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Abstract— In this paper, we introduce variable gain con-
trollers for linear motion systems designed to improve transient
performance. In particular, we focus on the well-known tradeoff
induced by integral action, which removes steady-state errors
due to constant external disturbances, but deteriorates transient
performance in terms of increased overshoot. We propose a
switched integral controller (SIC) and a variable gain integral
controller (VGIC), which both limit the integral action if the
error exceeds a certain threshold and balance this tradeoff in
a more desirable manner. The resulting nonlinear controller
structure consist of, on the one hand, loop-shaped linear
controllers, and on the other hand, the variable gain element.
This structure makes the design and tuning of the variable gain
controller intuitive for motion control engineers. The results
are illustrated by application of the VGIC and SIC to an
experimental set-up.

I. INTRODUCTION

Transient performance of a motion control system is often
quantified in terms of step-responses of the closed-loop
system. In general, the controller design aims at combining
a fast response with small overshoot and zero steady-state
error. It is well known that steady-state errors due to un-
known constant disturbances can be removed by including
integrating action in the controller. The steady-state error can
be caused by constant input disturbances, in case of a plant
without pure integrators, or by constant force disturbances
acting on the system. However, it is also well known that
integral control action increases the amount of overshoot in
case of a step-change in the reference. To balance this trade-
off between steady-state accuracy in the face of disturbances
and fast transients in a more desirable manner, nonlinear
variable gain controllers are proposed in this paper.

The idea of variable gain control for linear motion systems
to enhance the performance is not new [18], [3]. The work
in [8], [7] exploits variable gain control for linear motion
systems to balance the tradeoff between high-frequent noise
sensitivity and low-frequent disturbance suppression in a
more desirable manner, and hence focuses on the steady-

state performance of the system in the presence of time-
varying perturbations. In this paper, we focus on enhancing
transient performance through variable gain control. Several
concepts for improving the transient performance of a control
system have been proposed in literature. One concept is reset
control, of which the so-called Clegg integrator introduced
in [5] in 1958 is one of the first examples. The Clegg
integrator resets the state of the integrator to zero when the
error changes sign. Generalizations include first-order reset
elements (FORE) which reset part, or all, of the controller
states, if certain conditions are satisfied, to attain improved
transient performance [4], [14]. The concept of composite
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nonlinear feedback control is employed in [13], [11], which
varies the amount of damping of the controller depending
on the amplitude of the error, to improve the transient step-
response. A non-linear state-feedback control approach to
improve the transient response of a constrained linear system
is proposed in [1]. A 5-parameter nonlinear PI controller has
been proposed in [15] to improve the transient performance
of linear systems. In [6], potential benefits of hybrid control
for linear systems has been discussed, and it has been shown
that a switched integral controller can improve the transient
performance for a plant consisting of an integrator. Switched
integrator control schemes with resets and saturation have
been considered in [12] for integrating plants. In [16], [17],
the concept of conditional integrators has been introduced
in a sliding mode control framework and a more general
feedback control framework which uses Lyapunov redesign
and saturated high-gain feedback, to obtain regulation of non-
linear systems. In these works, integral action is introduced
in a boundary layer, as not to degrade the transient response
of the nonlinear system.

In this paper, we focus on the performance tradeoff in
overshoot and steady-state error when employing integral
control action. The integrator is typically employed to
achieve zero steady-state errors, but increases the amount of
overshoot. Therefore, the integrating action can be switched
off, or limited, if the error exceeds a certain threshold,
thereby limiting the amount of overshoot the system exhibits.
We will propose and study the following two strategies
that are based on the above philosophy: a switched integral
controller (SIC), which switches off the integrator if the error
exceeds the threshold, and a variable gain integral controller
(VGIC), which reduces the amount of integrating action if
the error exceeds the threshold.

The SIC and VGIC introduced in this paper, in con-
trast to [12], [6], can be applied to any linear plant. The
VGIC and SIC guarantee asymptotic stability of the set-
point under easy-to-use graphical conditions, in the presence
of constant disturbances while improving upon transient
performance (comparing to linear controllers). Because the
building blocks of the variable gain controllers are linear
motion controllers, the tuning can be done using well-known
loop-shaping techniques. Moreover, the controller design and
stability analysis can be performed on the basis of measured
frequency response data. These facts will be illustrated
by application to an experimental setup. Furthermore, as
opposed to reset control as in [4], [14], no controller states
are reset in SIC and VGIC, which makes the closed-loop
dynamics less complex, and, moreover, opposed to [16],
[17], we focus on linear motion systems. Therefore, the
stability and performance analysis becomes easier and the
interpretation of the closed-loop response relates in a clear
way to the underlying linear controller designs, which greatly
enhances practical applicability.
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Fig. 1. Variable gain control scheme.

Concluding, the main contributions of this paper are:
firstly, the design of SIC and VGIC motion controllers
that, on the one hand, guarantee robustness against constant
disturbances by employing integral control, and on the other
hand, significantly improve transient performance, compared
to linear motion controllers, and, secondly, the experimental
validation of the effectiveness of these control designs.

The remainder of the paper is organized as follows. In
Section II, the two variable gain control strategies, variable
gain integral control (VGIC) and switched integrator control
(SIC), will be introduced. Moreover, stability properties
induced by the two proposed control schemes will be studied.
The controllers will be applied to an experimental motion
system in Section III, which illustrates the effectiveness of
the proposed control strategies. Conclusions will be pre-
sented in Section IV.

II. VARIABLE GAIN INTEGRAL CONTROL

Two variable gain control strategies, the switching integral
controller (SIC) and variable gain integral controller (VGIC),
will be proposed in this section. In Section II-A, a description
of the motion control system will be given, followed by
the design of the variable gain element in Section II-B. An
example will be given in Section II-C to illustrate the main
idea of the controller designs. A stability analysis of the
closed-loop dynamics will be presented in Section II-D.

A. Description of the control system

Consider the SISO closed-loop variable gain control
scheme in Fig. 1, with plant P (s), s ∈ C, nominal linear
controller Cnom(s), which does not have integral action,
reference r, disturbance d, and measured output y. Addi-
tionally, we introduce the variable gain part of the controller
consisting of the variable gain element ϕ(e) (u = −ϕ(e)),
depending on the error e, and a weak integrator described
by transfer function

CI(s) =
s+ ωi

s
, (1)

with ωi > 0 the zero of the weak integrator. First consider
the situation in which ϕ(e) is not a nonlinear function but a
linear element and study the following two limiting cases:

1) If ϕ(e) = 0, we have a linear control scheme with
linear controller C(s) := Cnom(s);

2) If ϕ(e) = e, we also have a linear control scheme, but
with linear controller C(s) := Cnom(s)CI(s).

In case 1, steady-state errors due to constant disturbances
cannot be removed, but the amount of overshoot is limited.
In case 2, zero steady-state error can be achieved, but the
overshoot is increased. By choosing the variable gain element
ϕ(e) in a smart way, we can combine the best of both
worlds and obtain both an improved transient response (small
overshoot) and zero steady-state error.

ϕ(e)

eδ−δ

1

VGIC
SIC

Fig. 2. Variable gain elements ϕ(e) for the VGIC and SIC, with saturation
length δ.

B. Design of the variable gain element ϕ(e)

Consider the two choices for ϕ(e) depicted in Fig. 2,
corresponding to the following two variable gain controller
designs:

• The switched integral controller (SIC), which uses the
switching nonlinearity (dashed), is the most straightfor-
ward choice. The controller induces full integral control
action when the error |e| ≤ δ (i.e. Cnom(s)CI(s) is
active, to achieve zero steady-state error), but completely

switches off the integrating action when the error ex-
ceeds δ (i.e. Cnom(s) is active if |e| > δ to limit the
amount of overshoot).

• The variable gain integral controller (VGIC), which uses
the saturation nonlinearity (solid), only limits the inte-
grating action when the error |e| exceeds the saturation
length δ. Thereby, it limits the amount of overshoot,
while inducing full integral control when the error
satisfies |e| ≤ δ, and hence removes steady-state errors.
Note that essentially, if |e| ≫ δ, the linear controller
Cnom(s) is active, while if |e| ≤ δ the linear controller
Cnom(s)CI(s) is active;

Note that other choices for the nonlinearities ϕ(e) are also
possible. The VGIC and SIC nonlinearity are chosen as in
Fig. 2 because they result in the desired closed-loop behavior
(see Sections II-C and III) and are relatively simple to tune
since both can be parameterized by only one parameter δ.
We will show in Section II-D and Section III that the choice
for the VGIC should be preferred over the SIC because it
has beneficial stability properties.

Remark II.1 Note that the amount of integral action in-
duced can be increased (decreased) by increasing (decreas-
ing) the frequency of the zero ωi of the weak integrator (1).

C. Illustrative example

To illustrate the effectiveness and main idea behind the
proposed control strategies, consider the motion system
depicted in Fig. 3, with m = 0.01 kg, b = 0.03 Ns/m,
k = 1 N/m, and control input F (an experimental study with
more complex dynamics will be treated in detail in Section
III). A nominal controller Cnom(s) without integrator and a
controller Cnom(s)CI(s) with integrator have been designed
using loop-shaping techniques to control the system to the
reference r = 1 (note that the force disturbance d = 0
in this case). Cnom(s) = kp(s + ωz)/(s + ωp) is a lead-
filter with the zero at ωz = 10 rad/s, the pole at ωp = 100
rad/s, kp = 100, and the integrator is given by (1), with
ωi = 6 rad/s. The transient unit step response simulations are
depicted in Fig. 4. As can be concluded from the figure, the
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Fig. 3. Schematic representation of a simple motion system.
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Fig. 4. Illustrative example of the controlled motion system in Fig. 3 with
δ = 0.1.

controller without integrator (Cnom(s)) has the least amount
of overshoot, but is not capable of achieving zero steady-
state error. The controller with integrator (Cnom(s)CI(s)) is
capable of removing the steady-state error, but exhibits the
negative effect of increased overshoot. Clearly, the variable
gain controllers (with δ = 0.1) combine the small overshoot
characteristics with zero steady-state error responses, and
SIC has the smallest overshoot of the nonlinear controllers.

The stability properties of the closed-loop variable gain
control system will be discussed in the following section.

Remark II.2 Note that the trade-off induced by the integral
action not only occurs in case of a step in reference. Namely,
if, for example, a certain force-disturbance pushes the error to
a significant level, the same trade-off will become apparent.

D. Stability analysis

In order to perform stability analysis of the nonlinear
variable gain control schemes, we firstly observe from Fig.
1 that the system belongs to the class of Lur’e-type systems,
consisting of a linear dynamical system

Geu(s) =
ωi

s

P (s)Cnom(s)

1 + P (s)Cnom(s)
, (2)

denoting the transfer function between input u and output
e, with a nonlinearity ϕ(e) in the feedback loop. Note that
Geu(s) has a simple pole at s = 0. A minimal realization
of the closed-loop dynamics can be described in state-space
form as follows:

ẋ = Ax+Bu+Brr +Bdd (3)

e = Cx+Drr +Ddd (4)

u = −ϕ(e), (5)

with state x and Geu(s) := C(sI −A)−1B.
Let us adopt the following two assumptions, which are

both natural in a motion control setting:

Assumption II.3 The complementary sensitivity, given by
transfer function

T (s) =
P (s)Cnom(s)

1 + P (s)Cnom(s)
, (6)

has all poles in the open LHP.

Assumption II.4 The complementary sensitivity T (s) in (6)
satisfies T (0) ≥ 0.

Remark II.5 Note that Assumptions II.3 and II.4 are very
mild assumptions. The poles of T (s) will lie in the open
LHP by design of an asymptotically stabilizing controller
Cnom(s) and the condition that T (0) ≥ 0 is usually satisfied
because the complementary sensitivity generally equals +1
for ω → 0.

Below, x∗ is defined as the equilibrium point of system
(3)-(5) satisfying e = 0. Note that x∗ is the only equilibrium
point satisfying e = 0, due to observability of the minimal
state-space realization (3)-(5) (the observability matrix has

full rank such that the equations e = 0, de
dt

= 0, ..., dn−1e
dtn−1 =

0, exhibit a unique solution x∗, for e = 0).
The following theorem poses conditions under which

certain stability properties of the reference can be guaranteed
for the SIC and VGIC control system.

Theorem 1 Consider system (3)-(5), with constant refer-

ences r and constant disturbances d. If Assumptions II.3 and

II.4 hold, and transfer function Geu(s) in (2) satisfies

Re(Geu(jω)) ≥ −1 ∀ω ∈ R, (7)

then the VGIC renders the equilibrium point x∗ globally

asymptotically stable (GAS), and the SIC renders the equi-

librium point x∗ locally asymptotically stable.

Proof: Note that integrator (1) has dynamics that can
be described by (with state xI , input ϕ(e), and output yI )

ẋI = ϕ(e) (8)

yI = ωixI + ϕ(e), (9)

such that there exists an equilibrium point x∗ (satisfying
ẋI = ϕ(e) = 0) for both the VGIC and SIC system, that
satisfies e = 0. Namely, both for the SIC and VGIC schemes
ϕ(0) = 0. Because we consider constant (step) references in
r and constant disturbances d in order to assess transient
performance, we can employ a coordinate transformation
z = x − x∗ to study stability of the equilibrium x∗ of the
closed-loop system (3)-(5). The transformed dynamics can
be written as

ż = Az +Bu (10)

e = Cz (11)

u = −ϕ(e). (12)

Note that the nonlinearities ϕ(e), see Fig. 2, lie in the sector
ϕ(e) ∈ [0, 1] (i.e. 0 ≤ ϕ(e) ≤ e ∀e ∈ R), for both the SIC
and VGIC. Because

1) Due to Assumption II.3, the poles of Geu(s) =
ωiT (s)/s, see (2) and (6), all lie in the open LHP,
except for the simple pole at s = 0;
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Fig. 5. Local asymptotic stability for the SIC vs. global asymptotic stability
for the VGIC.

2) Due to Assumption II.4, the residue of the simple pole
res(Geu(s)) = lims→0 sGeu(s) = ωiT (0) ≥ 0;

3) Due to the condition in the theorem, Re(Geu(jω)) ≥
−1 ∀ω ∈ R,

the transfer function Geu(s) is positive real [9] (not strictly

positive real, due to the simple pole at s = 0). Following
similar lines as the proof of the circle criterion in section
7.1 in [9], we can show with Lyapunov function candidate
V (z) = zTPz, with P positive definite (and coming from

the Kalman-Yakubovich-Popov lemma [9]), that V̇ ≤ 0, and

that V̇ = 0 only if ϕ(e) = 0. Using a LaSalle-type argument
(and observability of the minimal state-space realization) it
then follows for the VGIC that z = 0 (x = x∗, with e = 0) is
GAS, because ϕ(e) = 0 has only one unique zero at e = 0,
see Fig. 2 (see also [2]). For the SIC, we can only conclude
local asymptotic stability of z = 0 (x = x∗, with e = 0)
because ϕ(e) = 0 also for |e| > δ.

The difference between global asymptotic stability of x∗

for the VGIC, and local asymptotic stability of x∗ for the
SIC, can intuitively easily be understood: the saturation
nonlinearity used in the VGIC always (i.e., also outside the
band [−δ, δ]) applies a certain amount of integrating action
(see Fig. 2), such that the error is always forced to zero.
For the switched nonlinearity used in the SIC, however, the
integrator is switched off completely if |e| > δ. On the one
hand, for certain initial conditions, if the error settles outside
this band, the integrator will not be active and the steady-state
error will remain. On the other hand, if the error settles inside
the band, the steady-state error will converge to zero. This is
a drawback of the SIC compared to the VGIC and this lack
of global asymptotic stability is illustrated by simulations in
Fig. 5. Herein, the response of the controlled motion system
of Fig. 3 is shown for different initial conditions.

III. EXPERIMENTAL RESULTS

In this section, the proposed integral control strategies will
be applied to an experimental setup and will be compared
to the linear controllers with and without integrator. The
experimental setup under study consists of two rotating
inertias interconnected by a flexible shaft, see Fig. 6. The
system is controlled in a non-collocated manner: the rotation
y of the left inertia is measured at mass 2 and is to be
controlled to the reference, but the actuation takes place at
the right inertia, which resembles a realistic industrial setting
where the position of the load can be measured but actuation
at the load is in general not possible.

Actuator
Encoder

Flexible
shaft

Inertia Inertia

Fig. 6. Experimental setup.
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The plant dynamics are obtained by a frequency response
measurement and is depicted in Fig. 7, together with a 4th-
order linear model fitted to the measurement:

P (s) =
3.176 · 108

s4 + 3.466s3 + 1.2248 · 105s2
, s ∈ C. (13)

A. Controller design

This model is used for the controller design. Using manual
loop-shaping techniques, a nominal stabilizing controller
Cnom(s) without integral action is designed, consisting of
a lead-filter, a notch-filter, and a 2nd-order low-pass filter:

Cnom(s) =
1.096 · 104s3 + 2.679 · 105s2

0.005305s5 + 7.666s4 + 5864s3
· · · (14)

· · ·
+1.34 · 109s+ 2.805 · 1010

+2.321 · 106s2 + 5.715 · 108s+ 5.61 · 1010
, s ∈ C.

The integral part CI(s) in (1) is chosen with the integrator
zero ωi at 1 Hz, so that that two open-loop transfer functions

Ol(s) = P (s)Cnom(s) (15)

Ol(s) = P (s)Cnom(s)CI(s), (16)

are obtained with both a 10 Hz bandwidth, see Fig. 8. Note
that the integrator CI(s) is also used in both the SIC and
VGIC setting, see the closed-loop control scheme in Fig.
1. Because these controllers are nonlinear, they cannot be
visualized by a frequency response function.

It is easily verified that Assumptions II.3 and II.4 are
satisfied, see also Remark II.5, and the frequency domain
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condition Re(Geu(jω)) ≥ −1 ∀ω ∈ R is verified, as can
be concluded from the Nyquist plots of the model and
measurement data in Fig. 9. Therefore, all the conditions
of Theorem 1 are satisfied, such the equilibrium point of
the VGIC system (3)-(5) is GAS; hence, the steady-state
error will converge to zero for any initial condition. Note that
for the SIC we can only guarantee local asymptotic stability
because it can exhibit multiple equilibria.

Note that, for the VGIC scheme, the global asymptotic
stability of the reference does not depend on the choice of
the saturation length δ. This implies that δ is thus a purely
performance-based variable and is fully stability-invariant.
Clearly, for the SIC scheme, the local asymptotic stability
property is also guaranteed independent of δ; however, the
region of attraction of e = 0 is influenced by δ.

B. Performance analysis

A step-reference r of 1 rad is applied to the system at
t = 1 s, and a step-disturbance d of amplitude 0.1 V acts on
the system at t = 5 s. First, a simulation study is performed
using the estimated model (13) and the VGIC, in order to
gain more insight into the influence of the saturation length
δ on the closed-loop performance.

To quantify the performance of the different controllers
more specifically, we consider the following two perfor-
mance measures:

• Percentage overshoot;

• Integral of the Squared Error (ISE): ISE =
∫ T

0
e2(t)dt.
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Fig. 10. Study of overshoot and ISE as a function of δ for the VGIC.

The saturation length δ has been varied between δ = 0
and δ = 1.1. The calculated overshoot and Integral of the
Squared Error (ISE, with T = 10 s) are shown in Fig. 10 as
a function of δ. Note that the case δ = 0 corresponds to the
linear case without integral control (Cnom(s)). Because for
this particular simulation study the amplitude of the error
e is always smaller than 1 (as we will see in comparable
experimental results in Fig. 11), the overshoot and ISE do
not change for δ ≥ 1. Therefore, δ ≥ 1 corresponds to the
linear case with integral control (Cnom(s)CI(s)). From the
performance curves in Fig. 10, it can easily be concluded that
the VGIC with a well-chosen saturation length δ combines
reduced overshoot with improved ISE performance.

Based on Fig. 10, δ = 0.1 is used in the experiments
carried out on the setup. The measured response of the
system to the step-reference r of 1 rad at t = 1 s and the
step-disturbance d of 0.1 V at t = 5 s, is shown in Fig. 11.

First, consider the linear controllers. Clearly, the inclusion
of the integrator increases the overshoot of the system’s
closed-loop response. However, the controller without inte-
grator, in contrast to the controller with integrator, is not
capable of removing the steady-state error due to the constant
force-disturbance applied at t = 5 s.

Secondly, consider the nonlinear controllers. The SIC only
applies integral control if the error |e| ≤ δ and the VGIC
limits the integral control if |e| ≥ δ, see Fig. 2. Because the
integrator is switched off, or limited, if the error is larger in
amplitude than δ = 0.1, the overshoot is reduced, see Fig.
11. Since the error due to the force-disturbance d equals
0.18 > 0.1, the SIC is not capable of forcing the error to
zero, because the integrator is switched off. Note that for this
reason the SIC closed-loop system does not exhibit a GAS
equilibrium point, see Section II-D. The VGIC does exhibit
a GAS equilibrium point, and is therefore always capable
of forcing the error to zero. Hence, the VGIC combines the
small overshoot of the linear controller without integrator
with the suppression of constant disturbances of the linear
controller with integrator. Although the SIC can also force
the steady-state error to zero, this depends on the initial
conditions and the choice of δ, see also Fig. 5.

The measured performance measures, percentage over-
shoot and ISE, are depicted in Table I. We note that the
rise-time and settling time are hardly influenced by the
different controllers considered, the see Fig. 11. Moreover,
similar integral performance measures (such as Integral of
the Absolute Error (IAE) or Integral of Time multiplied by
Absolute Error (ITAE), see for example [10]) show the same
qualitative characteristics as the ISE, but are omitted here for
the sake of brevity.
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TABLE I

PERFORMANCE MEASURES.

overshoot ISE =
∫
10

0
e2(t)dt

Cnom 43.9 % 0.1750
CnomCI 57.4 % 0.0254
SIC 44.5 % 0.1870
VGIC 46.7 % 0.0230

It is worthwhile to stress the ease of implementation and
intuitive design of the proposed nonlinear controllers. The
two linear controller limits, with and without integral con-
troller, can be designed using well-known frequency-domain
loop-shaping arguments, and form the basis for the nonlinear
controller designs. Note that there are no restrictions to the
order of the linear plant or nominal controller considered
and that only output measurements are used. Moreover, for
the VGIC, global asymptotic stability of the equilibrium
point can be guaranteed by checking easy-to-use graphical
conditions. These graphical conditions also give some insight
in the robustness of the problem to changes in parameters.
The choice for the saturation length δ can be made intuitively
using knowledge on the size of the step-reference and the
level of force disturbances.

Another aspect, worthwhile mentioning, is the essential
difference of the proposed control strategies with reset
control schemes in the literature. In reset control, some
or all of the controller states are reset. This reset has
the capability of improving the transient response of the
system, as is illustrated in certain examples in literature
[4], [14]. Note, however, that the reset controller drastically
changes the dynamics of the closed-loop system by resetting
instantaneously some of the controller states to zero. The
variable gain controllers as considered in this paper, are very
closely related to the linear controllers with and without
integrator, which makes the change in dynamics less drastic
and more intuitive. From a practical implementation and
industrial acceptance point of view, these may be considered
beneficial properties.

IV. CONCLUSIONS

In this paper, we have focused on a nonlinear variable gain
control strategy for transient performance improvement of
linear motion systems. In particular, we focused on the trade-
off between overshoot and steady-state errors due to constant
disturbances, and proposed a switching integral controller

(SIC) and a variable gain integral controller (VGIC) (both
without resets) to balance this tradeoff in a more desirable
manner. By limiting the amount of integral control action if
the error is large, and only switching on the integral part if
the error is small, these nonlinear controllers combine the
desired effect of small overshoot with constant disturbance
suppression. For the VGIC, it is shown that for constant
disturbances, the setpoint is globally asymptotically stable if
certain easy-to-check graphical conditions are satisfied. The
SIC, however, does not exhibit this global stability property
and only allows for local asymptotic stability, which is less
favorable.

The proposed nonlinear variable gain control strategies
have been implemented on an experimental motion control
setup. The controllers can be designed using classical linear
design techniques, which makes the implementation and de-
sign intuitive. It is shown that beneficial transient responses
can be obtained in terms of overshoot and integral of the
squared error, compared to the linear controllers with and
without integrator.
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