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Abstract— To deal with performance trade-offs in the control
of motion systems, a method is developed for designing variable-
gain feedback controllers. The idea is to select a piecewise affine
controller structure and, subsequently, to find the nonlinear
controller parameter values of this structure by data-driven per-
formance optimization. Herein an H2 performance objective is
minimized. As a result, variable-gain controllers are synthesized
using techniques from the field of learning and optimization.
The method is applied to a wafer stage simulation model.

Index Terms— data-driven optimization, gradient methods,
Lur’e systems, motion control, self-tuning, wafer scanners

I. INTRODUCTION

In the wafer scanning industry [4] variable-gain control is

used to deal with performance trade-offs otherwise occurring

under linear feedback; see also [9], [12], [13], [20]. The
rationale is that low-frequency vibrations induced by the

motion set-points of wafer scanners are better suppressed
under high-gain feedback. Contrarily, high-frequency noise

encountered during constant (scanning) velocity, thus in the

absence of said set-points, becomes less amplified under
low-gain feedback. Exploiting the property of continuously

varying the controller gain, for example by using a deadzone

nonlinearity in the controller structure [6], variable-gain
control provides the means to suppress set-point induced

vibrations under high-gain feedback in one part of the scan

while keeping a low-gain noise response in another part.

Tuning of the variable gain controller generally refers to

frequency-domain loop shaping of the underlying linear sys-

tem [6]. This is done by splitting up the nonlinear system into
a linear system in feedback connection with a nonlinearity,

i.e. adopt a Lur’e system formulation [21]. The linear system

represents a closed-loop motion system, whose characteris-
tics are the result of frequency-domain tunings [18]. On the

one hand, these tunings should render the closed-loop system
robustly stable, i.e. being able to deal with the effect of plant

resonances (and the uncertainty thereabout) on the closed-

loop stability properties. On the other hand, the tunings aim
at improved closed-loop performance properties in view of

the trade-off between low-frequency disturbance suppression

and high-frequency noise amplification.

Stability of the nonlinear closed-loop system can be guar-

anteed by frequency-domain evaluation through the circle

criterion [6]. Performance, however, very much depends on
the choice of the variable gains, the plant characteristics,

and the (unknown) disturbances acting on the system, which

vary from machine to machine but also from field (wafer
area during exposure) to field. It therefore makes sense to
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assess (servo) performance per machine or field and in time
domain, the latter in view of the nonlinearity in the loop.

This paper explicitly deals with the performance-based

design of the nonlinear part of the Lur’e system. Observing
that an accurate model description of the plant and the

disturbances (suited for performance evaluation) is often

lacking, an early selection of a fixed nonlinear structure,
e.g. deadzone or saturation [1], is not likely to induce best

time-domain performances on individual machines during

later machine qualifications. In [7], this problem was (only
partly) tackled by self-tuning of the parameters of a deadzone

nonlinearity, which was done per machine. With an itera-

tive data-driven approach, see [2], [3], [5], [14] for other
approaches, sampled data provided the information to find

an updated set of parameters on the basis of least-squares
optimization; for self-tuning in the nonlinear context, see also

[8], [11], [16].

In this paper, the nonlinearity is given by piecewise affine
functions having neither pre-defined gains nor switching

lengths. Adopting the iterative approach from [7] gives a

method for data-driven variable-gain controller synthesis
in which the gains and switching lengths can be tuned

per machine or even (in the learning sense) from field

to field. The latter has strong similarities with learning
approaches having varying learning gains and/or Q-filters

[19]. In contrast with these approaches, however, the method

presented here considers (nonlinear) filter design rather than
signal design. Also, it classifies under feedback instead of

under feedforward control. In a companion paper [10], a

model-based approach is considered which is more suited
for (large-scale) parameter studies conducted in the design

phase when no machine measurements are yet available. De-
pending on the specific disturbances and plant characteristics,

the nonlinearity can become deadzone, saturation, or any

other structure the piecewise affine function supports; this is
different from [7] where a fixed deadzone structure is used.

Dedicated optimization of machine performance is obtained

with guaranteed (robust) stability properties. This is favorable
for the motion industry in dealing with performance variation

among machines, and for the wafer scanning industry in

particular.
The remainder of the paper is organized as follows. In

Section 2, the Lur’e-type system description of the variable-

gain motion control system is discussed. This includes the
introduction of a three-parameter piecewise affine (variable-

gain) function, a stability analysis using the circle criterion,
and a lifted system description describing the closed-loop

dynamics of a sampled-data implementation of the nonlinear

controller. In Section 3, a data-driven H2 optimization ap-
proach is presented that is used to find the optimal parameters

of the piecewise affine function. Section 4 addresses a gen-

eralization of the optimization method toward more arbitrary
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piecewise affine functions. In Section 5, the optimization
scheme is applied to a wafer stage model. In Section 5, the

main conclusions and findings are summarized.

II. LUR’E SYSTEM DESCRIPTION

Consider the continuous-time Lur’e system:

ẋ(t) = Ax(t) + b1u(t) + b2v(t)

y(t) = cTx(t) + dv(t)

u(t) = −φ(y(t)),

(1)

with state vector x(t) ∈ R
n, input u(t) ∈ R, output y(t) ∈ R,

A ∈ Rn×n a Hurwitz matrix, matrices b1, b2, c ∈ Rn, the pair

{A, b1} controllable, the pair {A, cT} observable, v(t) ∈ R

a uniformly bounded disturbance: lim supt→∞
v(t) = v̄, and

odd piecewise affine function y(t) 7→ φ(y(t)):

φ(y(t)) = φ1(y(t))y(t) + δ1φ2(y(t)), (2)

where

φ1(y(t)) =







α1, if |y(t)| < δ1

½(α1 + α2), if |y(t)| = δ1

α2, if |y(t)| > δ1

, (3)

and

φ2(y(t)) =







0, if |y(t)| < δ1

½(α1 − α2)sign(y(t)), if |y(t)| = δ1

(α1 − α2)sign(y(t)), if |y(t)| > δ1

. (4)

A graphical representation of (2) is given in Fig.1. For

✲

✻

δ1-δ1

α1

α2

y(t)

φ
(y

(t
))

Fig. 1. Graphical representation of (2).

switching length δ1 satisfying the bound δmax ≥ δ1 ≥ 0 and
gains αi, i = 1, 2, satisfying the bound αmax ≥ α1, α2 ≥ 0,

it follows that y(t),u(t) in (1) satisfy the sector condition:

αmaxu(t)y(t) ≤ −u2(t). (5)

A motion control structure that fits the description in (1)

is given in Fig. 2. In this figure, C represents a linear time-
invariant controller, P represents the motion system itself,

and φ(y) represents an additive variable (controller) gain as

in (2). The frequency-domain relation between inputs U(jω),
V (jω) and output Y (jω) related to u, v, y, respectively,

i.e. the linear part of the model in (1), reads:

Y (jω) = Sc(jω)U(jω) + S(jω)V (jω), (6)

with the complementary sensitivity function Sc(jω) ∈ C and

❄❦ ✲

✲−φ(·)

❄❦✲ C ✲ P

✻

v y u

∑ ∑

−

−

Fig. 2. Block diagram of a motion control system described by (1).

the sensitivity function S(jω) ∈ C defined by:

Sc(jω) = cT(jωI −A)−1b1 =
P(jω)C(jω)

1 + P(jω)C(jω)
,

S(jω) = cT(jωI −A)−1b2 + d =
1

1 + P(jω)C(jω)
.

(7)

A sufficient condition for input-to-state stability of (1)

follows from the circle criterion (see for example [21])

which, given (5), in the frequency-domain reads:

ℜ{Sc(jω)} ≥ −
1

αmax

. (8)

Stability thus follows from the linear system properties

between input u and output y, which can be shaped for

stability (to satisfy (8)) and for closed-loop performance
using straightforward loop-shaping techniques [6].

In discrete-time, assume that (1) can be written as:

x(k + 1) = Âx(k) + b̂1u(k) + b̂2v(k)

y(k) = ĉTx(k) + d̂v(k)

u(k) = −φ(y(k)),

(9)

with state vector x(k) ∈ Rn, Â ∈ Rn×n Hurwitz, matrices

b̂1, b̂2, ĉ ∈ Rn, the pair {Â, b̂1} controllable, the pair {Â, ĉT}
observable, and u(k), v(k), y(k) ∈ R time-sampled signals

at counter k ∈ N; note that the aforementioned properties
depend on the discretization scheme (and sampling interval)

used. The linear part of system (9) can be put in lifted form:






y(1)
...

y(k)




 =

Sc

︷ ︸︸ ︷








0 · · · 0

ĉTb̂1
...

...
. . .

. . .

ĉTÂk−2b̂1 · · · ĉTb̂1 0














u(1)
...

u(k)






+









d̂ 0 · · · 0

ĉTb̂2
...

...
. . .

. . . 0

ĉTÂk−2 b̂2 · · · ĉTb̂2 d̂









︸ ︷︷ ︸

S






v(1)
...

v(k)




+








ĉT

ĉTÂ
...

ĉTÂk−1







x(1),

(10)

with yκ = [y(1) . . . y(k)]T, uκ = [u(1) . . . u(k)]T, vκ =
[v(1) . . . v(k)]T, and κ ∈ N referring to a specific realiza-

tion/iteration of the gathered data samples. Let

ϕ(yκ) = ϕ1(yκ)yκ + δ1ϕ2(yκ), (11)

with diagonal matrix ϕ1(yκ)[i, i] = φ1(y(i)), see (3), and
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ϕ2(yκ)[i] = φ2(y(i)), see (4). For vκ(κ) = [v(1) . . . v(k)]T,
and x(1) = 0, it then follows that (9) can be represented in

the following discretized and lifted form:

yκ = Scuκ + Svκ (12a)

uκ = −ϕ(yκ). (12b)

The matrices Sc,S ∈ R
k×k contain the impulse responses of

the linear stable systems in (7): Sc,S, respectively. Eq.(12a)

represents a discrete-time convolution from the input signals
uκ,vκ ∈ Rk to the output signal yκ ∈ Rk, see also (6).

For the system in (12) with ϕ(yκ) ∈ R
k in (11) the aim

is to find values for δ1, α1, α2 that render desired closed-

loop behavior. For this purpose, an iterative H2 optimization
approach will be proposed.

III. H2 OPTIMIZATION APPROACH

Consider the H2 cost function:

J = yκ
Tyκ + βuκ

Tuκ, (13)

which represents a weighted sum of quadratic forms for the
inputs and outputs of the linear part of the Lur’e system in

(12a) with weighting β ≥ 0. Penalizing yκ ∈ Rk keeps a

small error response, see Fig. 2. The reason to penalize uκ ∈
Rk is that any harmonic input y(t) ∈ R to φ(y(t)) ∈ R in (1)

potentially induces higher harmonics in the output u(t) ∈ R

which, subsequently, may excite high-frequency dynamics of
the controlled plant. The nonlinear operation can therefore

be seen as a generator of noise which through β in (13) gets

penalized.

Let the parameter vector to-be-optimized be defined by:

p(κ) =
[
δ1(κ) α1(κ) α2(κ)

]T
. (14)

With the Gauss-Newton method, which is widely used for
minimization of a sum of squared function values [3], p(κ) ∈
R3 that minimizes (13), or:

p̃ = argmin
p(κ)

J, (15)

is found through:

p(κ+ 1) = p(κ)− ζ(∇Tyκ∇yκ + β∇Tuκ∇uκ)
−1

×(∇Tyκyκ + β∇Tuκuκ),
(16)

with damping coefficient 0 < ζ ≤ 1 and gradients:

∇yκ =

[
∂yκ

∂δ1

∂yκ

∂α1

∂yκ

∂α2

]

and

∇uκ =

[
∂uκ

∂δ1

∂uκ

∂α1

∂uκ

∂α2

]

.

(17)

Using (10) and (11), it follows (after some algebra) that:

∂yκ

∂δ1
= Sc

∂uκ

∂δ1
= −Sc

∂ϕ(yκ)

∂δ1

= −Sc

(

ϕ1(yκ)
∂yκ

∂δ1
+ ϕ2(yκ)

)

.

(18)

This subsequently leads to:

∂yκ

∂δ1
= −A(yκ)ϕ2(yκ),

∂uκ

∂δ1
= −A∗(yκ)ϕ2(yκ), (19)

with A(yκ) = (I+Scϕ1(yκ))
−1Sc ∈ R

k×k and A∗(yκ) =
(I+ϕ1(yκ)Sc)

−1 ∈ Rk×k. Similarly, it can be checked that:

∂yκ

∂α1
= −A(yκ)sat(yκ),

∂yκ

∂α2
= −A(yκ)(yκ − sat(yκ))

= −A(yκ)yκ −
∂yκ

∂α1
,

(20)

with sat(yκ) = [sat(y(1)) . . . sat(y(k))]T ∈ Rk, y(i) 7→
sat(y(i)) with i ∈ {1, . . . , k} according to:

sat(y(i)) =

{

y(i), if |y(i)| ≤ δ1

δ1sign(y(i)), otherwise,
(21)

and

∂uκ

∂α1
= −A∗(yκ)sat(yκ),

∂uκ

∂α2
= −A∗(yκ)yκ −

∂uκ

∂α1
.

(22)

In deriving the gradient error signals in (18) and (19), we

explicitly use the fact that:

∂φ1(y(t))

∂y(t)
y(t) +

∂φ2(y(t))

∂y(t)
δ1 = 0, (23a)

∂φ1(y(t))

∂δ1
y(t) +

∂φ2(y(t))

∂δ1
δ1 = 0. (23b)

This follows from writing φ1(y(t)), φ2(y(t)) ∈ R in (3)

and (4) as:

φ1(y(t)) = lim
z→0

{

α1 −

(
α2 − α1

π
arctan

(
2π(y(t) + δ1)

z

)

−
α2 − α1

π
arctan

(
2π(y(t)− δ1)

z

))}

,

φ2(y(t)) = lim
z→0

{

−
α2 − α1

π
arctan

(
2π(y(t) + δ1)

z

)

−
α2 − α1

π
arctan

(
2π(y(t)− δ1)

z

)}

,

(24)

with input y(t) ∈ R and switching length δ1 > 0. The partial

derivatives read:

∂φ1(y(t))

∂y(t)
= lim

z→0

{

−
2(α2 − α1)z

z2 + 4π2(y(t) + δ1)2

+
2(α2 − α1)z

z2 + 4π2(y(t)− δ1)2

}

∂φ2(y(t))

∂y(t)
= lim

z→0

{

−
2(α2 − α1)z

z2 + 4π2(y(t) + δ1)2

−
2(α2 − α1)z

z2 + 4π2(y(t)− δ1)2

}

,

(25)

which only for y(t) = δ1 and y(t) = −δ1 are non-zero
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valued. Let y(t) = δ1, it then follows that:

∂φ1(y(t))

∂y(t)
δ1 +

∂φ2(y(t))

∂y(t)
δ1

= lim
z→0

{

−
2(α2 − α1)δ1z

z2 + 16π2δ21
+

2(α2 − α1)δ1z

z2

−
2(α2 − α1)δ1z

z2 + 16π2δ21
−

2(α2 − α1)δ1z

z2

}

= lim
z→0

{

−
4(α2 − α1)δ1z

z2 + 16π2δ21

}

= 0.

(26)

The same holds true for y(t) = −δ1, hence the validity of

(23a); (23b) follows from similar reasonings.

IV. EXTENSIONS

Consider the straightforward extension of (2) toward
m > 2 gains and m − 1 switching lengths. For αmax ≥
α1, α2 . . . αm ≥ 0 and δmax ≥ δm−1 ≥ · · · ≥ δ1 ≥ 0,

φ(y) ∈ R (where y(t) 7→ φ(y(t))) reads:

φ(y(t)) = φ1(y(t))y(t) + δ1φ2,1(y(t))+

· · ·+ δm−1φ2,m−1(y(t)),
(27)

where y(t) 7→ φ1(y(t)):

φ1(y(t)) =







α1, if |y(t)| < δ1

½(α1 − α2), if |y(t)| = δ1

α2, if δ1 < |y(t)| < δ2
...

αm−1, if δm−2 < |y(t)| < δm−1

½(αm−1 − αm), if |y(t)| = δm−1

αm, if |y(t)| > δm−1

, (28)

with y 7→ φ2,j(y(t)) and j ∈ {1, . . . ,m− 1}:

φ2,j(y(t)) =







0, if |y(t)| < δj

½(αj − αj+1)sign(y(t)), if |y(t)| = δj

(αj − αj+1)sign(y(t)), if |y(t)| > δj

.

(29)
A graphical representation of (27) is given in Fig. 3. Since

✲

✻

δ1 δm−1-δ1

α1

αm

y(t)

φ
(y

(t
))
y
(t
)

Fig. 3. Graphical representation of (27).

both (2) and (27) satisfy the sector condition in (5), closed-

loop (robust) stability follows from repeating earlier argu-

ments. In optimizing the parameters using the cost function

J ∈ R in (13), the parameter vector p(κ) ∈ R
2m−1 becomes:

p(κ) =
[
δ1(κ) . . . δm−1(κ) α1(κ) . . . αm(κ)

]T
, (30)

whereas in (16) the following gradients are used:

∇yκ =

[
∂yκ

∂δ1
. . .

∂yκ

∂δm−1

∂yκ

∂α1
. . .

∂yκ

∂αm

]

and

∇uκ =

[
∂uκ

∂δ1
. . .

∂uκ

∂δm−1

∂uκ

∂α1
. . .

∂uκ

∂αm

]

.

(31)

By redefining ϕ(yκ) = ϕ1(yκ)yκ + δ1ϕ2,1(yκ) + · · · +
δm−1ϕ2,m−1(yκ) ∈ Rk×k , with ϕ1(yκ)[i, i] = φ1(y(i)) ∈
R from (28) and ϕ2,j(yκ)[i] = φ2(y(i)) ∈ R from (29)
where i ∈ {1, . . . , k}, j ∈ {1 . . .m − 1}, it follows using

(18) that:

∂yκ

∂δj
= −A(yκ)ϕ2,j(yκ),

∂uκ

∂δj
= −A∗(yκ)ϕ2,j(yκ).

(32)

Define satj(yκ) = [satj(y(1)) . . . satj(y(k))]
T ∈ Rk, with

satj(y(i)) =

{

y(i), if |y(i)| ≤ δj

δjsign(y(i)), otherwise,
(33)

it then follows for j ∈ {2 . . .m− 1} that:

∂yκ

∂α1
= −A(yκ)sat1(yκ),

∂yκ

∂αj

= −A(yκ)(satj(yκ)− satj−1(yκ)),

∂yκ

∂αm

= −A(yκ)(yκ − satm−1(yκ)),

∂uκ

∂α1
= −A∗(yκ)sat1(yκ),

∂uκ

∂αj

= −A∗(yκ)(satj(yκ)− satj−1(yκ)),

∂uκ

∂αm

= −A∗(yκ)(yκ − satm−1(yκ)).

(34)

V. WAFER STAGE EXAMPLE

By means of example, consider system (9) with:

Â =












4.26 −2.0582 1.20476 −0.9063 0.39955 −0.30618
4 0 0 0 0 0
0 2 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0.25 0













,

b̂1 = −b̂2 =













0.1250
0
0
0
0
0













, ĉ =













0.1025
0.0305

−0.0206
−0.0253
0.0083
0.0419













, d̂ = 1,

(35)
and the nonlinearity described in (2). System (9) satisfies the

conditions imposed by the circle criterion with αmax = 0.5. It

describes a fourth-order wafer stage model that is controlled
in discrete-time (with sampling time Ts = 200 µseconds)

by a proportional-integral-derivative (PID) controller and

additional first-order low-pass filter, see also [7]. The state

6703



vector x(k) ∈ R
6 has four states coming from the fourth-

order plant model, one coming from the PID controller, and

one coming from the low-pass filter.

In (9), the input signal v(k) ∈ R is chosen as:

v(k) = v1ψ(kTs)(sin(2π100kTs) + sin(2π375kTs))

+ v2ψ(kTs − τ) sin(2π375kTs),
(36)

with v1 = 30 nm, v2 = 8 nm, τ = 0.025 s a scanning time

constant, and Hanning function kTs 7→ ψ(kTs),

ψ(kTs) =







1− cos2
(
πkTs

τ

)

, if 0 ≤ kTs ≤ τ

0, otherwise.

(37)

A distinction is made between two time intervals: τ1 ∈
[0, τ) and τ2 ∈ [τ, 2τ ]. In the interval τ1 a combination

excitation is applied of a low-frequency disturbance (that can
be suppressed by control) and a high-frequency disturbance

that can only be amplified by said control. In the interval τ2
merely the high-frequency disturbance is present, i.e. extra
control can best be switched off. The input v(k) ∈ R is

considered representative for a wafer scanning system where

prior to scanning low-frequency set-point-induced vibrations
dominate the error response whereas during scanning only

high-frequency disturbances remain in effect [4], [6].

Prior to optimization, a brute-force simulation is con-

ducted in which 8000 (= 203) time-series are processed
for each of the 20 equally distributed parameter values

considered for δ1 ∈ R and α1, α2 ∈ R and any combination

thereof. For δ1 ∈ R these values are logarithmically spaced
between 0.1 and 15 nanometer. For α1, α2 ∈ R, this is

done with a linear spacing in between the values of 0

and 2. Note that the circle criterion guarantees stability for
α1, α2 ≤ 0.5 which here seems rather conservative: linear

reasoning (though strictly speaking not valid) indicates that

a gain margin of 13.2 dB justifies a gain increase of 4.6!
For β = 0.05, an evaluation of J ∈ R in (13) is shown

in Fig. 4. The evaluation applies to the fixed value δ1 =

0

1

2

0

1

2

0

1

2

x 10
−13

α2
α1

J
in

m
2

Fig. 4. Cost function evaluation after brute-force simulation for a cross-
section with δ1 = 11.52 nm; the dimension of yκ and uκ in J is k = 250.

11.52 nanometer which is the value found at the minimum
J = 1.6076 10−14 m2 of all considered combinations. The

optimum is found at α1 = 0.2105 and α2 = 1.6842; see the

black dot in Fig. 4.

Returning to the optimization scheme1 in (16), where the
damping factor2 is chosen at ζ = 0.5, convergence of J ∈ R

in (13) for two sets of initial conditions for the parameters is

shown in Fig. 5. It can be seen that within κ = 10 iterations

1 10 20
1

1.604

6
x 10

−14

iterations κ

J
in

m
2

Fig. 5. Cost function evaluation during optimization with two
sets of initial conditions for the parameters: set1 (low-gain) with
{δ1, α1, α2} = {2nm, 0.01, 0.02} and set2 (high-gain) with
{δ1, α1, α2} = {1nm, 1.4, 1.5}.

both sets converge to J = 1.6044 10−14 m2, i.e. a value close

(but somewhat smaller) to the value obtained with brute-force

simulation; apparently the minimum is excluded from the
analysis in Fig. 4 due to the considered equidistant parameter

grid. Fig. 6 also shows that the parameters converge to δ1 =
11.54 nm, α1 = 0.1736, and α2 = 1.79883. By replacing
the time series obtained from simulation by time series

obtained from measurement, the method is (in principle)

directly applicable to sampled measurements.

Convergence of the structure of the nonlinearity along the
iterations κ is considered in Fig. 7. The optimization renders

a deadzone-like nonlinearity (thick black curve).

The effect of the optimization in terms of time-series

simulation is shown in Fig. 8. For the input signal v(k) ∈ R

in (36), it is clear that the optimized nonlinear structure
gives no amplification of the high-frequency disturbance in

the output (error) signal y(k) ∈ R in the second interval
τ2 ∈ [0.025, 0.05] seconds; the peak values are 12.1 nm.

This is different from the initial high-gain settings (dashed

gray curves) with peak values of 20.9 nm but similar to the

1In the simulations, a constrained optimization is conducted where ǫ1 <
δ1 ≤ δmax = 20 nm and ǫ2 ≤ α1, α2 ≤ αmax = 2 with small positive
constants: ǫ1 = 10−2 nm and ǫ2 = 10−2. As a result, the gradients in
(17) do not become zero, which avoids the occurrence of trivial minima.

2Since the optimization problem is clearly non-convex, i.e. large values
for δ1 result in flattening of the cost function J , the convergence rate is
kept smaller (ζ = 0.5) than the rate induced by the system properties.

3In the example, δ1 ∈ R lies in the nanometer scale whereas α1, α2 ∈
R are in the order of 1. The scaling difference of 109 hampers the

numerical computation of the inverse of the (approximated) Hessian H̃ =
∇Tyκ∇yκ + β∇Tuκ∇uκ ∈ R3×3 in (16). As a solution to the
problem, let D ∈ R3×3 be a diagonal (scaling) matrix with scaling factors

diag(D) = [109, 1, 1]. Define the matrix H̃∗ = DH̃D ∈ R3×3 which

satisfies H̃−1 = D(H̃∗)−1D ∈ R3×3. The inverse H̃−1 ∈ R3×3 can

thus be computed via the inverse of H̃∗ ∈ R3×3 which has all entries scaled
in the same order of magnitude. Alternatively, δ1 ∈ R, on the one hand, and
α1, α2 ∈ R, on the other hand, can be updated sequentially. First, δ1 ∈ R

is updated under fixed values for α1, α2 ∈ R, and, second, α1, α2 ∈ R

are updated based on the (previously) updated value for δ1 ∈ R. The last
solution appeared the most successful and therefore was used.
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Fig. 6. Parameter convergence for two sets of initial conditions: set1
with {δ1, α1, α2} = {2nm, 0.01, 0.02} and set2 with {δ1, α1, α2} =
{1nm, 1.4, 1.5}.
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Fig. 7. Convergence of the structure of the nonlinearity along the iterations
from κ = 1 (light gray) to κ = 20 (black) and for two sets of initial
conditions.
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Fig. 8. Time-series simulation of the results after optimization, the low-
gain settings with {δ1, α1, α2} = {0, 0, 0}, and a high-gain settings with
{δ1, α1, α2} = {0, 0, 1} in the optimization interval t ∈ [0, 0.05].

✲✛ optimization interval of k = 250 samples

initial low-gain settings (solid gray curves) with peak values

of 14.32 nm. In the first interval τ1 ∈ [0, 0.025) seconds the
optimized structure induces a reduction of the low-frequency

disturbance component with respect to the low-gain settings
(the peak values reduce from 45.7 nm to 25.9 nm) and

similar to the high gain settings with peak values of 27.8 nm.

The optimized settings clearly yield improved performance.
Note that improved performance is obtained by loosening the

stability conditions set by the circle criterion which (in this

case) appear overly conservative.

VI. CONCLUSIONS

By optimizing the structure of a nonlinear (variable-

gain) feedback controller using a data-driven H2 approach,

optimized machine performance can be obtained that remains
inaccessible to any linear feedback controller. In the sense of

a machine calibration, this has potential for motion control

systems (in particular wafer stages) that exhibit a certain
degree of repetitiveness, for example caused by recurring

set-point motion and/or disturbances. If set-point motion

varies from field to field, we envision an adaptive machine
feedback which installs the process of iteratively learning

the piecewise affine controller parameters, i.e. the structure

of the nonlinearity.
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