
Switched position-force tracking control of a manipulator interacting
with a stiff environment

D.J.F. Heck1, A. Saccon1, N. van de Wouw1,2 and H. Nijmeijer1

Abstract— This work proposes a control law for a manipula-
tor with the aim of realizing desired time-varying motion/force
profiles in the presence of a stiff environment. In many cases,
the interaction with the environment affects only one degree of
freedom of the end-effector of the manipulator. Therefore, the
focus is on this contact degree of freedom, and a switching
position-force controller is proposed to perform the hybrid
position-force tracking task. Sufficient conditions are presented
to guarantee input-to-state stability of the switching closed-loop
system with respect to perturbations related to the time-varying
desired motion-force profile. The switching occurs when the
manipulator makes or breaks contact with the environment.
The analysis shows that to guarantee closed-loop stability
while tracking arbitrary time-varying motion-force profiles,
the controller should implement a considerable (and often
unrealistic) amount of damping, resulting in inferior tracking
performance. By redesigning the manipulator with a compliant
wrist and employing the designed switching control strategy,
stable tracking of a motion-force reference trajectory can be
achieved and bouncing of the manipulator while making contact
with the stiff environment can be avoided.

I. INTRODUCTION

Numerous robotic applications, such as for example bilat-
eral teleoperation, automated assembly tasks, drilling, grind-
ing and surface polishing, involve the interaction between
a manipulator and a stiff environment. To this end, many
different control architectures have been proposed for a
combination of motion and force control (see Chapter 7 of
[1] for an overview).

The most studied and applied control schemes include
impedance and admittance control [2], [3], hybrid position-
force control [4], [5] and parallel position-force control [6].
These control architectures are designed for the free motion
and contact phases separately, and stability is analyzed for
these separate regions using standard Lyapunov methods.
The transitions between the two phases is not included
in the stability analysis, so bouncing or unstable contact
behavior might still occur. From a practical point of view, the
manipulator is restricted to approach the environment very
slowly to prevent contact instability. Therefore, we focus on
the design of a controller to also guarantee stability during
the transitions. Moreover, since our main research interest is
in telerobotics, we are interested in tracking of time-varying
motion and force profiles.
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Only a few theoretical studies have addressed directly the
root cause of the bouncing instability. In [7], [8], a switched
position-force controller is considered, where the controller
switches from motion to force control when contact with
the environment is made. Using analysis techniques for
switched systems, conditions for asymptotic stability are
derived for a constant position or force setpoint regulation
problem. Hysteresis switching is considered in [9] to pre-
vent bouncing of the manipulator against the environment.
Active impedance control is proposed in [10] for “velocity
regulation in free motion, impact attenuation” and tracking
of a constant force setpoint in contact. Again for a force
regulation task, the number of bounces is minimized in
[11] by exploiting a transition controller. In [12], nonlinear
damping is proposed to minimize the force overshoot without
compromising the settling time. In all these publications,
tracking of desired time-varying motion and force profiles,
required in applications such as bilateral teleoperation or
automated assembly tasks, is not considered.

In the above mentioned papers, the manipulator-
environment interaction is modeled using a flexible spring-
damper contact model. The stiffness and damping properties
of the environment are modeled explicitly and the impact
phase has a finite time duration. This is the approach we also
take in this paper. The manipulator-environment interaction
can also be studied using the approach of nonsmooth me-
chanics [13], where the impact phase is instantaneous and
a static impact map (e.g., Newton’s law of restitution) is
employed to characterize the interaction. Stable tracking of
specific force/position profiles using such an approach has
been addressed in [14], [15], but to the best of authors’
knowledge, stable tracking of an arbitrary force/position
profile as we consider in this work has not been solved yet.

In this work, we propose a control law for making a
manipulator track a time-varying motion and force profile.
Because in many tasks of practical interest the interaction
of the robot end-effector with the environment occurs just
in one direction, we derive and study the contact stability
problem using a 1-DOF dynamic model. The remaining
unconstrained DOFs can be controlled with standard motion
control techniques (see [16]). We propose a switched motion-
force tracking control strategy and include the transition
from free motion to contact in the stability analysis of
the closed-loop dynamics. An interesting and unexpected
result of our analysis is that the controller should implement
a considerable amount of damping to guarantee stability
while tracking an arbitrary time-varying motion-force profile.
Because an excessing amount of damping limits the track-
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ing due to a sluggish response, we propose an alternative
manipulator design by including a compliant wrist. The use
of such an “energy absorbing component” is mentioned in
[17], but a stability analysis is not considered. The novel
result in this work is the combination of the compliant wrist
design with the proposed switched motion-force controller
and the stability analysis that results in design guidelines
for the compliant wrist and controller to guarantee stable
contact while tracking arbitrary motion and force profiles. In
particular, we show how bouncing of the manipulator against
the stiff environment can be prevented without the need of
a considerable amount of damping from the controller.

The proofs of all lemmas and theorems in this article are
omitted due to space limitations, but can be found in [18].

II. SYSTEM MODELING AND CONTROLLER DESIGN

Our primary goal is to design a controller for making a ma-
nipulator track a desired motion-force profile. As explained
in the introduction, we focus on a 1-DOF modeling of the
manipulator-environment interaction.

The decoupled contact DOF is modeled as

Mẍ+ bẋ = Fc − Fe, (1)

where x represents the manipulator position, M > 0 the
equivalent mass of the manipulator, b > 0 the viscous friction
in the joint, Fc the control force and Fe the force exerted
by the manipulator on the environment. The environment
is modeled as a static wall at x = 0 and, without loss of
generality, the manipulator is in contact with the environment
for x > 0. In [7], [8], the environment is modeled as a
piecewise linear spring. We consider, similarly to [9], the
Kelvin-Voigt contact model

Fe(x, ẋ) =

{
0 for x ≤ 0
kex+ beẋ for x > 0

(2)

with ke, be > 0 the stiffness and damping properties of the
environment, respectively. This model is nonlinear and non-
smooth due to the potentially abrupt change in Fe at x = 0.

In free motion, the manipulator is required to follow a
bounded desired motion profile xd(t), whereas in contact,
a desired force profile Fd(t) should be applied to the
environment. With impedance controllers the contact force
is controlled indirectly. Instead, we propose the following
switched motion-force controller that switches between a
resolved acceleration controller in free motion and a force
controller in the contact phase:

Fc=

{
Maẍd(t) + kd(ẋd(t)− ẋ) + kp(xd(t)− x), ∀x ≤ 0, (3a)

Fd(t) + kf (Fd(t)− Fe)− bf ẋ, ∀x > 0, (3b)

such that both motion and force are controlled directly. Here,
kp > 0 and kd > 0 are the proportional and derivative
gains of the motion controller, respectively. The estimated
mass of the manipulator Ma > 0 might differ from the
actual mass M due to uncertainties in the model parameter
identification. The gain kf > 0 represents the proportional
term of the force controller and bf > 0 is the damping
gain, dissipating energy during the contact phase. For the

controller (3), it is assumed that the contact force Fe, position
x and velocity ẋ can be measured. Note that the controller
switches based on x instead of the contact force Fe. However,
for stiff environments, ke ≫ be, such that switching based
on either x > 0 or Fe > 0 can be considered similar. A
priori knowledge of the location of the environment is not
required for the implementation of the controller (3).

In order to analyze stability of the system described by (1)-
(3), we reformulate the closed-loop dynamics as a switching
state-space model. A key idea for the stability analysis,
detailed in Section III, is to express the force tracking error
Fd(t)− Fe in terms of the motion tracking error xd(t)− x,
such that both in free motion and in contact the goal is to
make the tracking error xd(t) − x small. In contact, xd(t)
represents the ’virtual’ desired trajectory, corresponding to
the desired contact force Fd(t). For the relationship between
Fd(t) and xd(t) during contact, x → xd(t) should also
imply Fe → Fd(t). To this end, we consider the following
relationship to deduce xd(t) from Fd(t) in the contact phase

Fd(t) = k̂exd(t) + b̂eẋd(t), for Fd(t) > 0, (4)

where k̂e and b̂e are available estimates of ke and be. When
these estimates are exact, x − xd(t) → 0 indeed implies
Fe − Fd(t) → 0.
Assumption 1: The desired trajectory xd(t) in (3a) and (4)
is bounded and twice differentiable.

Assumption 1 implies that ẍd(t) is also bounded (and
defined almost everywhere). For desired motion and force
profiles provided by a user, the satisfaction of Assumption 1
can be guaranteed by applying the method proposed in [18].

In terms of the exact environment parameters ke and be,
(4) can be rewritten as

Fd(t) = kexd(t) + beẋd(t) + wf (t), for Fd(t) > 0, (5)

with wf (t) := (k̂e − ke)xd(t) + (b̂e − be)ẋd(t) a bounded
perturbation due to Assumption 1. The tracking error

z =

[
z1
z2

]
:=

[
xd(t)− x
ẋd(t)− ẋ

]
, (6)

can be used to rewrite the closed-loop system dynamics (1)-
(3) and (5) as the perturbed switched system

Σp : ż = Aiz +Nwi(t) =

[
0 1

−Ki −Bi

]
z +Nwi(t),

∀t, z ∈ Ωi(t), i ∈ {1, 2}, (7)

where N = [0, 1]
T ,

K1 :=
kp
M

, B1 :=
kd + b

M
, (8a)

K2 :=
(1 + kf )ke

M
, B2 :=

(1 + kf )be + bf + b

M
, (8b)

w1(t) :=
M −Ma

M
ẍd(t) +

b

M
ẋd(t), (8c)

w2(t) := ẍd(t) +
bf + b

M
ẋd(t)−

1

M
wf (t). (8d)

The perturbations wi(t), i = {1, 2} are bounded, because
by Assumption 1, xd(t), ẋd(t) and ẍd(t) are bounded. All
system parameters are positive, so Ki, Bi > 0 and Ai in
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(7) is Hurwitz for i = {1, 2}. The environment is located
at x = 0, so switching occurs at x = xd(t) − z1 = 0.
Expressed in the z-coordinates, the free motion and contact
subspaces, respectively denoted by Ω1 and Ω2, are time-
varying: Ω1(t) := {z ∈ R2|xd(t) − z1 ≤ 0} and Ω2(t) :=
{z ∈ R2|xd(t)−z1 > 0}. Note that for all t, Ω1(t)∪Ω2(t) =
R2 and Ω1(t) ∩ Ω2(t) = ∅.

In practice, the environment stiffness ke is typically ex-
tremely higher than the control gain kp. The true value of
ke and be are usually unknown, so the control parameters
generically cannot be selected to result in K1 = K2 and
B1 = B2. Thus, in general, Σp represents a switched system,
as K1 ̸= K2 and B1 ̸= B2. The stability of Σp does
not follow from the stability of each of the two continuous
subsystems (corresponding to free motion and contact) taken
separately, as shown, e.g., in [4], [6]. The switching between
the two subsystems, corresponding to making and breaking
contact, must also be taken into account [19].

III. STABILITY ANALYSIS

In this section, we provide sufficient conditions to make
(7) input-to-state stable (ISS) with respect to the input wi(t),
i = {1, 2}. Note that wi(t) depends xd(t), thus encoding the
information of Fd(t) during the contact phases.

The following definitions, taken from [20], are required
for the stability analysis.
Definition 1: Consider a region Ti ⊂ R2. If z ∈ Ti implies
cz ∈ Ti, ∀c ∈ (0,∞) and Ti\{0} is connected, then Ti is a
cone.
Definition 2: Let ż = Aiz be the dynamics on an open cone
Ti ⊂ R2, i = 1, ...,m. An eigenvector of Ai is visible if it
lies in T̄i, the closure of Ti.

As a stepping stone towards proving ISS of (7), we pro-
vide sufficient conditions for the global uniform exponential
stability (GUES) of the origin of Σp when wi ≡ 0. This
corresponds to studying the unperturbed system

Σu : ż = Aiz ∀z ∈ Ωi(t). (9)

The GUES of Σu for any xd(t) satisfying Assumption 1
can be concluded by considering the worst-case switching
sequence [19]. In this way, we obtain the time-invariant
system Σw, defined below, with state-based switching, that
represents the worst-case switching sequence for Σu in (9).
The worst-case switching sequence is defined as the sequence
that results in the slowest convergence of the solution of
Σu towards the origin. The solution of Σu starting from
z0 at t0 will be written as z(t) = Φu(t, t0;σ)z0, with
Φu(t, t0;σ) denoting the state transition matrix associated
with the switching sequence σ(t) : R → {1, 2}. For
K2 > K1, representing a manipulator interacting with a
stiff environment, the worst-case dynamical system Σw is
characterized by the following lemma.
Lemma 1: Consider

Σw : ż = Aiz, ∀z ∈ Si, (10)

with A1 and A2 as in (7), assume K2 > K1 and let

S1 = {z ∈ R2|z2((K1 −K2)z1 + (B1 −B2)z2) ≤ 0},
S2 = {z ∈ R2|z2((K1 −K2)z1 + (B1 −B2)z2) > 0}.

Fig. 1. Switching surfaces and domains of Σw for K2 > K1 and B2 >
B1. The vectors v11 and v12 represent an example of real eigenvectors of
S1. Here, only v12 lies in the closure of S1, so only v12 is visible.

For the solution of Σu in (9) corresponding to an ar-
bitrary switching signal σ(t) and initial condition z0,
∥Φu(t, t0;σ)z0∥ ≤ ∥Φw(t, t0)z0∥ for t ≥ t0, where Φw

denotes the state transition matrix of Σw in (10). We will
refer to Φw(t, t0)z0, t ≥ t0, as the worst-case response of
Σu with initial condition z0.

In the following Theorem 1, necessary and sufficient con-
ditions for the global uniform asymptotic stability (GUAS)
of Σw are given. We then show in Lemma 2, that GUAS of
Σw implies GUES of Σu and this in turn implies ISS of Σp

w.r.t. wi for an arbitrary xd(t) satisfying Assumption 1. This
result is given in Theorem 2 at the end of this section and
is the main result of this paper.

From the definition of S1 and S2 given in Lemma 1, we
obtain the two switching surfaces z2 = 0 and (K1−K2)z1+
(B1−B2)z2 = 0 that characterize the worst-case switching.
These switching surfaces and the subsystems of Σw that are
active between the switching surfaces are visualized in Fig. 1
for K2 > K1 and B2 > B1. We refer the interested reader
to the appendix for further details about the background
material used to obtain the following results.
Theorem 1: Let Ki, Bi > 0, ∆K := K1 − K2 < 0 and
∆B := B1 − B2. The origin of the unperturbed, conewise
linear system Σw is GUAS if at least one of the following
conditions is satisfied:

i. Σw has a visible eigenvector associated with an eigen-
value λ < 0; in other words, one of the following two
conditions is satisfied:

a) a visible eigenvector exists in S1, i.e.,

B2
1 ≥ 4K1 and

∆K

∆B
<

2K1

B1 −
√
B2

1 − 4K1

. (11)

b) a visible eigenvector exists in S2, i.e., B2
2 ≥ 4K2 and

one of the following conditions is satisfied:

1) ∆B < 0 and
∆K

∆B
>

2K2

B2 +
√
B2

2 − 4K2

, or

2) ∆B ≥ 0.
ii. Σw has no visible eigenvectors and Λ := Λ1Λ2 < 1,

where Λi, i = {1, 2}, are given by:
1) if B2

i < 4Ki,

Λi =

(
Ki

ωi

(
(∆K)2

L2
+

Q2

4ω2
iL

2

)−1/2
)(−1)i

e
− Bi

2ωi
φi

(12)
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with φi := mod
(
− arctan( (−1)i2ωi∆K

Q ), π
)

,

Q := Bi∆K − 2Ki∆B, ωi := 1
2

√
4Ki −B2

i and
L :=

√
(∆K)2 + (∆B)2.

2) if B2
i = 4Ki,

Λi =

∣∣∣∣ BiL

2∆K −Bi∆B

∣∣∣∣ e((−1)i 2∆K
2∆K−Bi∆B

)
. (13)

3) if B2
i > 4Ki,

Λi =

∣∣∣∣∆Kλbi +Ki∆B

KiL

∣∣∣∣ϕ1
∣∣∣∣∆Kλai +Ki∆B

KiL

∣∣∣∣ϕ2

(14)

with ϕ1 := (−1)iλai

λbi−λai
, ϕ2 := (−1)iλbi

λai−λbi
,

λai :=
−Bi−

√
B2

i −4Ki

2 , and λbi :=
−Bi+

√
B2

i −4Ki

2 .
This proposition can be interpreted as follows. If the system
Σw does not have a visible eigenvector, the response spirals
around the origin and visits the regions S1 and S2 infinitely
many times. The worst-case system Σw switches between
free motion and contact, but if Λ < 1 the resulting bouncing
behavior is asymptotically stable, implying that the amplitude
of the oscillation decays over time. Furthermore, since the
trajectory leaves each cone in finite time (see Lemma 3 in
[18]), the time between two switches is fixed and finite,
implying that Zeno behavior (infinitely many switches in
finite time) of Σw is excluded. If Σw does have a visible
eigenvector with λ < 0, the response converges to the
origin exponentially without leaving the cone (see Lemma
4 in [18]). The system does not switch between free motion
and contact and bouncing of the manipulator against the
environment does not occur.
Lemma 2: If Σw in (10) is GUAS, then the origin of Σu in
(9) is GUES for arbitrary xd(t) satisfying Assumption 1.
From Lemma 2 it follows that Σu is GUES if Σw GUAS,
which is guaranteed when one of the conditions in Theorem 1
holds. Using Lemma 2, the following proposition provides
conditions for ISS of the perturbed system Σp in (7).
Theorem 2: Consider the perturbed system Σp in (7), with
piecewise-continuous, bounded input wi(t). If the origin of
the unperturbed system Σu in (9) is GUES for arbitrary
xd(t) satisfying Assumption 1, which is guaranteed if the
conditions in Lemma 2 hold, then Σp is ISS w.r.t. xd(t).

This proposition can be interpreted as follows. If
Nwi(t) ≡ 0, the response of Σp is equivalent to the response
of Σu, whose origin is GUES. Due to (5), xd(t) encodes
the information of Fd(t) during the contact phase, so x →
xd(t) and Fe → Fd(t) exponentially. If Nwi(t) ̸= 0, the
response of Σp deviates from the response of Σu, (i.e. x and
Fe only converge to neighbourhoods of xd(t) and Fd(t),
respectively), but due to the ISS property the response of
Σp is bounded and the bound on the error norm ∥z∥, with z
defined in (6), depends on the norm of the perturbation Nwi.

IV. A STIFF ENVIRONMENT EXAMPLE

We now illustrate the use of the theory developed by
means of simulations and show the implications of satisfying
Theorem 2 on the controller design. Consider a manipulator
with M = 1 kg and b = 0 Ns/m (i.e. no viscous friction
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Fig. 2. Simulation results with bf = 5. The grey area indicates the contact
phase.

is present in the manipulator to help dissipate energy),
interacting with an environment with ke = 106 N/m and
be = 10 Ns/m. For the control parameters we choose
Ma = 0.8 kg, kp = 4000, kd = 80, kf = 1 and
bf = 5. For this parameter set, the eigenvectors of A2 in
(7) are complex, such that no visible eigenvectors exist in
the contact phase (see Definition 2). The eigenvectors of
A1 in (7) are real, but not visible. The response of the
system is shown in Fig. 2. Although xd(t) and Fd(t) used
for the simulation in Fig. 2 are not necessarily worst-case
inputs, the value Λ = 10.16 indicates that the system is
potentially unstable (as the worst-case system Σw is unstable,
see Theorem 1). Clearly, the controller tracks xd(t) in free
motion, but due to the stiff environment and nonzero impact
velocity, a large peak force occurs (see bottom plot in
Fig. 2). The manipulator bounces back from the environment
and breaks contact. During the 0.15 s of intended contact,
the manipulator continues to bounce and is not able (see
Fig. 2) to track the desired contact force Fd(t), which has
a maximum of 7 N. Around 0.27 s the motion controller is
no longer able to bring the manipulator in contact with the
environment due to the relatively large negative derivative
term in (3a). The amplitude of the bouncing does decay over
time, but Fig. 2 clearly illustrates an undesired response. The
problem is the lack of damping in contact. Increasing the
damping level in the force controller to bf = 9000 results
in Λ = 0.98, such that the origin of Σw is GUAS (see
Theorem 1) and the system Σp is ISS, for any xd(t), Fd(t)
(see Theorem 2) satisfying Assumption 1. With bf = 9000,
the manipulator does not bounce against the environment (see
Fig. 3) and, after the peak impact force, the contact force
Fe approximately tracks Fd(t). For the parameter values of
this example, it is not sufficient to change only bf to satisfy
one of the conditions i.b) in Theorem 1 and obtain a visible
eigenvector of the system Σw in the contact phase S2.

V. COMPLIANT MANIPULATOR DESIGN

This section discusses the motivation and design of a com-
pliant manipulator, and shows how Theorem 2 can be used
to assign parameter values to the introduced compliancy.

A. Motivation and design
A drawback of the high damping gain bf used in the

simulation in Fig. 3 is that it results in a lag in tracking
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Fig. 3. Simulation results with bf = 9000. The grey area indicates the
contact phase.

Fig. 4. Manipulator with compliant wrist.

Fd(t) for t ∈ [0.17, 0.28] (sluggish response). In practice,
most manipulators are not equipped with velocity sensors, so
the velocity signal ẋ, used in (3b), must be obtained from the
position measurements. Due to measurement noise, encoder
quantization and a finite sample interval, a high damping
value bf in (3b) to compensate the lack of damping of the
contact case is not desired/impossible to be implemented in
practice. An observer to estimate ẋ is not considered as a
practical solution due to the required accuracy of the high
frequency of the impact oscillations.

Inspired by the favorable properties of the skin around a
human finger, we propose, as a more practical alternative, to
design the manipulator by including passive compliance in
the connection between the arm and the end-effector (wrist)
as shown in Fig. 4. Indicating with xt the position of the
end-effector, with kt and bt, respectively, the stiffness and
damping coefficient of the wrist and Ft the internal force,
the dynamics of this system are given by

Mẍ+ bẋ = Fc − Ft, (15a)
Mtẍt = Ft − Fe(xt, ẋt), (15b)

Ft = kt(x− xt) + bt(ẋ− ẋt). (15c)

The environment model and controller design are again given
by (2) and (3), respectively. Due to the passive compliance,
only x in (15) is actuated and (3) controls x to xd(t).

The compliant wrist and end-effector are designed to
improve the response during and after the impact phase. So,
we consider a design where the mass Mt is smaller than M
to reduce the kinetic energy of Mt engaged at impact. The
damping bt is larger than be to help dissipate the impact
energy and provide more damping in the contact phase.
The stiffness kt ≪ ke (ke is much larger than all other
parameters) to reduce the eigenfrequency and increase the
damping ratio of the contact phase. Hence, we assume that

Mt ≪ M, kt ≪ ke, bt ≫ be, and bt ≪ ke. (16)

B. Model of reduced order
The stability results of Section III only apply to two-

dimensional systems. The dynamics of the 2-DOF compliant
manipulator of (15) is 4-dimensional, so Theorem 1 cannot
be applied directly. However, when (16) is satisfied, the com-
pliant 2-DOF manipulator (15) exhibits a clear separation
between fast and slow dynamics. In free motion, the fast
dynamics are related to x− xt, and, in contact, to the end-
effector position xt. The time-scale of the (exponentially
stable) fast dynamics is very small compared to the time-
scale of interest, so the slow dynamics can be considered
as the dominant dynamics describing the response x of the
compliant manipulator to the control input Fc(t).

Consider the 2-DOF compliant manipulator (15), (2) with
M ∼ 100, b ∼ 100, Mt ∼ 10−2, kt ∼ 104, bt ∼ 102,
ke ∼ 106 and be ∼ 101. The model reduction analysis in
[18] shows that the slow time-scale response of this system
in free motion and contact considered separately can be
approximated by the following model of reduced (2nd)order:

Mẍ+ bẋ = Fc − F̄e(x, ẋ), (17)

F̄e(x, ẋ) =

{
0 for x ≤ 0
b̄eẋ+ k̄ex for x > 0

(18)

with b̄e := bt
ke

kt+ke
and k̄e := kt

ke

kt+ke
. The fraction ke

kt+ke
≈

1 for kt ≪ ke, so kt and bt directly influence the perceived
environment damping and stiffness by the mass M .

The reduced-order dynamics (17), (18) are obtained sep-
arately for the free motion and contact case. During free
motion to contact transitions, the high-frequency dynamics of
(15), (2), which are not captured in (17), (18), might still be
excited. However, the simulations provided in [18] indicate
that the response of (17), (18) accurately approximates the
response of (15), (2), subject to (16) and controlled by (3).
Hence, the reduced-order model (17), (18) can be used to
analyze stability of (15), (2), in closed-loop with (3).

C. Stability of the reduced-order model
Since (17), (18) has exactly the same structure as (1), (2),

we employ the same stability analysis as in Section III to
design the parameters of the controller in (3). In contact, we
use a similar expression to relate Fd(t) to xd(t), namely

Fd(t) = k̄exd(t) + b̄eẋd(t) + w̄f (t), for Fd(t) > 0 (19)

with w̄f (t) := (k̃e− k̄e)xd(t)+(b̃e− b̄e)ẋd(t), and k̃e and b̃e
available estimates of k̄e and b̄e, respectively. The design of
the desired trajectories such that xd(t) is bounded and twice
differentiable is discussed in [18].

The system described by (17), (18), (3) and (19) can be
expressed in the form Σp of (7), with (8a), (8c), (8d) and

K2 :=
(1 + kf )k̄e

M
, B2 :=

(1 + kf )b̄e + bf + b

M
. (20)

As a result, ISS can be concluded from Theorem 2 for
arbitrary xd(t) satisfying Assumption 1 if the conditions of
Theorem 1 are satisfied. Compared to the system without
compliant wrist, we now have more flexibility to tune the
parameters for stability and performance. From Theorem 1
we can compute the required values of the design parameters
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Fig. 5. Simulation results of compliant manipulator described by (15). The
grey area indicates the contact phase.

kt and bt to meet design specifications such as the existence
of a visible eigenvector with a stable eigenvalue (implying
bounceless impact) or an upper bound on Λ in Theorem 1.

D. Compliant manipulator example

The following example illustrates how to design the
compliant wrist parameters Mt, bt and kt to improve the
performance compared to the simulation results of Fig. 2.
For the design of the end-effector, consider Mt = 0.05 kg
and kt = 5 · 104 N/m (kt ≪ ke, but still large to minimize
the spring-travel in the wrist). With bf = 5 Ns/m, we require
bt > 170 Ns/m to guarantee that Λ < 1, such that one of
the conditions of Theorem 1 is satisfied. Fig. 5 shows the
response of the unreduced compliant system (15), (3) and (2),
with bt = 171 Ns/m. Compared to Fig. 2, the peak impact
force is reduced. During the first 20 ms of intended contact,
the tip makes and breaks contact due to the fast dynamics
of (15). After 20 ms the fast dynamics of (15) damp out,
the slow dynamics become dominant and the response of
(15) converges to that of (17). Hence, Fe tracks the desired
trajectory Fd(t) (without a sluggish response as in Fig. 3).

E. Discussion

From the expressions k̄e and b̄e in (18) and the results in
Fig. 5, we see that the compliance in the manipulator can
contribute to guarantee stability and improve the tracking
performance during free motion to contact transitions. Due
to the compliance, we can lower the stiffness and increase the
damping of the perceived manipulator-environment connec-
tion in contact. As a result, the controllers (3a) and (3b) can
be tuned separately for optimal performance in free motion
and contact respectively, rather than a trade-off to guarantee
stability during transitions in case of a rigid manipulator.
With bt ≫ be, the end-effector acts as a vibration-absorber,
dissipating the kinetic energy present at impact.

VI. CONCLUSION

We consider the position-force control of a manipulator in
contact with a stiff environment. Since most contacts affect
only one DOF of the end-effector of the manipulator, we
focus on this DOF only. For this decoupled direction, we
have proposed a novel switching controller that, if tuned
properly, ensures tracking of time-varying motion and force

profiles. Moreover, we have proposed sufficient conditions
for the input-to-state stability (ISS) of the closed-loop track-
ing error dynamics with respect to perturbations related to the
time-varying desired motion-force profile. With a numerical
example, the stability analysis shows that, in contact, a high
level of controller damping is required to guarantee stability
of the closed-loop system when tracking a desired position-
force profile. Such high-gain velocity feedback is undesirable
in practice and probably not physically realizable. Therefore,
we have proposed a mechanical design of the manipulator
with a compliant wrist, in combination with the proposed
switching controller, as a favorable alternative. We illustrated
how to design the damping and stiffness of this compliant
wrist and the control parameters to guarantee stability and
even prevent persistent bouncing of the manipulator against
the environment for arbitrary desired motion-force profiles.
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