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Abstract— Extremum-seeking control is a useful tool for the
steady-state performance optimization of plants for which the
dynamics and disturbance situation can be unknown. The
case when steady-state plant outputs are constant received a
lot of attention, however, in many applications time-varying
outputs characterize plant performance. As a result, no static
parameter-to-steady-state performance map can be obtained.
In this work, an extremum-seeking control method is proposed
that uses a so-called dynamic cost function to cope with these
time-varying outputs. We show that, under appropriate con-
ditions, the solutions of the extremum-seeking control scheme
are uniformly ultimately bounded in view of bounded and time-
varying external disturbances, and the region of convergence
towards the optimal tunable plant parameters can be made
arbitrarily small. Moreover, its working principle is illustrated
by means of the performance optimal tuning of a variable-gain
controller for a motion control application.

I. INTRODUCTION

Extremum-seeking control, categorized as being an adap-
tive control approach, is a data-driven and, in essence,
model-free control technique for optimizing the steady-state
performance of a stable or stabilized plant in real-time, by
automated adaptation of tunable plant parameters [1], [2].
Due to its model-free character, extremum-seeking control
is a particularly useful tool in applications where only little
knowledge of the plant dynamics is available and, as such,
has been applied in many different engineering domains [3],
[4], [5], [15]. In addition, practical applications are usually
subject to external disturbances which are in general not
known a priori, which further emphasizes the power of
extremum-seeking control as a model-free technique. In fact,
the (performance optimal) steady-state output of the plant is
often not analytically known due to the lack of plant and
disturbance knowledge, and can only be assessed through
output measurements. An extremum-seeking controller is
able to exploit these measured plant outputs irrespectively
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of the availability of plant and disturbance knowledge, and
subsequently uses the measured outputs to steer the tunable
plant parameters to their performance optimal values, thereby
achieving optimal steady-state performance.

The general requirement for the plant to be optimized
is the existence of a (unknown) static parameter-to-steady-
state performance map, i.e., a static input-to-output map,
whose extremum corresponds to the optimal steady-state
(equilibrium) plant performance [1], [6], [2]. In many appli-
cations, such a static input-to-output map, where steady-state
performance is characterized by an equilibrium solution,
does not exist because performance is related to time-varying
plant behavior. This time-varying behavior can originate for
example from reference tracking or disturbance attenuation
problems, which are encountered, for example, in industrial
motion systems, such as, pick-and-place systems, electron
microscopes, and wafer scanning systems [12].

In [8], an extremum-seeking controller is developed for
dynamical plants that do not exhibit equilibrium solutions
but instead have limit cycle behavior, which can be reduced
in size by some tunable plant parameter. The authors added
a detector that captures the amplitude of the limit cycle,
which is assumed to be sinusoidal. Considering the plant and
the detector as one extended plant with the plant parameter
as input and the amplitude of the limit cycle as output, a
constant steady-state relation between the input and output
is obtained. The work in [8] has been applied, e.g., in the
suppression of subsonic cavity flow resonances [13], and
automatic mode matching in vibrating gyroscopes [14].

In [9], an extremum-seeking control scheme is designed
for steady-state output optimization of a class of differ-
entially flat periodic nonlinear systems. Using the flatness
property of the dynamics, a period of the periodic steady-
state output of the plant is computed. Extremum-seeking
control is then used to optimize the computed steady-state
output in real-time, based on a user-defined cost functional
evaluated over that periodic steady-state output. In [7], a
similar approach as in [9] is pursued for the steady-state
output optimization of periodic Hamiltonian systems.

In [10], an extremum-seeking scheme is proposed for
the optimization of general nonlinear plants with periodic
steady-state outputs. Knowing the period time of the periodic
steady-state output, a cost function is designed that links
the periodic output of the plant to a performance measure,
such as, e.g., an Lp-norm of the error response computed
over the periodic time interval. Considering the plant and
the cost function as one extended plant, a constant steady-
state relation between the input and output is obtained. In
[15], this method was experimentally demonstrated for the
adaptive design of variable-gain controllers for a motion
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control application.
In many (industrial) applications, the steady-state response

characterizing system performance is time-varying, and peri-
odicity of the steady-state response is not evident due to the
fact that responses can be induced by complex time-varying
disturbances and reference signals. In such generic cases, a
static input-to-output performance map may not be readily
defined as in the periodic cases in [15], [8], and [10].

The main contribution of this work is as follows. First, we
propose a local extremum-seeking method for steady-state
performance optimization of general nonlinear plants with
time-varying steady-state outputs. The proposed extremum-
seeking control method includes a so-called dynamic cost
function in terms of the time-varying output response, allow-
ing for the characterization of a static input-to-output map.
Second, under appropriate conditions, we prove that the so-
lutions of the closed-loop extremum-seeking control scheme
are uniformly ultimately bounded in view of bounded, time-
varying disturbances. Moreover, we show that the region of
convergence towards the optimal tunable plant parameters
can be made arbitrarily small. Third, an illustrative example
is presented in which performance is optimized of a variable-
gain controlled motion system exhibiting time-varying out-
puts.

The paper is organized as follows. Section II presents the
problem formulation. Section III gives the extremum-seeking
controller. In Section IV the stability result is stated, and in
Section V the illustrative example is provided.

II. EXTREMUM-SEEKING CONTROL PROBLEM
FOR TIME-VARYING OUTPUTS

Consider the following multi-input-multi-output nonlinear
plant:

Σp :
{

ẋ(t) = f (x(t),u(t),w(t))

e(t) = g(x(t),u(t),w(t)),
(1)

where x ∈ R
nx is the state of the plant, u ∈ R

nu is the input
of the plant, e ∈ Rne is the output of the plant, w ∈ Rnw are
disturbances, and t ∈ R is time. In the context of extremum-
seeking control, the input u is a vector of tunable plant
parameters, the output e is a vector of measured performance
variables, and w are (time-varying) disturbances, for which
we adopt the following assumption.

Assumption 1: The disturbances w(t) are piecewise con-
tinuous, defined and bounded on t ∈ R. Moreover, there
exists a constant ρw ∈ R>0 such that w(t) ∈ W for all
t ∈ R, with W = {w ∈ R

nw : ‖w‖ ≤ ρw}.
In addition, we adopt the following assumption on the plant.

Assumption 2: The plant Σp in (1) is globally exponen-
tially convergent1 for all constant inputs u ∈ U , where
U ⊂ Rnu is a compact set.

Remark 1: Assumption 2 guarantees that, for any con-
stant u ∈ U and any w(t) ∈ W , there exists a unique
globally exponentially stable (time-varying) steady-state so-
lution. This assumption is the time-varying analogue of the
common assumption in extremum-seeking literature on the
plant exhibiting globally asymptotically stable equilibria. In
many (nonlinear) control problems, for example tracking,

1For definitions of convergent systems the reader is referred to Section
2.2 in [16].

synchronization, observer design and output regulation prob-
lems, the convergent system property that all solutions of a
closed-loop system converges to some steady-state solution
and thus ”forget” their initial condition plays an important
role. Moreover, this property is immediate for asymptotically
stable linear time-invariant systems with inputs.
From Assumptions 1 and 2, it follows that for all constant
inputs u ∈ U and all disturbances w(t) ∈ W there exists a
unique steady-state solution of the plant Σp, which is defined
and bounded on t ∈ R and globally exponentially stable
(GES). The steady-state solution is denoted by x̄w(t,u),
emphasizing the dependency on time-varying disturbances
w(t) and constant inputs u, and satisfies

˙̄xw(t,u) = f (x̄w(t,u),u,w(t)). (2)

In addition, we adopt the following assumption.
Assumption 3: The steady-state solution x̄w(t,u) is twice

continuously differentiable in u and satisfies
∥

∥

∥

∂x̄w

∂u
(t,u)

∥

∥

∥
≤ Lxu, (3)

for all t ∈ R, all u ∈ U , and some constant Lxu ∈ R>0.
Furthermore, it follows from Assumption 2 that there
exists a unique steady-state output of the plant Σp in
(1), denoted by ēw(t,u), which is given by ēw(t,u) =
g(x̄w(t,u),u,w(t)). It is the task of the designer to define
a bounded cost function, denoted by Z , that quantifies the
performance of interest for the plant under study. Then, the
corresponding measured plant performance is given by

y(t) = Z(e(t),u(t)), y ∈ R. (4)

For all constant inputs u ∈ U and all (time-varying)
disturbances w(t) ∈ W , the steady-state plant performance
ȳw(t,u) is given by ȳw(t,u) = Z(g(x̄w(t,u),u,w(t)),u).
Our aim is to find the constant input values u that minimize
the measured steady-state plant performance ȳw, yielding
the optimization of the steady-state plant output ēw. In the
context of extremum-seeking control, ideally the measured
steady-state plant performance ȳw is constant for constant
inputs u; this forms one of the basic assumptions in the
extremum-seeking literature [1], [6]. However, due to the
time-varying nature of the disturbances w(t) in (1), in
general, the measured steady-state plant performance ȳw is
time-varying in nature (also for constant u).

To deal with time-varying plant outputs, consider the series
connection of the plant Σp as in (1), the cost function Z as
in (4), and additionally a filter, denoted by Σf , which reads

Σf :
{

ż(t) = αzh(z(t), y(t))

l(t) = k(z(t)),
(5)

where αz ∈ R>0 is a tuning parameter, z ∈ Rnz is the
state of the filter, y ∈ R is the input of the filter defined
by (4), and l ∈ R is the output of the filter. Intuitively,
the filter Σf acts as an averaging operator on y(t), utilized
to quantify performance of the plant similar to the use of
exponentially weighting filters [8], [14]. Basically, if we tune
αz small, the solution of z(t) will vary ”slowly” in time,
i.e., the output of the filter l(t) will be quasi-constant and
determined predominantly by the average of y(t).
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The series connection of the cost function Z in (4) and the
filter Σf in (5), we call the dynamic cost function. We adopt
the following assumption on the dynamic cost function.

Assumption 4: The dynamic cost function consisting of
the cascade of Z and Σf , given by (4) and (5), respectively,
is exponentially input-to-state convergent2 for all constant
inputs u ∈ U and all αz ∈ R>0.
The series connection of the nonlinear plant Σp in (1), the
user-defined cost function Z in (4), and the to-be-designed
filter Σf in (5) is referred to as the extended plant Σ and
is schematically depicted in Fig. 1. The dynamics of the
extended plant is given by

Σ :

{

ẋ(t) = f(x(t),u(t),w(t))

ż(t) = αzh(z(t), Z(g(x(t),u(t),w(t)),u(t)))

l(t) = k(z(t)).

(6)

We adopt the following assumption on the extended plant
regarding the smoothness of functions.

Assumption 5: Functions f and g in (1) are twice con-
tinuously differentiable in x and u and continuous in w.
Function Z in (4) is twice continuously differentiable with
respect to both arguments. Functions h and k in (5) are twice
continuously differentiable with respect to all arguments.

Remark 2: The smoothness of the functions f and g in
Assumption 5 is a common assumption in the extremum-
seeking literature, see, e.g., [1], [6]. The smoothness of the
functions Z , h, and k can easily be satisfied by design.
By similar arguments as in the proof of Property 2.27 in
[16], we can conclude from Assumptions 2 and 4 that the
extended plant Σ in (6) is globally exponentially convergent
for all constant inputs u ∈ U and disturbances w(t) ∈
W . As such, there exists a unique steady-state solution of
Σf , induced by the extended plant, which is defined and
bounded on t ∈ R and GES. This steady-state solution is
denoted by z̄w(t,u, αz), emphasizing the dependency on
time-varying disturbances w(t), constant inputs u, and the
tunable parameter αz , and satisfies

˙̄zw(t,u, αz) = αzh(z̄w(t,u, αz), ȳw(t,u)). (7)

In addition, we adopt the following assumption.
Assumption 6: There exists a twice continuously differen-

tiable function q
w

: Rnu → Rnz , referred to as the constant
performance cost, such that

lim
αz→0

z̄w(t,u, αz) = q
w
(u), (8)

for all t ∈ R and all u ∈ U and w(t) ∈ W . Moreover, there
exist constants δw ∈ R≥0, related to the disturbances w(t)
and the extended plant Σ, and Lz1 ∈ R>0, such that

‖z̄w(t,u, αz)− q
w
(u)‖ ≤ αzδw, (9)

and
∥

∥

∥

∂z̄w

∂u
(t,u, αz)−

dq
w

du
(u)

∥

∥

∥
≤ αzLz1, (10)

for all t ∈ R, all u ∈ U and all 0 < αz ≤ ǫz for some
ǫz ∈ R>0.
Hence, by Assumption 6, under steady-state conditions of
the plant Σp, the cost function Z , the filter Σf , the limit

2For the definition of input-to-state convergent the reader is referred to
Definition 2.18 in [16].

Σp Z Σf

w

u

e y l

Σ

Fig. 1. The extended plant Σ, i.e., series connection of the nonlinear plant
Σp, the user-defined cost function Z , and the to-be-designed filter Σf .

αz → 0, and for constant inputs u ∈ U , we have that the
parameter-to-steady-state performance cost of the plant can
be characterized by the static input-to-output map

Fw(u) := k(q
w
(u)), ∀ u ∈ U . (11)

We refer to the map Fw as the objective function. To
minimize the steady-state plant performance ȳw, we aim
to find the plant parameter values for which the objective
function in (11) is minimal. We further assume that the
dynamic cost function Z + Σf is designed such that there
exists a unique minimum of the objective function Fw on the
compact set U for any (time-varying) disturbance w(t) ∈ W
satisfying Assumption 1, where the minimum of the map
Fw corresponds to the optimal plant performance. This
assumption is formulated as follows.

Assumption 7: The objective function Fw : Rnu → R

in (11) is twice continuously differentiable and exhibits a
unique minimum in the interior of the compact set U . Let
the corresponding optimal input u∗ be defined as

u
∗ = argmin

u∈U

Fw(u). (12)

Furthermore, there exists a constant LF1 ∈ R>0 such that

dFw

du
(u)(u− u

∗) ≥ LF1‖u− u
∗‖2, ∀ u ∈ U . (13)

From Assumption 7, it follows that the vector of tunable plant
parameters u will converge to optimal input u∗ if we are able
to design a controller that drives the tunable plant parameters
u in opposite direction of the gradient of the objective
function in (11). However, since the steady-state solutions of
the plant in (1) and the filter in (5) and the objective function
Fw are unknown, we typically cannot design such a gradient-
descent controller. Information of the objective function can
only be obtained through measured outputs l of the extended
plant in (6). The measured output differs from the objective
function Fw in two ways; i) due to the dynamics of the plant
in (1) and the filter in (5) not being in steady-state, and ii)
due to the presence of (time-varying) disturbances w(t) and
the design parameter αz which, in the presence of time-
varying disturbances w(t), is typically designed to be small,
but still non-zero and positive. Nevertheless, we aim to steer
the inputs u to their performance optimizing values u∗ by
using the measured extended plant output l(t) as feedback
to an extremum-seeking controller that is introduced in the
next section.

III. EXTREMUM-SEEKING CONTROLLER

The controller design proposed here follows from the one
in [11, Ch. 2]. In Section III-A, a dither signal design is
presented, in Section III-B, a model of the input-to-output
behavior of the plant is presented to be used as a basis
for gradient estimation, in Section III-C, a least-squares
observer to estimate the state of that model (and therewith
the gradient) and a normalized optimizer to steer the plant
parameters u to the minimizer u∗ are presented, and, in
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Section III-D, tuning guidelines are provided for the closed-
loop system composed of the extended plant Σ in (6) and
the extremum-seeking controller.

A. Dither signal

To estimate the gradient of the objective function and
use this estimated gradient to drive u towards u∗ by an
optimizer, we define the following input signal:

u(t) = û(t) + αωω(t), (14)

where αωω is a vector of perturbation signals with amplitude
αω ∈ R>0, and û is referred to as the nominal input to be
generated by the extremum-seeking controller. The vector ω
is defined by ω(t) = [ω1(t), ω2(t), ..., ωnu

(t)]⊤, with

ωi(t) =

{

sin
(

i+1
2

ηωt
)

, if i is odd,
cos

(

i
2
ηωt

)

, if i is even,
(15)

for i = {1, 2, ..., nu}, where ηω ∈ R>0 is a tuning parameter.
The purpose of the perturbation signal is to provide sufficient
excitation to accurately estimate the gradient of the objective
function. The nominal plant parameters û can be regarded
as an estimate of the minimizer u∗.

B. Model of input-to-output behavior of the extended plant

To obtain an estimate of the gradient of the objective func-
tion, we model the input-to-output behavior of the extended
plant in (6), that is, from the nominal input û to the measured
output of the extended plant l, in a general form. Let the state
of the model be given by

m(t) = [Fw(û(t)) αω

dFw

du
(û(t))]⊤. (16)

From Taylor’s Theorem and (14), Fw can be written as

Fw(u(t)) = Fw(û(t)) + αω

dFw

du
(û(t))ω(t)

+ α
2
ω
ω

⊤(t)

∫ 1

0

(1− σ)
d2Fw

dudu⊤
(û(t) + σαωω(t))dσω(t).

(17)

The dynamics of the state in (16) is governed by

ṁ(t) = A(t)m(t) + α
2
ω
Bs(t)

l(t) = C(t)m(t) + α
2
ω
v(t) + r(t) + d(t),

(18)

with the matrices A, B and C defined as

A(t)=

[

0
˙̂
u

⊤(t)
αω

0 0

]

, B=

[

0
I

]

, C(t)=
[

1 ω
⊤(t)

]

, (19)

and the signals s, v, r, and d defined as

s(t) :=
d2Fw

dudu⊤
(û(t))

˙̂u(t)

αω

,

v(t) :=ω
⊤(t)

∫ 1

0

(1− σ)
d2Fw

dudu⊤
(û(t) + σαωω(t))dσω(t),

r(t) :=k(z(t))− k(z̄w(t,u, αz)),

d(t) :=k(z̄w(t,u, αz))− k(q
w
(u(t))). (20)

The signals s, v, r and d can be interpreted as unknown
disturbances to the model. The influences of s, v, r and d
on the state and output of the model in (18) are small if i)
û is slowly time varying, if ii) αω is small, if iii) the states
x of the plant in (1) and the states z of the filter in (5) are
close to their steady-state values, and if iv) αz is small.

Σp Z Σf

w

u

e y l

Σo
m̂

û

α!!

Σr

extremum-seeking controller

_̂
u

Fig. 2. The closed-loop system composed of the extended plant Σ, the
observer Σo, the optimizer Σr , and the dither signal αωω.

The state m in (16) contains an estimate of the gradient of
the objective function, scaled by the perturbation amplitude
αω . Hence, an estimate of the gradient of the objective
function can be obtained from an estimate of the state m.
Based on this gradient estimate, an optimizer can steer the
plant parameters u to the minimizer u∗. In the next section,
a least-squares observer and an optimizer for this purpose
are proposed.

C. Controller design

We introduce an extremum-seeking controller that is com-
posed of a dither signal as in (14), a least-squares observer to
estimate the state m of the model in (18), and an optimizer
that uses the estimate of the state m of the observer,
denoted by m̂, to steer the nominal plant inputs û to their
performance optimal values u∗.

The least-squares observer, denoted by Σo, is given by

Σo :



















˙̂m(t)=
(

A(t)− ηmσrQ(t)D⊤D
)

m̂(t)

+ηmQ(t)C⊤(t)(l(t)−C(t)m̂(t))

Q̇(t)=ηmQ(t) +A(t)Q(t) +Q(t)A⊤(t)

−ηmQ(t)(C⊤(t)C(t) + σrD
⊤D)Q(t),

(21)

where D = [0 I], and ηm, σr ∈ R>0 are tuning parameters
related to the observer, referred to as a forgetting factor and
a regularization constant, respectively.

The optimizer, denoted by Σr, is given by

Σr : ˙̂u(t) = −λu

ηuDm̂(t)

ηu + λu ‖Dm̂(t)‖
, (22)

with λu, ηu ∈ R>0 being tuning parameters related to the
optimizer. Normalization of the adaptation gain in (22) is
done to prevent solutions of the closed-loop system of the
extended plant and the extremum-seeking controller from
having a finite escape time if the state estimate m̂ is
inaccurate [11, Ch. 2]. The closed-loop system, composed
of the extended plant Σ in (6), the observer Σo in (21), and
the optimizer Σr in (22), is depicted in Fig. 2.

D. Tuning guidelines

For the closed-loop system to operate properly, we have
design guidelines that guarantee time-scale separation:

1) The convergence of the solutions of the plant dynamics
in (1) to its steady-state operation is assumed to be fast,

2) The tuning parameter αz of the filter in (5) is chosen
small such that the difference between the time-varying
steady-state solution of the extended plant Σ and the
performance cost is small (see Assumption 6), however
sufficiently large such that convergence of solutions of
the filter dynamics is on a medium-to-fast time scale,

3) The dither frequencies parameterized by ηω are chosen
slower than the filter dynamics to provide sufficient
excitation, admitting a medium time-scale,
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4) The observer should use a sufficiently long time history
of the perturbation signals and measurement signal to
be able to accurately extract the state of the model [11,
Ch. 2]; the observer dynamics and its design parameter
ηm should be associated with a medium-to-slow time
scale compared to the dither signal,

5) The nominal plant parameters û, induced by the opti-
mizer, should be slowly time varying with respect to
the observer by proper design of the design parameters
λu and ηu, admitting a slow (optimizer) time-scale.

IV. STABILITY ANALYSIS

In this section, we will provide a stability result for
the closed-loop system described in the previous sections.
Due to the perturbation of the tunable parameter u, the
optimizer state û will in general converge to a region of the
performance-optimal value u∗. The next result states condi-
tions on tuning parameters and initial conditions under which
the extremum-seeking scheme guarantees that û converge to
an arbitrarily small set around the optimum u∗.

Theorem 1: Under Assumptions 1-7, there exist (suffi-
ciently small) constants ǫ1, ..., ǫ6 ∈ R>0, and initial condi-
tions x(0) ∈ X0, symmetric and positive-definite Q(0) ∈
Q0, û(0) ∈ U0, z(0) ∈ Z0, and m̂(0) ∈ M0, where
X0 ⊂ Rnx , U0 ⊂ Rnu , Q0 ⊂ Rnu+1×nu+1, Z0 ⊂ Rnz ,
M0 ⊂ Rnu+1 are compact sets, such that the solutions
of the closed-loop system consisting of the extended plant
in (6) and the extremum-seeking controller (consisting of
the dither signal in (14), the observer Σo in (21), and
the optimizer Σr in (22)) are uniformly bounded for all
αz, αω, ηu, λu, ηm, ηω ∈ R>0 and all σr ∈ R≥0 that satisfy
αz ≤ ǫ1, ηω ≤ αzǫ2, ηm ≤ ηωǫ3, αωλu ≤ ηmǫ4, ηu ≤
αωηmǫ5, and σr ≤ ǫ6. Moreover, the solutions û(t) satisfy

lim sup
t→∞

‖ũ(t)‖ ≤ max
{

αωc1,
ηω

αz

c2,
αzδw

αω

c3

}

, (23)

for some constants c1, ..., c3 ∈ R>0, with ũ(t) = û(t)−u∗.
Proof of Theorem 1: The proof can be found in [18]. �

Remark 3: Tuning guidelines. Under the conditions of
Theorem 1, it follows that, if we are dealing with constant
(or no) disturbances w(t), i.e., δw = 0, the optimizer state û

converges to an arbitrarily small region of the performance-
optimal value u∗ if the dither parameters αω and ηω are
chosen sufficiently small for an arbitrary bounded αz. To
make the region to which û converges arbitrarily small in
case we are dealing with time-varying disturbances w(t), i.e.,
δw > 0, see (23), we subsequently tune αω small to make
the first term in the right-hand side of (23) arbitrarily small,
tune αz small to make the third term in the right-hand side of
(23) arbitrarily small, and finally tune ηω small to make the
second term in the right-hand side of (23) arbitrarily small.

V. ILLUSTRATIVE EXAMPLE

To illustrate the extremum-seeking control approach pro-
posed in Section II, we consider an industrial case study
of steady-state performance optimization of a closed-loop
variable-gain controlled (VGC) motion stage as also studied
in [17]. In Section V-A, the VGC motion stage subject
to time-varying disturbances is introduced, and to illustrate

'(·)

C

fδ

Pe

yp
F

Fig. 3. The closed-loop variable-gain control scheme.

its effectiveness, in Section V-B the proposed extremum-
seeking controller is employed to optimize the steady-state
performance of the VGC motion stage.

A. Variable-gain controlled motion stage

The variable-gain controller structure is shown in Fig. 3.
The scheme consists of a plant P , representing the dynamics
of a short-stroke wafer stage of a wafer scanner in z-
direction, and a nominal linear controller C, having transfer
functions P (s) and C(s), respectively, with s ∈ C being the
Laplacian variable, (time-varying) force disturbances f(t), a
nonlinear control element ϕ(·), and a shaping filter F (s).
Furthermore, e denotes the tracking error. The nonlinearity
ϕ(e), representing the variable-gain element with e as input,
is given by a dead-zone characteristic

ϕ(e) =

{

α(e+ δ) if e < −δ,
0 if |e| ≤ δ,
α(e− δ) if e > δ,

(24)

where α and δ denote the additional gain and the dead-
zone length, respectively. The plant admits the trans-
fer function representation P (s) = (m1s

2 + bs +
k)/s2(m1m2s

2 + b(m1 +m2)s+ k(m1 +m2)), with the
following numerical values: m1 = 5 kg, m2 = 17.5 kg,
k = 7.5·107 N/m, b = 90 Ns/m. The nominal, and stabilizing
linear controller consists of a PID-controller Cpid, a second-
order low-pass filter Clp and a notch filter Cn, i.e. C(s) =
Cpid(s)Clp(s)Cn(s). The filters are given by Cpid(s) =
(kp(s

2 + (ωi + ωd)s+ ωiωd))/(ωds), where kp = 6.9 · 106
N/m, ωd = 3.8·102 rad/s, and ωi = 3.14·102 rad/s; Clp(s) =
ω2
lp/(s

2+2βlpωlps+ω2
lp), where ωlp = 3.04 ·103 rad/s, and

βp = 0.08; Cn(s) = (s2+2βzωzs+ω2
z)/(s

2+2βpωps+ω2
p),

where ωz = 4.39 · 103 rad/s, ωp = 5.03 · 103 rad/s, βz =
2.7·10−3, and βp = 0.88. The shaping filter F (s) is given by
F (s) = (s2+2βz,Fωz,F s+ω2

z,F )/(s
2+2βp,Fωp,F s+ω2

p,F ),
with ωz,F = ωp,F = 2 · 103 rad/s, βz,F = 0.6, βp,F = 4.8.

The disturbance f(t) consists of a low-frequency contri-
bution induced by setpoint accelerations in the x- and y-
direction of the wafer stage (see scaled acceleration profile
in Fig. 4), and a high-frequency force disturbance, modelled
as a signal containing multiple sinusoidal components with
both random frequencies between 200-500 Hz and phases.

The variable-gain controlled motion system satisfies As-
sumption 2 if the additional gain is chosen as α < 4.34
(Theorem 1, [17]). The dead-zone length δ turns out to
be a stability invariant tunable plant parameter, however,
the choice for δ does affect significantly the achievable
tracking performance. As such, we propose to tune the dead-
zone length δ in real-time by the extremum-seeking control
scheme presented in Sections II and III to optimize tracking
performance.

B. Optimization using extremum-seeking control

For the extremum-seeking control scheme as presented in
Sections II and III, we choose the cost function as Z(e(t)) =
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Fig. 5. Objective function Fw and
minimization of the performance cost
by adaptation of δ.

‖e(t)‖2, and the filter Σf as a second-order low-pass filter
admitting the following state-space formulation

Σf :







ż1(t) = αzz2(t)

ż2(t) = αz (y(t)− 2βzz2(t)− z1(t))

l(t) = z1(t),
(25)

which is of the form in (5). Furthermore, for αz , βz ∈ R>0,
Assumption 4 is satisfied. The objective function is depicted
in Fig. 5. The parameters of the extremum-seeking controller
are chosen as βz = 1

2

√
2, αz = 2, ηω = 1, αω = 1 · 10−9,

ηm = 0.75, σr = 1 · 10−8, λu = 2 · 108, and ηu = 1. The
initial conditions are chosen as z⊤(0) = [2.85 · 10−15 0],
m̂

⊤(0) = [2.85 · 10−15 0], Q(0) =
[ 1 0

0 2
1+2σr

]

and δ̂(0) =

1 · 10−7. The extremum-seeking controller is enabled at
t = 10 seconds. Fig. 6 shows the dead-zone length δ and
the measured performance cost l(t) as a function of time,
respectively. In here, results are shown for three cases; cases
1 and 2 in which two constant values for δ are used, namely
δ = 2 · 10−7 and δ = 0, associated with a low-gain
and high-gain linear controller, respectively, and case 3 in
which δ is tuned by an extremum-seeking controller. It can
be seen that the plant parameter δ and the corresponding
performance cost l converges to the performance optimal
region, as illustrated in Fig. 5. Fig. 4 shows the measured
tracking error for the low-gain, high-gain, and optimally
tuned variable-gain controller.

Remark 4: The use of a dead-zone nonlinearity as pre-
sented in (24) actually violates Assumption 5. Although it
is possible to define a sufficiently smooth nonlinearity ϕ(·)
close to the dead-zone, for ease of implementation and the
fact that the conclusions with respect to convergence are
similar, we use the non-smooth nonlinearity as in (24).

VI. CONCLUSIONS

In this work, we have introduced a local extremum-seeking
control method for steady-state performance optimization
of general nonlinear plants with time-varying steady-state
outputs. The proposed extremum-seeking controller includes
a so-called dynamic cost function which allows for the
characterization of a static input-to-output performance map,
despite the presence of time-varying disturbances which
induces time-varying steady-state plant outputs. We have
shown that, under appropriate conditions, the extremum-
seeking control scheme are uniformly ultimately bounded,
and the region of convergence towards the optimal tunable
plant parameters can be made arbitrarily small. An illustra-
tive example is provided that shows the steady-state perfor-
mance optimization of a closed-loop variable-gain controlled
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Fig. 6. Convergence of the tunable parameter δ towards δ∗ and the
associated performance cost l, and the performance cost in case of two
constant values of δ, associated with a low-gain and a high-gain controller.

motion system subject to a time-varying force disturbance by
means of the proposed extremum-seeking control method.
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Birkhäuser, Boston, 2005.

[17] Pavlov, A.V. and Hunnekens, B. G. B. and van de Wouw, N. and
Nijmeijer, H., Steady-state performance optimization for nonlinear
control systems of Lur’e type, Automatica, 49(7):2087-2097, 2013.

[18] Hazeleger, L., Technical report DC2018.028, Extremum-seeking con-
trol for steady-state performance optimization of nonlinear plants with
time-varying steady-state outputs, Eindhoven University of Technol-
ogy, Eindhoven, The Netherlands, 2017.

2995


