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Abstract— A hybrid integral controller with reset is proposed.
This hybrid controller ensures improved low-frequency dis-
turbance rejection properties under double integrator (PI2D)
control without inducing the undesired increase of overshoot
otherwise resulting from adding an extra linear integrator
to a PID controller. The controller is applied to an optical
lens motion system that requires PID control in one operating
mode and PI2D control in the other, therewith motivating
a hybrid integral control strategy. The reset element in the
controller is included to improve transient performance. To
guarantee closed-loop stability, a conditional (and partial) reset
rule is introduced that restricts the input-output behavior of
the dynamic reset element, i.e., the hybrid integrator with reset,
to a bounded sector. As a result, stability can be guaranteed
on the basis of a circle criterion-like argument and checked by
(measured) frequency response data. Stability and performance
of the hybrid integral control design with conditional (and
partial) reset are investigated by application to a piezo-actuated
lens system that is part of an industrial wafer scanner.

Index Terms— circle criterion, hybrid control, Lyapunov
stability, motion systems, reset control, wafer scanners.

I. INTRODUCTION

This paper proposes a novel hybrid integral controller
design with conditional reset to cope with the conventional
tradeoff between (a) improved low-frequency disturbance
suppression through integral control and (b) deteriorated
transient response due to such integral control. This tradeoff
generically arises in high-precision motion control applica-
tions such as for example wafer scanners in the lithography
industry [9] and robotics [11].

The above-mentioned tradeoff between frequency-domain
disturbance rejection properties and time-domain overshoot
and settling behavior is well known to the control community
[12], [5]. Also, this tradeoff occurs in many linear control
problems for a variety of control applications. In an attempt
to balance this tradeoff in a more desirable manner, nonlinear
control has been opted. A recent advancement is found in [9]
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that combines a variable-gain integral controller with a Clegg
integrator — measurement results obtained from a piezo-
actuated lens system demonstrated its benefits. Stability of
the reset system essentially required the satisfaction of two
conditions: a flow condition in the intervals between resets,
and a jump condition at the resets [12].

In this paper, the hybrid (variable-gain) controller from
[9] is given additional reset functionality. A key contribution
of the current paper lies in the fact that the reset conditions
are designed such that the input-output behavior of the reset
element belongs to the sector [0, α] with α > 0 a positive
(finite) gain, see in this regard also [10]. As a result, input-to-
state stability of the closed-loop hybrid system with reset can
be guaranteed by combining a circle criterion-like argument
together with a detectability condition for the reset element;
note that the latter includes an integrator, which is not
memoryless, and thus requires extra attention beyond the
conventional circle criterion arguments. The advantage of
such an argument lies in the fact that the stability conditions
can be assessed by evaluating (measured) frequency response
data of the linear part of the closed-loop system in relation
to the (sector) gain α, herewith indeed avoiding the need
for a parametric plant model. The adapted reset conditions,
however, cause pre-resets that could come at the expense
of performance. To limit the possible loss of performance
associated to these pre-resets and as a second contribution,
a partial integrator reset is proposed, which employs a state-
dependent reset map. A third contribution of the paper is the
application of the hybrid integral controller with conditional
reset to an industrial piezo-actuated lens system of a wafer
scanner including real industrial experiments.

The remainder of this paper is organized as follows. In
Section II, the lens control problem is discussed in more
detail. This forms the motivation for designing the hybrid
integral control element with reset in Section III. In Section
IV, the circle criterion-like stability argument is presented
that results in easy-to-check stability conditions. In Section
V, the occurrence of pre-resets is further analyzed along with
the measurement results obtained by application of the hybrid
control strategy to the piezo-actuated lens system. Section VI
summarizes the main conclusions.

II. LENS CONTROL PROBLEM

Being part of a wafer scanner, active lens elements are
used for projecting and re-scaling of the image of the
microchip coming from the mask (or reticle) prior to wafer
exposure. Each lens element, an example of which is given in
Fig. 1, consists of three piezoelectric actuators and three sen-
sors to control the lens in three degrees-of-freedom (DOFs),
i.e., translational (z) and two rotational (rx and ry) axes.
There are basically two types of motion for the driving rod of
the piezoelectric actuator to propel along the z-axis, namely:
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Fig. 1: Example of a lens element and piezoelectric actuator.

1) analogue (scanning) motion during wafer exposure con-
ducted under closed-loop conditions within a limited
range of operation, typically ±2.5 µm, and

2) shuffle motion conducted under open-loop conditions,
which is used to recalibrate the actuator and which is
called for as soon as the operating limits of the piezo
actuators are reached in scanning motion.

Ideally, in shuffle motion the driving rod remains at a fixed
position. However, the driving rod is known to drift, which
leads to position errors that remain unnoticed – that is to
say, until completing the shuffle motion. After shuffle motion
and as a result of closing the loop again at the beginning
of the scanning motion, the system is exposed to the re-
sulting step disturbance, referred to as a shuffle disturbance.
The magnitude behavior of this shuffle disturbance strongly
depends on the actuator properties, e.g. material properties,
hysteresis, and drift in combination with the power amplifier
involved. From a control perspective, it is important to note
that these step disturbances (in principle) vary in an a priori
unknown manner each time a shuffle motion takes place,
thereby rendering standard feedforward control solutions
ineffective. We approach this problem through (nonlinear)
feedback control.

In support of feedback control design, consider the lens
system dynamics in z−direction as depicted in the Bode
diagram of Fig. 2. The figure shows both measured frequency
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Fig. 2: Bode diagram of a lens system in z-direction: a) FRF measurement
data (gray), and b) data from a simple parametric model (black).

response function data and the data obtained from a simple

parametric model given by

P(z) = (1− z−1)Z
{
P(s)

s

}
, P(s) =

1

ms2 + bs+ k
,

(1)

with s = jω ∈ C the Laplace variable, m = 1.75 kg the lens
mass, b = 95.6 Ns/m a damping coefficient, k = 4.1 · 106

N/m a spring constant, and P (z) the result of plant P(s)
in combination with a zero-order-hold circuit, Z{P(s)/s}
denoting the z-transform of the sampled time-series whose
Laplace transform is the expression for P(s)/s with z−1 =
esT a unit time delay, and T = 2 · 10−4 seconds sampling
time.

The lens system is controlled by the nominal LTI con-
troller Cfb, or in (continuous-time) transfer function notation

Cfb(s) = Cpid(s)Clp(s)C1(s)C2(s), (2a)

which consists of a proportional-integral-derivative (PID)
controller Cpid in series connection to a second-order low-
pass filter Clp and two notch filters Cn with n ∈ {1, 2},
where

Cpid(s) = kp

( s

ωd
+ 1 +

ωi,1
s

)
, (2b)

Clp(s) =
1( s

ωlp

)2
+ 2ζlp

( s

ωlp

)
+ 1

, (2c)

Cn(s) =
(ωpn)2

(ωzn)2
· s

2 + 2ζzn(ωzn)s+ (ωzn)2

s2 + 2ζpn(ωpn)s+ (ωpn)2
. (2d)

The corresponding controller parameter values are listed in
TABLE I. In addition to the filters in the nominal controller

TABLE I: Controller parameters.

kp 126600 - ζz1 0.5 -
fi1 1100 Hz fp1 239 Hz
fi2 12.3 Hz ζp1 0.1 -
fd 1e6 Hz fz2 650 Hz
flp 185 Hz ζz2 0.5 -
ζlp 0.85 - fp2 285 Hz
fn1z 239 Hz ζp2 0.9 -

Cfb, a linear lag filter Ci given by

Ci(s) =
s+ ωi,2

s
, (3)

with ωi,2 the integrator cut-off frequency, can be added in
series. This lag filter is employed in the control strategy in the
following manner. The lens control system uses control mode
switching between two linear controllers: PID := Cfb(s)
in analogue (shuffle) mode, and PI2D := Ci(s)Cfb(s) in
scanning mode. Both controllers induce roughly the same
bandwidths of the closed-loop system of approximately 30
Hz, but significantly differ in terms of low-frequency distur-
bance rejection properties, the latter being the result of the
extra integrator in (3) in the PI2D controller.
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III. HYBRID INTEGRAL RESET CONTROL DESIGN

Consider the hybrid integral control element with reset as
shown in Fig. 3, that will serve as a substitute for Ci in the
previous section, i.e., a nonlinear lag filter obtained by

1) a switching element φ that multiplies input e with a
gain of either 0 or 1 depending on the input magnitude;

2) a reset integrator element that resets its single state upon
zero crossings of e;

3) a unity feedthrough path that adds the reset integrator
output −u to the initial input signal e resulting in the
output signal w = e− u.

∑e

φ(·) ωi

∫
(·)

−u

w

v

Fig. 3: Schematic representation of the hybrid integral control element
with reset, where the dashed line illustrates the reset condition of the reset
integrator.

In Fig. 3, the internal signal v = φ(e) denotes the output of
the switching element φ(·) that is defined as

φ(e) :=

{
e, if |e| ≤ δ,
0, otherwise,

(4)

with δ > 0 the switching length. To properly describe the
dynamics underlying Fig. 3, consider the following impulsive
differential equation (IDE):

ẋI(t) = ωiv(t), if e(t) 6= 0, (5a)
xI(t

+) = εxI(t), if e(t) = 0, (5b)
w(t) = xI(t) + e(t), (5c)

with xI(t) ∈ R, with t ∈ R≥0, denoting the integrator state,
xI(t

+) denoting the state directly after a reset (at time t+)
i.e., xI(t+) := limτ→t,τ>t xI(τ), and 0 ≤ ε < 1 giving the
portion by which state xI(t) is reset, for example ε = 0
implies xI(t+) = 0, i.e., a full reset to zero; note that (4)
and (5) can be cast in the hybrid forms as given in [1]. In
absence of any reset, i.e., when e(t) 6= 0, the solutions of (5)
evolve conform the flow dynamics (5a) while (5b) denotes
the impulsive dynamics (or jump dynamics) being active only
at resets, i.e., when e(t) = 0. Consider the following two
distinctive cases that arise as a result of (4):
1) if |e(t)| ≤ δ, (5) is equivalent to

ẋI(t) = ωie(t), if e(t) 6= 0,
xI(t

+) = εxI(t), if e(t) = 0,
w(t) = xI(t) + e(t), (6)

in which the linear flow dynamics (e(t) 6= 0) are repre-
sented by the transfer function

w(s)

e(s)
=
s+ ωi
s

, if 0 < |e(t)| ≤ δ; (7)

2) if |e(t)| > δ, then φ(e(t)) = v(t) = 0 and the reset
integrator maintains a constant buffer load −uc = −u(τ)
with τ the last time instant satisfying |e(τ)| = δ; when
|e(t)| � δ, uc often becomes negligible with respect to
e, i.e., w(s)/e(s) ≈ 1.

IV. STABILITY CONDITIONS WITH CONDITIONAL AND
PARTIAL RESET

Consider the hybrid integral reset control system in Fig. 4,
where the nonlinear elements, i.e., the switching element φ(·)
and the reset integrator both captured inR, are being isolated
from the linear dynamics represented by H. In the figure, r

∑

∑

∑

∑

r e

φ(·) ωi

∫
(·)

−u

Cfb

d

P

v

R H

−

Fig. 4: Simplified schematics of a closed-loop hybrid integral reset control
system.

represents the reference to be tracked, e is a closed-loop error
signal, Cfb the nominal PID-based feedback controller, d a
force disturbance, P the plant, and ν the output disturbance,
e.g., sensor noise.

To obtain stability conditions that allow for verification on
the basis of frequency response data, the closed-loop system
is transformed into a Lur’e-type system, see Fig. 5. Note that
the essential difference with a (true) Lur’e-type system lies
in the fact that we consider a dynamical nonlinear system
R — R contains an integrator — rather than a memoryless
nonlinearity.

∑
−

ξ

Hu
e

R

Fig. 5: Lur’e-type system representation.

A. Closed-loop system representation

Consider Fig. 5 where H represents a continuous-time LTI
dynamical system that in state-space description reads

H :

{
ẋh(t) = Axh(t) +Bu(t) +Bξξ(t)

e(t) = Cxh(t) +Dξξ(t),
(8)

with e(t), u(t) ∈ R, and xh(t) ∈ Rnh the state vector
containing the (physical) states of plant P and feedback
controller Cfb in Fig. 4 at time t ∈ R≥0. Moreover,
ξ(t) = [r(t) d(t) ν(t)]T ∈ R3 denotes the augmented
input vector, and (A,B,C) is assumed to correspond to a
minimal realization. The transfer function between input u(s)
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and output e(s) of (8) equals the complementary sensitivity
function Geu(s), which is given by

Geu(s) := C(sI −A)−1B

=
P(s)Cfb(s)

1 + P(s)Cfb(s)
.

(9)

Consider the nonlinear dynamical system R with input-
output pair (e,−u) which consists of the cascaded con-
nection of the switching element φ(·) in (4) and the reset
integrator dynamics in (5) without feedthrough term and
which further differs from (5) in terms of defining the reset
conditions. As a result, R is given by the following IDE,

R :


ẋI(t) =

{
ωie(t), if |e(t)| ≤ δ
0, otherwise

, if (e,−u) ∈ F ,

xI(t
+) = εxI(t), if (e,−u) ∈ J ,

−u(t) = xI(t),
(10)

see also (4) and (5). Note that the conditional and partial
reset condition is defined via the flow set F and the jump
set J , see also [8] for more details. As such, system R
behaves continuously conform the differential equation in
(10) as long as (e,−u) ∈ F , hence the input-output pair
(e,−u) satisfies the condition eu ≤ −u2/α, whereas state
xI will jump instantaneously from xI to x+I = εxI when
(e,−u) ∈ J . Now let us define the flow set F and the jump
set J according to

F := {(e,−u) ∈ R2 | eu ≤ − 1

α
u2},

J := {(e,−u) ∈ R2 | eu ≥ − 1

α
u2},

(11)

with α ∈ R>0. Given (11), the input-output pair (e,−u) of
(10) is (apart from a possible initial condition) restricted to
the sector [0, α] as illustrated by Fig. 6.

e

−u

α

F

F

J

J

Fig. 6: Graphical representation of the flow set F and the jump set J as
defined in (11).

Remark 1 According to the framework in [12], the non-
linear system R in (10), i.e., the hybrid integral controller
with conditional reset, for increasing α tends to the original
hybrid integral controller with reset in (5), for which the
input-output pair (e,−u) ∈ R2 lies in the sector [0, ∞).

B. Closed-loop Stability
Consider the closed-loop system in Fig. 5 with the corre-

sponding state vector x(t) := [xI(t) x
T
h (t)]T ∈ Rn at time

t ∈ R≥0 in which xI(t) ∈ R is governed by (10), (11) and
xh(t) ∈ Rnh consists of both the states of plant P in (1) as
well as the states of Cfb in (2) and is governed by (8).

Definition 1 The closed-loop hybrid system in (8) with (10)
is said to be pre-input-to-state stable (pre-ISS) if there exist
a KL-function β and K-function γ such that for any solution
pair (x, ξ) to (8), (10) with ξ ∈ L∞ it holds that

||x(t)|| ≤ max {β(||x(0)||, t), γ(||ξ||∞)} ,∀t ∈ dom x,
(12)

in which (for simplicity of presentation) we did not use the
hybrid system notation of [8]. In (12), the effect of the initial
conditions (for zero input r(t) = ν(t) = d(t) = 0) eventually
fades away. For non-zero input ξ 6= 0, multiple steady-state
solutions may occur within the compact (and invariant) set
which is characterized by γ.

The following result poses sufficient conditions under
which pre-ISS of the closed-loop system (8), (10), (11) in
Fig. 5 can be guaranteed.

Theorem IV.1 Consider the closed-loop hybrid system with
conditional reset as in Fig. 5 with H as in (8) and R as
in (10), (11) and fixed α ∈ (0,∞). Then, the closed-loop
system is pre-ISS according to Definition 1 if the following
conditions are satisfied:

(a) Geu(jω) in (9) is Hurwitz, (13a)

(b) Re{Geu(jω)} > − 1

α
, for all ω ∈ [−∞,∞]. (13b)

Proof: We call a smooth function W : Rnh+1 → R an ISS-
Lyapunov (ISSLF) function, see [6], for the system (8) with
(10) and (11), if it satisfies, for κj > 0, j ∈ {1, 2, 3, 4}, the
conditions

κ1‖x‖2 ≤W (x) ≤ κ2‖x‖2, for all x ∈ R, (14a)

Ẇ (x) ≤ −κ3‖x‖2 + κ4‖ξ‖2, for all (e,−u) ∈ F ,
(14b)

W (x+) ≤W (x), for all (e,−u) ∈ J .
(14c)

The existence of such a function W (under the hypothesis
of the theorem) can be proved by the following four steps:
• Step 1: initially disregard the internal (nonlinear) dy-

namics of R and exploit the fact that the input/output
pairs (e,−u) of R satisfy the sector condition eu ≤
−u2/α (possibly after an initial jump) by the grace of
the form of F and J in (11). Introduce the following
auxiliary system (called base nonlinear system)

Σbns :

H :

{
ẋh = Axh +Bu+Bξξ

e = Cxh +Dξξ

u = −ϕ(e),

(15)

in which the memoryless nonlinearity ϕ(·) satisfies the
sector condition

0 ≤ ϕ(e) ≤ αe, (16)
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for all e ∈ R; the circle criterion can be used to prove
that the system Σbns admits a quadratic ISSLF V :
Rnh → R;

• Step 2: use a detectability condition on the state of R
to construct a Lyapunov-like function Vr : R → R for
the system R during flow, i.e., for (e,−u) ∈ F ;

• Step 3: show that the functions V of Step 1 and
Vr of Step 2 can be combined into a function W :
Rnh+1 → R, satisfying (14a) and (14b) for the total
system combining H and R;

• Step 4: show that W constructed in Step 3 does not
increase during resets, thereby also satisfying the ISSLF
condition during jumps, i.e., (14c); combining the re-
sults of Step 3 and Step 4 (under the consideration of
persistently flowing trajectories) allows for construction
of a bound on the norm of the total state as in (12)
thereby establishing ISS. �

Note that these steps are in line with the steps introduced
in [10] with the difference that [10] does not consider the
presence of the memoryless nonlinearity ϕ(·). Including ϕ(·)
requires exploiting the sector-condition ||u|| ≤ α||e||, which
is a mere technicality in the presentation of [10], and which
is left to the reader in view of space considerations.

V. APPLICATION TO A LENS MOTION SYSTEM

In this section, we will further analyze the reset integrator
with conditional (and partial) reset as proposed in (10), (11)
where we will demonstrate the occurrence of so-called pre-
resets. The performance of different reset control variants is
subsequently studied through measurement results.

A. The occurrence of pre-resets

Regarding the hybrid integral reset controller with condi-
tional reset, it is important to realize that the introduction of
α, i.e., by modifying the reset conditions through re-defining
the flow set F and the jump set J in (11), may jeopardize
the effectiveness of the PI2D-based reset control design. In
order to clarify this statement, consider a single (conditional)
reset integrator given by the following IDE

R̃ :


ẋI(t) = ωie(t), if (e,−u) ∈ F ,
xI(t

+) = 0, if (e,−u) ∈ J ,
−u(t) = xI(t).

(17)

Note that (17) resembles the case of (10) where |e(t)| ≤ δ
and ε = 0. The flow set F and the jump set J are defined
as in (11). Let e be a sinusoidal input signal given by

e(τ) = ê sin(τ), (18)

with τ = ωt, t ∈ R≥0 and suppose x(0) is chosen such that
(e,−u) ∈ F . By forward integration using (17), it follows
that the output signal u initially evolves according to

−u(τ) =
ωi
ω
ê
(

1− cos(τ)
)
, (19)

which is shown in Fig. 7 (thick black curve). Note that on
the interval [0, π], the first reset instant γ follows from

e(γ) = − 1

α
u(γ), (20)

0 1.9106
0

1

Fig. 7: Response −u(τ) of the single reset integrator in (23) for a given
sinusoidal input signal e(τ) = ê sin(τ) with α =

√
1/2, ω = ωi = 3

rad/s, and ε ∈ {0, 0.7}.

which occurs at γ = 1.9106. Namely, substituting (18) and
(19) in (20) gives

sin(γ) =
ωi
αω

(
1− cos(τ)

)
, (21)

which, using the trigonometric identity 1 − cos(γ) =
2 sin2(γ/2), defining ν := γ/2, and after some algebra, gives

γ = 2 tan−1
(αω
ωi

)
, (22)

hence an explicit relation between α and the reset instances
is obtained. By increasing α, (17) increasingly resembles
the Clegg integrator with reset condition eu ≤ 0. On the
one hand, lowering α has the positive effect of relaxing
the stability requirements but, on the other hand, entails
additional pre-resets that may jeopardize the effectiveness
of the integrator in achieving performance. In fact, each
jump, which corresponds to emptying the integrator buffer,
temporary reduces the control force, i.e., temporary reduces
the ability of the controller to deal with position error.

To address this tradeoff in an alternative manner, we
combine the effect of pre-resetting (with the aim of inducing
favorable stability properties) with only partial resetting of
the integrator state xI , through an appropriate choice of
the reset portion 0 < ε ≤ 1, hence lower the resulting
performance penalty by admitting a post-reset integrator
buffer. For the purpose of illustration, consider the IDE

R̄ :


ẋI(t) = ωie(t), if (e, u) ∈ F ,
xI(t

+) = εxI(t), if (e, u) ∈ J ,
−u(t) = xI(t),

(23)

which refers to the case of (10) with |e(t)| ≤ δ and which
differs from (17) in the sense that it includes the state-
dependent reset map xI(t+) = εxI(t) with ε 6= 0. Consider
again the sinusoidal input signal e from (18). By forward
integration using (23), the resulting output response −u is
depicted in Fig. 7 (thick red curve). Note that ε = 0.5
(dashed red curve) gives more staircase-like reset behavior
with multiple smaller pre-resets in comparison with the full
pre-resets for the case that ε = 0 (thin black curve). Also
note that partial reset of the conditional integrator in (10),
as opposed to partial reset of the unconditional system in
(4) and (5) renders the same sign between the input signal e
and the output signal −u. We therefore expect to lower the
performance penalty by keeping a larger integrator buffer.
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B. Measurement results
For the lens control system of an industrial wafer scanner,

Fig. 8 shows the result of time-series measurements for both
scanning (left part) and shuffle motion (right part) when
applying the hybrid integral controller with (conditional)
reset in (10), (11). It can be seen that for the cases α = 2.17

Fig. 8: MA-filtered error responses e(t) obtained by measurement during:
(a) scanning motion with reference signal r (dashed curve, left part), or
(b) shuffle motion (right part); α = {2.17, 1000}, δ ∈ {0, 150} nm, and
ε ∈ {0, 0.5, 0.9}.

and ε ∈ {0.5, 0.9}, the integrator output largely preserves
the integrator buffer during the critical scanning time in-
terval, while this buffer is being emptied in a step-wise
fashion mostly during the (non-critical) preparation interval,
i.e., from t = 0.49 to t = 0.53 seconds. As a result, the error
responses in scanning motion (left part of the figure) suffer
less from the conditional reset law (compare the responses
for example with the response obtained with α = 2.17, ε =
0, which belongs to the hybrid integral controller with
full conditional reset) and demonstrate improved scanning
performance compared to PID control. Note that the best
performance is still obtained with the unconditional reset
law, that is with α → ∞ (in this case α = 1000), but
without having guarantees on stability through the circle
criterion-like conditions from Theorem IV.1, recall also Fig.
2. In terms of shuffle motion (right part of the figure)
none of the responses obtained with the conditional reset
rule show significant differences with the response obtained
from PID control. This is because with the hybrid integral
controller with conditional reset, the integrator can only
build-up buffer upon entering the interval e ∈ [−δ, δ], which

in the experiment is chosen at δ = 150 nm, and which reflects
a relatively short time interval. Hence, all responses have
less overshoot and settle significantly faster compared to the
responses induced by (linear) PI2D control. Performance is
also improved in comparison with the responses discussed
in [10], i.e., the case of conditional reset without using the
switching element such as introduced in (4). This is shown
in Fig. 8 by the response indicated with δ = 0, α = 2.17,
and ε = 0. In absence of a switching element (δ = 0 in (4)),
it can be seen that the overshoot increases from roughly 18
to 117 nanometer, whereas settling times increase from 13.9
to 21.5 milliseconds.

VI. CONCLUSIONS
This paper proposed a hybrid integral controller with a

conditional reset and a state-dependent reset map. The merits
of this novel control design when compared to control de-
signs with linear integrators are illustrated by application to
an industrial lens motion system such as used in wafer scan-
ners. The hybrid controller is designed to combine the benefit
of PI2D control for low-frequency tracking performance with
the benefit of PID control for transient performance. Restrict-
ing the input-output pair (e,−u) to the sector [0, α], though
this allows for the considered (and highly-valued) frequency-
domain approach, may induce conservativeness by neglecting
the implicit integrator dynamics. Future work should focus
on deriving less conservative stability conditions that lead to
reduced penalties on closed-loop performance of reset-based
control systems.
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