-loop observers if information is received and as open-

loop predictors if a dropout occurs. These compensators

were considered for Bernoulli and Gilbert-Elliott models

describing the dropout behavior. For these stochastic dropout

models, we derived necessary and sufficient conditions for

(exponential) mean square stability of the closed-loop NCS.

In addition, we developed LMI-based conditions for the

synthesis of the compensator gains that result in a robustly

stable closed-loop system. By means of a numerical exam-

ple, the significant improvements in robustness of stability

with respect to packet dropouts for the compensation-based

strategy compared to the zero strategy and the hold strategy

were demonstrated.
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