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Abstract— In this paper, we introduce piecewise affine
variable-gain controllers as a means to improve performance
compared to linear controllers. Variable-gain controllers can
improve upon the tradeoff between low-frequency track-
ing and sensitivity to high-frequency disturbances. However,
performance-based tuning of the variable-gain controllers, is far
from trivial. The piecewise affine control structure introduced
in this paper allows to synthesize the shape of the variable-gain
controller, by means of model-based optimization of a certain
performance objective. Subsequently, this allows the controller
design to be tuned for the disturbance situation at hand while
optimizing performance. The proposed nonlinear performance-
based controller synthesis strategy is applied to a model of a
wafer stage of a wafer scanner.

I. INTRODUCTION

The control of industrial motion systems is mostly done

using linear controllers of the proportional-integral-derivative

(PID) type. However, it is well-known that many linear con-

trol loops suffer from certain inherent performance tradeoffs

such as the waterbed effect [14], [3]: an increase of low-

frequency (below the bandwidth) disturbance suppression

automatically yields an increase of noise amplification at

high frequencies (above the bandwidth). Given this tradeoff,

linear motion controllers are designed to balance between

low-frequency tracking and sensitivity to high-frequency

disturbances. In the controller design this is often achieved

by frequency-domain loop shaping.

To balance this tradeoff (induced by the waterbed-effect)

in a more desirable manner, it has been shown that variable-

gain control (also called N-PID control) can be effec-

tive [1], [18], [6], [16], [10], [9]. In these references,

it has been shown that the variable-gain controllers have

the capability of outperforming linear controllers. Although

the underlying linear controller part can be based on

well-known performance-based loop-shaping arguments, the

performance-based tuning of the variable-gain control part

is far from trivial. Typically, the design of this variable-gain

control part is based on heuristic rules and depends on the

specific application and disturbances at hand. Moreover, the

type of nonlinearity is typically chosen a priori, e.g. a dead-

zone characteristic [6], [8], [16] or a saturation characteristic

[7]. To facilitate a more constructive design of the variable-

gain part, a data-based tuning method has been used in [5] to

tune the parameters of a fixed dead-zone like characteristic.

In this paper, we would like to develop a true synthesis

approach for a variable-gain controller, instead of a mere

tuning procedure. We propose to use a general piecewise

affine variable-gain characteristic, thus without a priori fixing
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the type of nonlinearity. This means that the controller design

and tuning tailors the design of the shape of the variable-gain

element to the disturbance situation at hand. By increasing

the number of segments of the piecewise affine structure,

arbitrarily shaped characteristics can be constructed, paving

the way for a general performance-based nonlinear controller

design.

Two approaches can be followed in the synthesis of

the piecewise affine variable-gain controllers, a data-based

approach or a model-based approach. A data-based machine-

in-the-loop approach is presented in companion paper [4].

Here, we will focus on an efficient model-based approach to

synthesize the controllers, which is beneficial in a design-

phase where no machine is available yet, in situations where

performing many experiments on a machine becomes pro-

hibitive and in performing parameter studies of the closed-

loop system.

Summarizing, the contribution of this paper is the de-

velopment of an efficient model-based synthesis method

for performance-optimal variable-gain controllers applied to

linear motion systems, which is tuned for the disturbance

situation at hand. This is achieved without making an a priori

heuristic choice for the type of nonlinearity which will be

illustrated by simulations on a model of a wafer stage of a

wafer scanner.

The remainder of the paper is organized as follows. In

Section II, we introduce the piecewise affine variable-gain

control strategy with stability conditions. The controller

synthesis method will be discussed in Section III and will

be applied to a model of a short-stroke of a wafer stage

in Section IV. Conclusions and recommendations will be

presented in Section V.

II. PIECEWISE LINEAR VARIABLE-GAIN CONTROL

Consider the variable-gain control structure depicted in

Fig. 1. The linear closed-loop part consists of the linear plant

P (s), s ∈ C, linear controller C(s), and linear shaping-filter

F (s). The variable-gain part of the controller is represented

by the nonlinearity ϕ(e), which is a function of the tracking

error e in time-domain.

Many linear closed-loop systems suffer from the waterbed-

effect [14], [3]: an increase in low-frequency (below the

ϕ(·) F (s)
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−
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Fig. 1. Closed-loop variable-gain control scheme.
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Fig. 2. Piecewise linear variable-gain element ϕ(e).

bandwidth) performance results in a deterioration of per-

formance for high frequencies (above the bandwidth). It is

known that variable-gain control can balance this waterbed

effect in a more desirable manner than linear controllers;

moreover, it can outperform linear controllers by a suitable

design of the nonlinear characteristics [1], [6].
Usually, the form of the nonlinearity ϕ is chosen heuris-

tically based on a certain specific disturbance situation.

For example, in [8], a typical dead-zone characteristic is

chosen for the nonlinearity ϕ(e). For the motion system

considered [8], high-frequency small-amplitude disturbances

are not amplified since they stay within the dead-zone length.

Contrarily, low-frequency large-amplitude disturbances are

additionally suppressed by the extra gain of the dead-zone

nonlinearity.
It is known that other disturbance situations may require

other shapes for ϕ, see e.g. [7]. We would like to avoid

making such a heuristic a priori choice for the shape of the

nonlinearity ϕ and synthesize a controller that is tuned for

the disturbance situation at hand. To facilitate such a general

controller synthesis approach, we do not specify the type

of nonlinearity ϕ but construct it on the basis of piecewise

affine segments as in Fig. 2. The point-symmetric continuous

nonlinearity ϕ(e) consists of N segments with slopes αi,

which are defined as

αi =
∂ϕ

∂e
∀δi−1 < |e| < δi, (1)

with i ∈ {1, 2, ..., N}, δ0 = 0 and δN = ∞. The maximum

slope αmax is defined as

αmax = max
i

αi, i ∈ {1, 2, ..., N}. (2)

Note that with this type of piecewise affine construction,

by choosing N large enough, it is possible to generate

(approximate) arbitrary (point-symmetric) nonlinearities.
With the variable-gain element ϕ(e), stability of the

closed-loop system can be assessed through circle-criterion

arguments. The closed-loop dynamics in Fig. 1 can be written

as a Lur’e-type system of the following form:

ẋ = Ax+Bu+Bww(t) (3)

e = Cx+Dww(t) (4)

u = −ϕ(e), (5)

with state x ∈ R
n and external inputs w(t) ∈ R

m, which

typically consist of the reference r and force disturbance d.

The linear dynamics from input u ∈ R to output e ∈ R is

denoted by Geu(s) and can be expressed as

Geu(s) = C(sI −A)−1B =
P (s)C(s)F (s)

1 + P (s)C(s)
. (6)
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Fig. 3. Process sensitivity showing the waterbed-effect. The disturbance
frequencies used in Section IV-B are also indicated by dashed lines.

The following theorem provides conditions under which

system (3)-(5), excited by a bounded T -periodic input w(t),
has a uniquely defined T -periodic globally exponentially

stable steady-state solution.

Theorem II.1 [16], [17] Consider system (3)-(5). Suppose

A1 The matrix A is Hurwitz;

A2 The nonlinearity ϕ(e) satisfies the incremental sector

condition:

0 ≤
ϕ(e2)− ϕ(e1)

e2 − e1
≤ αmax, (7)

for all e1, e2 ∈ R, e1 6= e2;

A3 The transfer function Geu(s) given by (6) satisfies

sup
ω∈R

|Geu(iω)| > −
1

αmax

. (8)

Then for any bounded T -periodic piecewise continuous input

w(t), system (3)-(5) has a unique T -periodic solution x̄w(t),
which is globally exponentially stable and bounded for all

t ∈ R.

The proof follows from circle-criterion-type arguments [16],

[17]. We will denote x̄w(t) as the steady-state solution.

Systems with such a uniquely defined globally exponentially

stable steady-state solution (for arbitrary bounded inputs

w(t)) are called exponentially convergent, see e.g. [2], [13].

III. CONTROLLER SYNTHESIS METHOD

In this section the performance-optimal variable-gain con-

troller synthesis method will be discussed. The performance

quantification will be discussed in the Section III-A followed

by the gradient-based optimization strategy in Section III-B.

A. Performance quantification

As mentioned in Section II, the waterbed-effect describes

the effect of many linear closed-loop systems, where an

increase of performance for low frequencies results in a

decrease of performance for high frequencies. This is for

example visible in the process sensitivity (numerical specifics

will be given in Section IV), denoting the transfer from force

disturbance d to closed-loop error e, see Fig. 3.
In order to quantify the effect of low-frequency (i.e.

below the bandwidth) performance improvement and high-

frequency (i.e. above the bandwidth) performance degrada-

tion when increasing the controller gain, we propose to use

the following H2 steady-state performance indicator:

J = clfJlf + chfJhf , (9)
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Fig. 4. Filtering of the low-frequency and high-frequency part of the error.

where

Jlf =

∫ T

0

ē2lf (t)dt, Jhf =

∫ T

0

ē2hf (t)dt, (10)

where T is the period of the disturbance w(t), and ē(t) =
ēlp(t) + ēhp(t) = Cx̄w(t) + Dww(t). The low-frequency

part of the error steady-state ēlf (t) is obtained by low-pass

filtering1 the error signal ē(t) with a low-pass filter with a

cut-off frequency ωb around the bandwidth of the system:

Flp(s) =
ω2
b

s2 + 2βωb + ω2
b

. (11)

The high-frequency part of the tracking error ēhf is simply

obtained by calculating ēhp(t) = ē(t) − ēlp(t). A perfor-

mance criterion as in (9) allows to weigh the low-frequency

and high-frequency parts of the error signal ē(t) separately.

An illustration of the filtering operation is shown in Fig. 4.
The coefficients clf ≥ 0 and chf ≥ 0 in (9) can be used

to balance the importance of the low-frequency and high-

frequency part of the error depending on the application

under study.

B. Optimization algorithm

The performance of the piecewise affine variable-gain

controllers can now be uniquely quantified using the per-

formance measure J in (9), (10). Next, we aim to minimize

J by tuning the parameters δi and αi, thereby constructively

shaping the nonlinearity ϕ(e) for the disturbance w(t) at

hand. Here, for a disturbance w(t), we pursue a model-

based optimization in order to find the performance-optimal

piecewise-linear variable-gain element, see Fig. 2.
We will use a second-order gradient-based Quasi-Newton

algorithm, see Fig. 5, to minimize the performance objective

J in (9). Given the disturbance w(t), the T -periodic steady-

state error ē(t) is calculated using the numerically efficient

Mixed-Time-Frequency (MTF) algorithm [12]. Suppose the

optimization parameters (the αi’s and δi’s) at iteration k are

collected in the vector θk = [α1, . . . , αN , δ1, . . . , δN−1]. The

following update is used in the Quasi-Newton algorithm [11]:

θk+1 = θk −H−1

k

(

∂J

∂θ
(θk)

)T

, (12)

1Since we do this off-line, the filtering can be applied in both forward
and recursive direction, to avoid phase distortion [15]
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Fig. 5. Schematic of the gradient-based Quasi-Newton optimization
algorithm.

where θ0 is the initial parameter setting. The gradi-

ents ∂J
∂θ

(θk) are computed using finite-difference ap-

proximations. The Hessian estimate Hk is obtained

by using subsequent gradient information in a Broy-

den–Fletcher–Goldfarb–Shanno (BFGS) update:

Hk+1 = Hk +
qT q

qT s
−

HT
k s

T sHk

sTHks
, (13)

where q = ∂J/∂θ(θk+1)− ∂J/∂θ(θk), s = θk+1 − θk, and

the initial Hessian estimate H0 is the identity matrix, see

[11] for more details.

If J(θk+1) is smaller than J(θk) and θk+1 lies within a

predefined region, see Fig. 5, the point θk+1 is accepted as

the new point. Otherwise, a line-search is performed in the

direction H−1

k (∂J/∂θ(θk))
T until the new point does satisfy

the above conditions. Note that Theorem II.1 gives a lower-

and upper-bound for the αi’s to be used as constraints in the

optimization problem. Sensible constraints for the δi’s will

be given in Section IV-C.

IV. NUMERICAL EXAMPLE

In this section, the variable-gain controller synthesis

method will be applied to a model of a wafer stage of a

wafer scanner which is used to produce integrated circuits.

A. Model specification

The plant dynamics are modeled by the following fourth-

order transfer function

P (s) =
m1s

2 + bs+ k

s2(m1m2s2 + b(m1 +m2)s+ k(m1 +m2))
,

(14)

s ∈ C, where the following numerical values are used for

the plant model [6]: m1 = 5 kg, m2 = 17.5 kg, k = 7.5 ·107

N/m, b = 90 Ns/m.

The nominal low-gain controller (corresponding to ϕ(e) =
0) C(s) = CPID(s)Clp(s)Cn(s) is designed by loop-

shaping arguments for a bandwidth of 150 Hz and consists

of a PID controller CPID(s), a second-order low-pass filter

Clp(s) and a notch filter Cn(s), the latter is added to

deal with the plant resonance. The filters are given by:

CPID(s) = (kp(s
2 + (ωi + ωd)s + ωiωd))/(ωds), where

kp = 6.9 · 106 N/m, ωd = 3.8 · 102 rad/s, and ωi =
3.14 · 102 rad/s; Clp(s) = ω2

lp/(s
2 + 2βlpωlps + ω2

lp),
where ωlp = 3.04 · 103 rad/s, and βlp = 0.08; Cn(s) =
(ωp/ωz)

2(s2 + 2βzωzs + ω2
z)/(s

2 + 2βpωps + ω2
p), where

ωp = 5.03 · 103 rad/s, βp = 0.88, ωz = 4.39 · 103 rad/s,

and βz = 2.7 · 10−3. The loop-shaping filter F (s) is given

by F (s) = (ωp,F /ωz,F )
2(s2 + 2βz,Fωz,F s + ω2

z,F )/(s
2 +

6059
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Fig. 6. Nyquist plot of Geu(s) in (6).

2βp,Fωp,F s + ω2
p,F ), with ωp,F = ωz,F = 2000 rad/s,

βp,F = 4.8, and βz,F = 0.6. Note that these filters define the

transfer function Geu(s) in (6), the low-gain (i.e. ϕ(e) = 0)

process sensitivity −P (s)/(1 + P (s)C(s)), and the high-

gain (i.e. ϕ(e) = αmaxe) process sensitivity −P (s)/(1 +
(1 + αmaxF (s))P (s)C(s)) in Fig. 3.

With these transfer functions defined, we can verify the

stability conditions of Theorem II.1. By design (we use a

stabilizing controller C(s) and a stable shaping-filter F (s)),
the matrix A, or equivalently the transfer function Geu(s)
in (6), is Hurwitz, such that condition A1 is satisfied. From

the Nyquist plot in Fig. 6 we can graphically verify that

for αmax = 3, the frequency-domain condition A3 is also

satisfied. Note that Fig. 6 illustrates the reason for using the

filter F (s). Finally, by constraining the optimization to values

between 0 and 3 for all αi’s, we guarantee that condition

A2 is satisfied. Since all conditions of Theorem II.1 are

satisfied, system (3)-(5) exhibits a unique bounded globally

exponentially stable T -periodic steady-state solution. Note

that the δi’s are completely stability-invariant and only

influence performance. This makes the controller synthesis

mainly performance relevant.

B. Disturbance specification

To illustrate the fact that we are able to synthesize a

nonlinear controller that depends on the specific disturbance

situation at hand, we consider two different periodic force-

disturbance situations (r = 0), both parameterized by:

d(t) = dlf (t)W (t) + dhf (t)W (t− T/2), (15)

with dlf (t) = Alf sin(200t) a disturbance below the band-

width of 150 Hz and dhf (t) = Ahf sin(2600t) a disturbance

above the bandwidth, see Fig. 3. Disturbance dlf can be

suppressed by additional controller gain, in contrast to dhf ,

whose effect on the closed-loop error signals blows up due

to additional controller gain. W (t) is a window specified by:

W (t) =

{

0.5(1− cos(4πt/T ))
0

if t ∈ [0, T/2] + kT,
otherwise,

(16)

with k an integer. The period time T = 0.1 s results in a T -

periodic disturbance signal d(t) starting with a low-frequency

part and smoothly making a transition to a high-frequency

part. The two disturbance situations considered differ only in

the amplitude Ahf of the high-frequency disturbance which

is equal to 2 in case of disturbance situation 1, and equal

to 12 in case of disturbance situation 2, see Fig. 7. The

amplitude Alf of the low-frequency disturbance equals 1 in

both situations.
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Fig. 7. One period of disturbance d(t) for disturbance situation 1 and
disturbance situation 2.

C. Application of controller synthesis strategy

In this section, we will optimize the piecewise affine

variable-gain controllers, using the gradient-based algorithm

discussed in Section III-B, for a piecewise affine ϕ(e)
consisting of N = 2 elements, see Fig. 2.

For both disturbance situations, the nominal linear low-

gain controller (i.e. with ϕ(e) = 0), is normalized to a

performance of J = 1: with the linear low-gain controller,

the steady-state error ē is computed. Subsequently, the fil-

tering discussed in Section III-A is used to compute the

low-frequency part ēlf (t) and high-frequency part ēhf (t).
The low-frequency and high-frequency errors are given equal

importance by selecting clf and chf in such a way that

clfJlf = chfJhf = 0.5 such that J = 1 in (9) for the low-

gain controller settings. The coefficients of the low-pass filter

in (11) are chosen as β = 0.7 and ωb = 1000 rad/s, i.e. near

the bandwidth. As mentioned in Section IV-A, the values

for α1 and α2 will be constrained to the range 0 ≤ αi ≤ 3,

i = 1, 2. Moreover, δ1 is constrained to δ1 ≥ 0.

For the initial parameters of the optimizations of distur-

bance situations 1, all possible combinations between δ1 ∈
{10, 30, 50} nm and αi ∈ {0.1, 1.5, 2.9} are used, leading to

27 different initial starting points. For disturbance situation

2, all possible combinations between δ1 ∈ {5, 70, 150} nm

and αi ∈ {0.1, 1.5, 2.9}, i = 1, 2, are used.

The result of these optimizations2 is shown in Fig. 8

for disturbance situation 1 (left) and disturbance situation 2

(right). In the upper part of the figure the steady-state error

is shown for the linear low-gain controller (ϕ(e) = 0), the

linear high-gain controller (ϕ(e) = αmaxe), and the optimal

synthesized variable-gain controller. In the lower part of the

figure the optimal piecewise affine elements ϕ(e) are shown.

Disturbance situation 1

From Fig. 7 we conclude that the optimal3 piecewise affine

variable-gain controller synthesized is a dead-zone controller

with α1 = 0, α2 = 3 and δ1 = 18.5 nm with cor-

responding performance J = 0.71. The reasoning behind

this nonlinearity result can be understood as follows. When

comparing to the low- and high-gain controller in Fig. 7, the

variable-gain controller does not apply any additional gain

if a high-frequency small-amplitude disturbance is present,

thereby performing equally well as the low-gain controller.

2In the optimizations, a dummy variable δ̃ = δ ·108 is introduced that is

optimized, such that δ̃ is of the same order of magnitude as the α’s, which
improves the numerical conditioning of the optimization problem.

3From brute-force simulations it is verified that for this disturbance
situation this is indeed the global optimum.
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However, when a low-frequency large-amplitude disturbance

is present, additional gain is applied such that the low-

frequency disturbance suppression is improved compared to

the case of low-gain linear control.

A plot of the performance objective J for a grid of dead-

zone nonlinearities (i.e. all controllers with α1 = 0) is shown

in Fig. 9 (left plot). Note that for α2 = 0 and for δ1 >
60 nm (where |e| < δ1) the low-gain controller is active,

which is normalized to a performance of J = 1. The high-

gain controller can be found at δ1 = 0 and α2 = 3 with

performance J = 1.33. Note that values of J > 1 have been

omitted from the plot for clarity of presentation. The optimal

piecewise affine variable-gain controller, with J = 0.71, is

also indicated in Fig. 9 with an arrow.

From the two-parameter space plot in Fig. 9 (although

non-convex) one might be tempted to think that it is easy

to find the global optimum in the three-parameter space

without getting stuck in local minima. However, from Fig.

10, which shows the iteration history for a few optimiza-

tions corresponding to different initial starting points, we

conclude differently. From this figure, it is clear that some

optimizations do converge to the global optimum (black)

but that others converge to local optima (gray). The optimal

piecewise affine variable-gain controller is indicated by the

dashed red lines, see also Fig. 9. In fact, 12 out of 27 opti-

mizations converged to a different optimum than the global

one. The local optimum resembles in all cases the same linear
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Fig. 10. Iteration history for disturbance situation 1 for different initial
starting points, illustrating that certain optimizations do (black) and certain
optimizations do not (gray) find the global optimum (dashed red).

controller, with α1 = 0.872 and δ1 > max(|ē|) (such that

α2 and δ1 are irrelevant, hence ∂J/∂α2 = ∂J/∂δ1 = 0), or

a controller with α2 = 0.872 and δ1 = 0 (such that α1 is

irrelevant, hence ∂J/∂α1 = 0), resulting in a non-optimal

performance of J = 0.84, see Fig. 10.

Remark IV.1 By changing the constraints on δ1 in our

optimization routine, we can prevent the cases where either

α1 is irrelevant (for δ1 = 0) or α2 is irrelevant (for

δ1 > max(|ē|)), since this hampers the finding of the global

optimum. By selecting a small but strictly positive lower-

bound for δ equal to 0.1 nm and an upper-bound for δ equal

to 0.95max(|ē|) (for the error ē at the current iteration) all

27 initial conditions converge to the global optimum.

Disturbance situation 2

The optimal piecewise affine variable-gain controller in case

of disturbance situation 2 consists of a saturation nonlinearity

with α1 = 3, α2 = 0 and δ1 = 17.8 nm with corresponding

performance J = 0.65, see the right plots in Fig. 8.

This result can be understood, when comparing the optimal
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Fig. 11. Iteration history for disturbance situation 2 for different initial
starting points, illustrating that certain optimizations do (black) and certain
optimizations do not (gray) find the global optimum (dashed red).

controller to the low-gain and high-gain controller limits.

The additional gain within the saturation band achieves equal

low-frequency disturbance suppression to the high-gain con-

troller. However, by limiting the amount of additional gain

for |ē| > δ1, the high-frequency disturbance amplification

is kept to a minimum, being almost equal to the amount

of the low-gain controller. A plot of the performance J is

shown in the right part of Fig. 9, now for a grid of saturation

nonlinearities (i.e. all controllers with α2 = 0). Note that for

α1 = 0 and for δ1 = 0 nm the low-gain controller is active,

which is normalized to a performance of J = 1. The high-

gain controller can be found at δ1 > 200 nm and α2 = 3 with

performance J = 1.33. Again, values of J > 1 have been

omitted from the plot for clarity of presentation. The optimal

piecewise affine variable-gain controller is also indicated in

Fig. 9.
Considering the convergence of the optimizations in case

of disturbance situation 2, 21 out of 27 initial starting points

converged to the global optimum. The local optimum resem-

bles in all cases the same linear controller with α1 = 0.870
and δ1 > max(|ē|) (such that α2 and δ1 are irrelevant, hence

∂J/∂α2 = ∂J/∂δ1 = 0) or with α2 = 0.870 and δ1 = 0
(such that α1 is irrelevant, hence ∂J/∂α1 = 0), resulting in

a non-optimal performance of J = 0.84, see Fig. 11. Again,

by changing the constraints on δ1 as in Remark IV.1, all of

the 27 initial conditions converge to the global optimum.

Remark IV.2 When the number of segments of the piece-

wise affine nonlinearity is enlarged to 3 or 4, the same dead-

zone and saturation type controllers result from the controller

synthesis. Therefore, in this application, performance is not

improved by considering more complex nonlinearities.

Remark IV.3 The gradients used in the optimizations are

obtained by finite-difference approximations using simula-

tions, which is acceptable for the considered model-based

implementation. An alternative method is based on using

a sensitivity model for the dynamics with respect to the

optimization parameters, which will be more suitable in an

experimental implementation, since this reduces the number

of experiments and simplifies obtaining the gradients [5], [4].

V. CONCLUSIONS AND RECOMMENDATIONS

In this paper, we have proposed a piecewise affine non-

linearity in a variable-gain motion controller with the aim to

improve the performance compared to linear controllers. By

not fixing the shape of the nonlinearity a priori, we developed

a strategy to synthesize a variable-gain controller which is

tuned for the disturbance situation at hand. We have illus-

trated the controller synthesis approach on a model of a wafer

stage. One disturbance situation led to an optimal dead-zone

characteristic, and one disturbance situation led to an optimal

saturation characteristic. The piecewise affine description

allows for general nonlinearities to be synthesized, paving

the way to general performance-based nonlinear controller

design.
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