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Abstract— In this paper, we introduce the split-path nonlinear
integrator (SPANI) as a novel nonlinear filter designed to
improve the transient performance of linear systems in terms
of overshoot. In particular, this nonlinear controller targets the
well-known trade-off induced by integral action, which removes
steady-state errors due to constant external disturbances, but
deteriorates transient performance in terms of increased over-
shoot. The rationale behind the proposed SPANI filter is to
ensure that the integral action has, at all times, the same sign
as the closed-loop error signal, which, as we will show, enables
a reduction in overshoot (i.e., improves transient performance).
The resulting closed-loop dynamics can be described by a
continuous-time switched dynamical system, for which we will
provide sufficient conditions for stability. Furthermore, we
illustrate the effectiveness, the design and the tuning of the
proposed controller in simulation examples.

I. INTRODUCTION

In classical linear control theory, it is well-known that
Bode’s gain-phase relationship causes a hard limitation on
achievable performance trade-offs in linear time-invariant
(LTI) feedback control systems, see e.g., [1], [2]. The
interdependence between gain and phase is often in conflict
with the desired performance specification set by the control
engineer. For example, it is impossible to add integral action
into a feedback control system, typically included to achieve
zero steady-state errors, without introducing the negative
effect of phase lag as well. It was this fundamental gain-
phase relationship for LTI systems that motivated W. C. Foster
and co-workers in 1966 to develop the split-path nonlinear
(SPAN) filter, in which they intended to design the gain and
phase characteristics separately [3]. In this paper, we focus on
enhancing transient performance of linear motion systems in
terms of overshoot by proposing a variation and extension to
the SPAN filter, which will be called the split-path nonlinear
integrator (SPANI).

A number of other nonlinear control strategies, designed for
improving the transient performance of LTI systems, has been
proposed in the literature. One concept is reset control, which
was first introduced in 1958 [4] and allows the controller
to reset (a subset of) its state(s) if certain conditions are
satisfied. Especially in the last two decades, it has regained
attention in both theoretically orientated research, see e.g., [5]–
[7], as well as in applications [8]. In [9], potential benefits
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of hybrid control for linear systems have been discussed,
and in particular, it has been shown that a switched integral
controller can improve the transient performance. Another
concept is variable gain integral control [10], which limits the
integral action if the error exceeds a certain threshold, thereby
limiting, in turn, the amount of overshoot. A similar objective
is achieved in [11], in which a sliding mode controller
with saturated integrator is studied. In [12], the concept of
composite nonlinear feedback is employed to improve the
transient response of second-order LTI systems.

All aforementioned nonlinear control strategies have in
common that closed-loop stability cannot be verified anymore
using the linear-based Nyquist stability theorem. Hence, the
importance of the development of other testable stability
conditions is evident. Despite this, none of the works thus far
that considered SPAN filters, e.g., [3], [13], provided such
results. In this paper, however, we propose the first testable
Lyapunov-based stability conditions for a feedback control
system including the proposed SPANI controller.

Despite its potency to outperform linear controllers, see e.g.,
[3], [13], the SPAN filter did not receive much attention until
recently. In [13], the authors showed that a controller with
SPAN filter can outperform an LTI controller with respect to
overshoot to a step response. In this paper, we aim to achieve
the same objective by our newly proposed variant/extension to
the SPAN filter. Furthermore, we would like to emphasize that,
similarly as in [10], the linear components of our proposed
controller configuration can be designed using well-known
loop-shaping techniques, which enhances the applicability to
real-life control problems.

Summarizing, the contributions of this paper are as follows.
Firstly, a novel nonlinear SPANI filter is proposed that has
the ability to improve the transient performance of linear
systems in terms of overshoot. Secondly, we will show that the
feedback control figuration with add-on SPANI controller can
be modeled as a continuous-time switched dynamical system,
for which sufficient Lyapunov-based stability conditions are
provided. Moreover, the potential of the SPANI filter to
improve upon transient behavior as well as its intuitive
design will be highlighted throughout the paper by means of
simulations.

The remainder of the paper is organized as follows. In
Section II, we introduce and motivate our proposed SPANI
filter. Subsequently, in Section III, we introduce a switched
systems model of our closed-loop system and in Section IV,
we provide stability conditions for this system in terms of
linear matrix inequalities (LMIs). Finally, we illustrate the
effectiveness of the proposed nonlinear control strategy using
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a simulation example of a motor-load system in Section V
and draw conclusions in Section VI.

A. Nomenclature

The following notational conventions will be used. Let R
denote the set of real numbers. We call a matrix P ∈ Rn×n
positive definite and write P � 0, if P = P> and x>Px > 0
for all x 6= 0, similarly, we call P ≺ 0 negative definite. For
brevity, we write symmetric matrices of the form

[
A B

B> C

]
as
[
A B
? C

]
.

II. SPLIT-PATH NONLINEAR INTEGRATOR

In Section II-A, we will briefly revisit the original SPAN
filter, and, based on these historical developments, introduce
a new variation/extension to this filter: the SPANI filter.
Additionally, in Section II-B, a description of the complete
feedback control system will be given. Finally, we end this
section with an illustrative example in order to demonstrate the
effectiveness of the newly proposed controller configuration.

A. Introduction and motivation of the SPANI filter

Originally, the key motivation behind the development of
the SPAN filter was to obtain a filter in which the gain and
phase could be designed independently [3]. To achieve this,
the input signal, being the closed-loop error e, is divided into
two separate branches which outputs are multiplied in order
to form the control input us, as schematically depicted in Fig.
1. The lower branch contains a sign element, which destroys
all magnitude information as its output is either ±1, thereby
retaining all phase information. The opposite holds for the
upper branch, as it contains an absolute value element; hence,
all sign information is lost but the magnitude information
is retained. Moreover, both branches contain a linear filter
Hi(s), i ∈ {1, 2}, s ∈ C. In both [3] and [13], the authors
use filters of the form H1(s) = 1/(s+ τ1) (low-pass filter)
and H2(s) = (s+ τ2)/(s+ τ3) (lead filter), with the aim to
add phase lead without magnitude amplification.

In this paper, we use the concept of the SPAN filter
to obtain a new nonlinear controller with the goal to
improve the transient performance of linear motion systems,
which is quantified in terms of overshoot to step responses
of the closed-loop system. For that purpose, we select a
linear integrator for H1(s), i.e., H1(s) = ωi/s, and take
H2(s) = 1. This nonlinear filter will be denoted by the
split-path nonlinear integrator (SPANI), and is schematically
represented in the dashed blue rectangle in Fig. 2. The
rationale behind the design of this SPANI filter can be best
understood by considering a step response (or the response
to a step disturbance) on a system containing integral control.
In order to achieve a zero steady-state error, the integrator
integrates the error e over time resulting in build-up of integral
buffer. As soon as the error e becomes zero, i.e., e = 0, the
integrator still has the integrated error stored in its state. Due
to the phase lag introduced by the integrator, it takes some
time to empty this buffer, causing the error to overshoot. In
contrast to a linear integrator, the SPANI enforces, due to
the absolute value and sign element, see Fig. 2, the integral

H1(s)

us

SPAN

e

H2(s)

Fig. 1. Schematic representation of the SPAN filter.

P(s)Cnom(s)

ωi
s

e u

us

uc

d

ypr

SPANI

−

xI

Fig. 2. Feedback loop with plant P(s), linear controller Cnom(s) and the
SPANI controller.

action to take the same sign as the error signal. This results
in non-smooth behavior as soon as e = 0, i.e., at that specific
time instant an instantaneous switch of the sign of the integral
action takes place, inducing a reduction in overshoot.

B. Description of the control system

The feedback configuration used in this paper is shown in
Fig. 2. In this figure, e := r − yp denotes the tracking error
between the reference signal r and the output of the plant
yp, d denotes an unknown, bounded input disturbance and
u := uc + us the total control input, which consists of the
control input uc of the linear controller Cnom(s) and of the
control input us of the SPANI. The linear closed-loop part
consists of a single-input-single-output (SISO) LTI plant P(s),
s ∈ C, and a nominal stabilizing SISO LTI (loop-shaped)
controller Cnom(s), s ∈ C.

The nonlinear part, being the SPANI filter, is placed in
parallel to Cnom(s) in order to obtain maximum effect of
discontinuities in the SPANI output us, i.e., they are not
fed through the nominal controller Cnom(s). The state (and
output) of the integrator CI(s) = ωi/s, with gain ωi, is
defined by xI ∈ R. The sign-function in the lower branch
of the SPANI, see Fig. 2, is defined as

sign(e, xI) =


1 if e > 0,

1 if e = 0 and xI ≥ 0,

− 1 if e = 0 and xI < 0,

− 1 if e < 0.

(1)

In essence, (1) reflects a normal sign-function, except at
e = 0, where we use ±1 depending on the sign of xI , such
that us = +xI for e = 0 (the dependence of the sign-function
on xI is denoted by the dashed arrow in Fig. 2).

Remark II.1 Foster and co-workers did not present any
modeling results in [3]. Perhaps, as a consequence, no formal
definition of the sign-function, see Fig. 1, was provided in
[3]. One of the contributions of this paper is, however, to
present a modeling framework of the closed-loop control
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Fig. 3. Transient unit step response simulations of the controlled motion
system with and without SPANI controller.

system with SPANI filter amendable to stability analysis, and,
as a result, a formal definition of the sign-function, see (1),
is required.

C. Illustrative example

Let us consider a basic example to illustrate the potential
of the control configuration in Fig. 2, concerning a mass-
spring-damper system, with plant P(s) = 1/(ms2 + bs+ k),
mass m = 0.01 kg, damping coefficient b = 0.03 Ns/m and
spring constant k = 1 N/m, being controlled by an input
force F and the output yp corresponding to the position of
the mass. Two types of controllers are designed, a linear one
and a nonlinear one, both capable to regulate the system to
the reference r = 1. The linear controller, designed using
classical loop-shaping techniques, consists of a stabilizing
linear controller C(s) = Cnom(s) + CI(s), with Cnom(s) =
22.4( 1

35s+1)/( 1
100s+1) being the nominal controller without

integral action, and a linear integrator CI(s) = ωi/s, with
gain ωi = 12 rad/s. In the nonlinear controller configuration,
we use the same nominal controller Cnom(s) and replace the
linear integrator CI(s) by the SPANI, using the same gain
ωi = 12 rad/s, to arrive at a feedback control configuration
as shown in Fig. 2.

The unit step response simulations are depicted in Fig.
3. Let us first focus on the transient response in terms of
overshoot. As can be concluded from the figure, the response
of the control configuration with SPANI filter clearly has the
least amount of overshoot, thereby illustrating the potential
of the proposed configuration. Note that up to the crossing
yp = 1, i.e., the time instant where the error e changes sign
for the first time, the responses are identical (equal rise-time).
The reduction in overshoot is achieved by the instantaneous
change of sign of the control input us of the SPANI as soon
as the error e crosses zero.

Let us now focus on the steady-state behavior in Fig. 3.
This reveals that, contrary to the linear control configuration,
the system with SPANI does not track the step reference
asymptotically (e := r − yp 6→ 0 as t → ∞), but instead
shows undesirable steady-state oscillations. In the sections
below, we will explain more about this undesired behavior and
present a slight modification to the SPANI filter in order to
eliminate such undesired steady-state behavior while retaining
an improved transient response in terms of overshoot.

III. SWITCHED SYSTEM MODELING

In this paper, see Fig. 2, we study SISO LTI plants of the
form

P :

{
ẋp = Apxp +Bpu+Bpd

yp = Cpxp,
(2)

where xp ∈ Rnp denotes the state of the plant, d ∈ R denotes
an unknown but bounded disturbance and u ∈ R the control
input. The nominal SISO LTI controller is given by

Cnom :

{
ẋc = Acxc +Bce

uc = Ccxc +Dce,
(3)

in which xc ∈ Rnc denotes the state of the nominal part of
the controller and e := r − yp ∈ R the closed-loop error,
with reference r ∈ R. The SPANI, see Fig. 2 (or Fig. 5(a)),
contains a linear integrator with gain ωi ∈ R. Due to the
absolute value and sign-function (1), the output us of the
SPANI is forced to take the same sign as the error signal e.
Hence, we can model the SPANI controller as a switched
system with dynamics

SPANI :


ẋI = ωie

us =

{
+xI if exI ≥ 0

−xI if exI < 0,

(4)

where xI ∈ R denotes the state of the integrator in the SPANI
controller. For this SPANI controller, the situation where
the ‘default’ integrator is active (us = +xI ) corresponds to
exI ≥ 0 and the situation where the integrator swaps sign
(us = −xI ) corresponds to exI < 0, see Fig. 4(a) for a
representation in the (e, xI)-plane.

Now, we propose a slight modification to the switching
condition of the SPANI filter, which is given as follows

SPANI :


ẋI = ωie

us =

{
+xI if xI(εxI + e) ≥ 0

−xI if xI(εxI + e) < 0,

(5)

for some (typically small) ε > 0 associated with tilting of one
of the switching boundaries, see Fig. 4(b) for a representation
in the (e, xI)-plane and Fig. 5(b) for a schematic representa-
tion in a block diagram. This modification indeed prevents
the oscillatory behavior, observed in Fig. 3, from occurring.
This can be intuitively explained as follows. Consider Fig. 4
and focus first on the default SPANI, i.e., Fig. 4(a). Note that
the equilibrium point, with (e, xI) = (e∗, x∗I), is located as
represented in the figure, i.e., exactly on the switching plane
(note that this is the case since e∗ = 0 is enforced by the
integral action, and typically, e.g., if constant disturbances
are present, it takes integral action to achieve this (x∗I 6= 0)).
Hence, small variations around this equilibrium may cause
the dynamics to switch, resulting in an instantaneous change
of sign of us. By introducing the tilting parameter ε, we are
able to achieve that the equilibrium is located strictly inside
the set where xI(εxI +e) ≥ 0, see Fig. 4(b). We will show in
Section IV that this results in asymptotic tracking of constant
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e
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xI(εxI + e) ≥ 0

−1
ε

(e∗, x∗I)

(b) Modified SPANI

Fig. 4. Schematic representation of the (e, xI)-plane for the feedback
configuration with both the default and the modified SPANI filter. Note that
the switching boundaries belong to the blue areas in both cases.

references, even in the presence of constant disturbances, and
that this prevents the oscillatory behavior in Fig. 3.

To obtain a complete closed-loop model of the feedback
configuration in Fig. 2 (though with the modified SPANI
as in Figure 5(b)), we use the interconnections e := r − yp
and u := uc + us, combine (2), (3) and (5), and define the
augmented state-vector x := [x>p x>c x>I ]> ∈ Rn, where
n = np + nc + 1, to arrive at a continuous-time switched
dynamical model given by

ẋ=

{
Ā1x+ B̄rr + B̄dd if xI(εxI + e) ≥ 0 (6a)
Ā2x+ B̄rr + B̄dd if xI(εxI + e) < 0, (6b)

with output yp = C̄x, and where

Ā1 :=

[
Ap − BpDcCp BpCc +Bp

−BcCp Ac 0
−ωiCp 0 0

]
, (7a)

Ā2 :=

[
Ap − BpDcCp BpCc −Bp

−BcCp Ac 0
−ωiCp 0 0

]
, (7b)

B̄r :=

[
BpDc

Bc

ωi

]
, B̄d :=

[
Bp

0
0

]
, C̄ :=

[
C>p
0
0

]>
. (7c)

Observe that the switched dynamical system (6), (7)
contains a lot of structure, i.e., the closed-loop system matrices
Ā1 and Ā2 are almost identical, except for the minus sign in
the upper right element in Ā2. By proper design, the linear
controller Cnom(s) + CI(s), see Fig. 2, is stabilizing, and as
a result, the matrix Ā1 is always Hurwitz. Due to the sign
change in its upper right element, this generally does not
hold for the matrix Ā2. In fact, due to the wrong sign of
the integral action Ā2 will in general not be Hurwitz. When
observing the (e, xI)-plane in Fig. 4(b), the set where the
stable dynamics (6a) are active corresponds with the blue
areas and the set where the unstable dynamics (6b) are active
corresponds to the white areas.

IV. STABILITY ANALYSIS

In this section, LMI-based conditions are presented to verify
stability of the closed-loop dynamics. Moreover, we revisit
the example of Section II-C, in which we will show that,
firstly, the oscillatory behavior is prevented by the proposed
modification to the SPANI (5), and secondly, that the stability
conditions can be used to determine a proper choice for the
tilting parameter ε > 0.

ωi
s

us

default SPANI

e

xI

(a) Default SPANI

ωi
s

us

modified SPANI

e ε

xI

(b) Modified SPANI

Fig. 5. Schematic representation of both the default SPANI filter, see (4),
and the modified SPANI filter, see (5).

A. Stability conditions
In this section, we consider constant (step) references

r(t) = rc, t ∈ R≥0, and constant disturbances d(t) = dc,
t ∈ R≥0, and present sufficient conditions to verify global
exponential stability (GES) of the (unique) equilibrium point
x∗ of (6), (7) that satisfies

Ā1x
∗ + B̄rrc + B̄ddc = 0. (8)

Note that, from (8) (or (5)) it follows that (due to the integral
action) e∗ = 0 in the equilibrium x∗, such that the equilibrium
conforms to the Ā1 dynamics.

Remark IV.1 Note that sliding motions, see e.g., [14], [15],
will typically not exist in the control configuration studied
in this paper when considering motion systems. However, to
cover the cases in which they do occur, we will explicitly
take the possibility of sliding modes into account in deriving
the stability conditions.

The following theorem poses sufficient conditions under
which GES of the equilibrium x∗ can be guaranteed for
the switched dynamical system (6), (7). Consequently, under
these conditions the exact tracking of the constant reference
rc, and disturbance rejection of the constant disturbance dc,
is guaranteed. Hereto, let us introduce a few definitions. A
matrix Q is given by

Q :=

[
Ā>2 P + PĀ2 PĀdĀ

−1
1 B̄r PĀdĀ

−1
1 B̄d

? 0 0
? ? 0

]
, (9)

with Ād := Ā1 − Ā2. Furthermore, a matrix R̄ is given by

R̄ :=


0 0 − 1

2C
>
p − 1

2γrC
>
p − 1

2γdC
>
p

? 0 0 0 0
? ? ε εγr εγd
? ? ? εγ2

r εγrγd
? ? ? ? εγ2

d

 , (10)

for scalars γr = −
[
O1×np O1×nc 1

]
Ā−1

1 B̄r and
γd = −

[
O1×np O1×nc 1

]
Ā−1

1 B̄d, related to the in-
tegral state in equilibrium i.e., x∗I = γrrc + γddc.
Let us motivate these scalars by considering the trans-
fer function from r, d to xI , see Fig. 2, which
is given by xI(s) = ωi

s+sP(s)Cnom(s)+P(s)ωi
r(s) −

P(s)ωi

s+sP(s)Cnom(s)+P(s)ωi
d(s), such that in the equilibrium it

holds that x∗I = 1
P(0)rc−dc. Hence, γr = 1

P(0) and γd = −1.
Finally, let the matrix M be given by

M :=

[
In×n On×1

O2×n

[
γr
γd

]]
. (11)
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Theorem IV.2 Consider the switched system (6), (7) for
some ε > 0, in which we assume that Ā1 is a Hurwitz
matrix. If there exist a positive definite matrix P = P> and
a constant α ≥ 0 satisfying

Ā>1 P + PĀ1 ≺ 0 (12)

M>
(
Q− αR̄

)
M ≺ 0, (13)

then the equilibrium point x∗ of system (6), (7) satisfying
e∗ = rc −Cpx∗p = 0, is globally exponentially stable for any
constant reference rc and any constant disturbance dc, even
in the presence of sliding modes.

Proof: The proof is omitted due to space limitations,
but can be found in [16].

Remark IV.3 Note that by increasing ε, the stable Ā1

dynamics is active in a larger region of the state-space,
see Fig. 4. In fact, for ε = ∞, the linear, and stabilizing,
controller Cnom(s) + CI(s) is active in the entire state-space.
This fact gives rise to the intuition that stability of the
closed-loop system can be guaranteed by choosing ε large
enough. From a overshoot-reduction point of view, however,
a small ε is favorable. Hence, a trade-off between stability
and performance arises and Theorem IV.2 is instrumental in
making this trade-off.

B. Motivating example revisited

Let us again consider the illustrative example of Section
II-C. In this example, we demonstrated that our proposed
SPANI filter (4) has the potential to increase transient
performance with respect to overshoot, but that its steady-
state behavior was worsened compared to a linear feedback
control configuration due to the occurrence of oscillations.
In this section, we will compare both responses of Section
II-C to the response obtained with a modified SPANI filter
(5), in which ε is selected as ε = 0.04. In fact, ε = 0.04 is
the lower bound for which the conditions of Theorem IV.2
yield feasible results1.

The dash-dotted black line in the upper plot of Fig. 6 shows
the response using the modified SPANI filter (5). Clearly,
the response asymptotically converges to its desired value.
However, this is achieved at the expense of a (slight) increase
in overshoot, as is shown on the ‘zoom’ part of the transient
response in the upper plot of Fig. 6. The bottom figure in
Fig. 6 shows the integral action us of the controllers, which
reveals in the upper zoom part that the swap in integral action
occurs later in time for the modified SPANI filter, causing an
increase in overshoot compared to the case in which ε = 0.
On the other hand, the steady-state oscillations in us are
the highest in amplitude (and non-vanishing) for the default
SPANI filter, see again the bottom figure of Fig. 6.

1From simulations it follows that any ε > 0 yields an asymptotically
stable response. This discrepancy between the simulations and the LMI-
based stability conditions of Theorem IV.2 might be relaxed (in terms
of conservatism) by considering piecewise quadratic Lyapunov functions
instead.
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yp and the bottom figure the integral action us to a step reference input.

Therefore, we may conclude that taking the parameter ε
larger than zero is necessary from a stability point of view,
although it also limits the potential transient performance
profits. It is therefore up to the user to balance this trade-
off in the most optimal sense, in which the conditions of
Theorem IV.2 may serve as a guideline (see also Section V
and Remark IV.3).

V. SIMULATION EXAMPLE

In this section, the proposed nonlinear control strategy will
be applied to a simulation model of a 4th-order motion system
and compared with the results obtained by linear feedback
control. The motion system under study consists of a non-
collocated motor-load system, which resembles a realistic
industrial motion control setting where sensors and actuators
are typically placed at different locations. In addition, the
system is subject to an external force disturbance, which
motivates the use of integral control in order to obtain a zero
steady-state error, see e.g., [10].

A. Plant model and linear controller design

The plant dynamics are described by the following 4th-
order LTI model

P(s) =
4.746 · 108

s4 + 4.22s3 + 1.364 · 105s2
, s ∈ C, (14)

which will form the basis for controller design. Using manual
loop-shaping techniques, a nominal stabilizing controller
Cnom(s) without integral action is designed, consisting of
a lead filter, a notch filter, and a 2nd-order low-pass filter,
leading to

Cnom(s) =
1.399 · 10−7s3 + 2.715 · 10−6s2

3.989 · 10−14s5 + 5.915 · 10−11s4
· · · (15)

· · · +0.01911s+ 0.3

+5.329 · 10−8s3 + 2.612 · 10−5s2 + 0.007958s+ 1
,
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Fig. 7. Response to a step reference input for the linear feedback system
with no integral action (solid magenta), with integral action (solid blue),
and for the configuration with SPANI, using (4) (dashed red) and (5) (with
ε = 1.9) (dash-dotted black).

in which s ∈ C. The linear integrator CI(s) = ωi/s is
designed in parallel to Cnom(s) with gain ωi = 1.8π. The
overall linear controller design results in satisfactory stability
margins and a bandwidth around 10 Hz for the open-loop
transfer function Ol,I(s) = P(s)(Cnom(s) + CI(s)).

As discussed before in Section II, once a stabilizing
controller structure has been designed, incorporating a SPANI
filter into the controller configuration follows straightfor-
wardly by replacing CI(s) by the SPANI, see Fig. 2, using
the same gain ωi. The results presented in Theorem IV.2
can be used to determine a favorable choice for ε. Using
a balanced state-space representation of (6), (7), and a line
search over ε, one can show that the conditions of Theorem
IV.2 yield feasible results for any ε ≥ 1.9. Hence, in the
remainder of this example, we select ε = 1.9.

B. Transient performance comparison

Let us compare the transient performance of a feedback
control system with and without SPANI. In order to do so, we
study the response subject to a step reference of r(t) = rc = 1
rad, applied at the system at t = 0 s, and a step disturbance
dc = 0.1 V acting on the system at t = 0.3 s.

First the response for the two linear controllers is consid-
ered, see Fig. 7. Clearly, the use of an integrator increases the
overshoot of the system’s closed-loop response (blue versus
magenta). However, the configuration with only the nominal
controller Cnom(s) is not capable of removing the steady-state
errors due to constant force disturbances dc.

Consider now the nonlinear controllers, which both show
a reduction in overshoot compared to the linear controller
with integral action CI(s). Clearly, the response of the
configuration with ‘default’ SPANI ((5) with ε = 0) shows
the least amount of overshoot. However, as we can conclude
from Fig. 7, selecting ε = 0 leads to unstable behavior. This
proves the usefulness of our presented stability conditions in
Theorem IV.2, as these allow us to compute a lower bound
on ε such that closed-loop stability of (6), (7) is guaranteed.
By using the configuration with SPANI in which we select
ε = 1.9 (dash-dotted black), we see a reduction in overshoot
compared to Cnom(s)+CI(s), while the system asymptotically
converges to yp = rc = 1 rad, even with the presence of a
constant force disturbance d = dc = 0.1 [V].

VI. CONCLUSIONS

In this paper, we introduced the split-path nonlinear inte-
grator (SPANI) as a novel variation/extension to a nonlinear
filter, that was originally introduced in the late 1960s. The
SPANI is especially designed for transient performance
improvement of linear systems. In particular, we focussed on
the transient performance improvement in terms of overshoot
to step responses, while being able to achieve zero steady-
state errors in the presence of constant disturbances. The
potential of the proposed SPANI controller was demonstrated
by means of simulations. Moreover, it was shown that the
feedback control configuration with SPANI can be modeled
as a continuous-time switched dynamical system, for which
sufficient Lyapunov-based stability conditions have been
provided in terms of LMIs. These conditions proved to be
useful in the design of the SPANI, which on itself, appeared
to be easy accessible for control engineers as all the individual
components of the proposed nonlinear controller can be
obtained using classical loop-shaping techniques.

REFERENCES

[1] J. Freudenberg, R. Middleton, and A. Stefanpoulou, “A survey of
inherent design limitations,” in Proceedings of the American Control
Conference, vol. 5, 2000, pp. 2987–3001.

[2] M. M. Seron, J. H. Braslavsky, and G. C. Goodwin, Fundamental
Limitations in Filtering and Control. Berlin: Springer, 1997.

[3] W. C. Foster, D. L. Gieseking, and W. K. Waymeyer, “A nonlinear
filter for independent gain and phase (with application),” Trans. ASME
J. Basic Eng., vol. 78, pp. 457–462, 1966.

[4] J. Clegg, “A nonlinear integrator for servomechanisms,” Trans. of the
A.I.E.E., vol. 77, no. Part-II, pp. 41–42, 1958.

[5] O. Beker, C. V. Hollot, Y. Chait, and H. Han, “Fundamental properties
of reset control systems,” Automatica, vol. 40, no. 6, pp. 905–915,
2004.

[6] W. H. T. M. Aangenent, G. Witvoet, W. P. M. H. Heemels, M. J. G.
Van De Molengraft, and M. Steinbuch, “Performance analysis of
reset control systems,” International Journal of Robust and Nonlinear
Control, vol. 20, no. 11, pp. 1213–1233, 2010.
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