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Abstract—Respiratory modules are used to assist patients
who are unable to breathe sufficiently on their own. The aim
of this paper is to develop a control method that achieves
exact tracking of a time-varying target pressure, invariant to
patient-hose-leak parameters. This is achieved by an online
hose calibration that enables compensation for the pressure
drop over the hose. Stability of the closed-loop system is
analyzed and the performance improvement compared to state-
of-practice feedforward and linear feedback control strategies
is demonstrated by a simulation case study.

I. INTRODUCTION

Mechanical ventilators are commonly used in Intensive
Care Units (ICUs) to assist patients who cannot breathe on
their own or need support to breathe sufficiently. The main
goals of mechanical ventilation are to ensure oxygenation
and carbon dioxide elimination [1].

Blower-driven pressure controlled ventilation of sedated
patients is an important aspect in mechanical ventilation.
Such pressure controlled ventilation is addressed in this
paper, with a single-hose setup, as depicted in Fig. 1. Note
that, the proposed control strategy can directly be applied
to spontaneously breathing patients and a dual-hose setup.
The control goal of pressure controlled ventilation is to
track a time-varying airway pressure set-point, see Fig. 2,
where the airway pressure is the pressure in front of the
patient’s mouth, which can be measured using the sensor
tube in Fig. 1. The blower is increasing the airway pressure
during inspiration, to achieve the Inspiratory Positive Airway
Pressure (IPAP), filling the patients lungs with air. After
some time, it decreases the pressure to the Positive End-
Expiratory Pressure (PEEP), such that the lungs are emptied.
An example of a breathing cycle is displayed in Fig. 2. A
substantial amount of research has been conducted to obtain
the optimal ventilator settings, e.g., [2], [3], and [4], which
focuses on the design of the pressure set-point.
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Fig. 1. Schematic representation of the blower-hose-patient system of the
considered positive pressure ventilation system.
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Fig. 2. Airway pressure and patient flow during one breathing cycle of
pressure controlled ventilation (paw: airway pressure, Qpat : flow into the
patient’s lungs, see also Fig. 3).

Accurate tracking of the pressure target may be considered
less relevant from a clinical point of view. Nonetheless, high
tracking performance is important for achieving sufficient
support to the patient, especially in case of large flows, as a
result of large lungs and unintentional leaks (e.g., in non-
invasive ventilation). Secondly, accurate pressure tracking
results in better patient-ventilator synchrony; in [5] and [6],
it is discussed that better tracking prevents false triggers,
improving patient-ventilator synchrony. Thirdly, for more
complex ventilation modes, allowing patient effort, exact
tracking is essential to deliver the required level of assistance
more accurately.

The tracking performance achieved by linear feedback con-
trol is typically sub-optimal in terms of overshoot and settling
time, as shown in Fig. 2. The main cause for such sub-optimal
performance are the large plant variation for which the linear
feedback controller should be designed. The controller should
ensure robust performance for a broad spectrum of patients,
from infants to adults, varying disposable hose-filter systems,
unknown leakage and possibly unknown patient activity.

Different control strategies have been investigated to im-
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prove the performance of controllers for mechanical venti-
lation. In [7], an overview of modeling and control tech-
niques for mechanical ventilation is presented. Variable-gain
control is proposed in [5] and [6], which aims to achieve
pressure tracking while reducing the overshoot in patient
flow, preventing false triggering. In [8], an adaptive feedback
control approach is applied which is estimating the patient
model and using this to adaptively tune a controller which
achieves a desired closed-loop transfer function. In [8], the
hose resistance is neglected; however, for large air flows,
induced by large lungs and/or leakage, the hose-induced
pressure drop cannot be neglected. This pressure drop is
especially big in a single-hose system with an intended leak,
which already causes a significant flow and thus pressure
drop along the hose. Furthermore, funnel-based control [9]
is applied to mechanical ventilation, however, the obtained
gain in tracking performance is not very significant. In
[10] a model-based control approach is used and in [11] a
model predictive control approach is applied, these methods
require accurate patient parameters which are typically not
available in practice. Furthermore, iterative learning control
[12] is applied to mechanical ventilation, which is limited to
repeated sequences of the set-point and initial conditions.

Although the mentioned literature improves the tracking
performance of ventilation, it does not achieve exact track-
ing of the airway pressure invariant to patient-hose-leak
characteristics and independent of the set-point. To achieve
this, a control strategy is developed that compensates for
the pressure drop over the hose. Using an estimated hose
resistance and the output flow to compensate for the pressure
drop over the hose. Manual calibration of the hose-filter
system to obtain the hose resistance is an undesired option,
because of the already increasing demand of health care and
the lack of trained personnel, see [13] and [14]. Further,
the hose resistance might change during ventilation, due
to clogging of the filter. Therefore, we propose an online
Recursive Least Squares (RLS) estimator [15] to estimate
the hose resistance automatically during ventilation.

The first contribution of this paper is the design of a
control strategy which ensures exact tracking of the airway
pressure independent of the patient, hose, leakage, patient
effort, and set-point. The key advantages of the proposed
approach include

• allows for a fast and accurate response, even for large
lungs and big leaks;

• prevents overshoot in the patient flow and therewith
prevents false triggering;

• is not using direct feedback on the patient airway
pressure, which improves robustness.

The second contribution is a stability theorem of the resulting
closed-loop system, ensuring exponential convergence of the
estimation and tracking errors to zero. As a third contribu-
tion, a significant improvement in tracking performance in
comparison to state-of-practice control strategies is shown
through a simulation case study.

The outline of this paper is as follows. In section II, a
mathematical model of the patient-hose system is presented.

pout paw plung

Qleak
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paw sensor tube
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Rleak
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Hose-filter system Patient

paw sensor
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Fig. 3. Schematic representation of the blower-hose-patient system, with
the corresponding resistances and lung compliance.

In Section III, the control problem and high-level control
approach are described. In Section IV, the developed control
strategy is described and a stability theorem is presented. A
model-based simulation study is presented in Section V, to
show the time-domain performance of the proposed control
strategy in comparison to state-of-practice control strategies.
Finally, the conclusions and recommendations are presented
in Section VI.

II. PATIENT-HOSE MODEL

In this section, a model for the patient-hose system is
presented. Consider the schematic representation of the res-
piratory system depicted in Fig. 3. The system is operated by
the blower, which pressurizes ambient air in order to ventilate
the patient. A hose is used to connect the respiratory module
to the patient. The flow Qout , which leaves the blower, runs
through the hose towards the patient. The patient exhales
partly back through the blower, and partly through a leak in
the hose near the patients mouth, see Fig. 3. The leak, with
leak resistance Rleak, is used to refresh the air in the hose,
such that the patient does not inhale previously exhaled, low-
oxygen, air.

Using conservation of flow, the output flow Qout , patient
flow Qpat and leakage flow Qleak are related by

Qpat = Qout −Qleak. (1)

The pressure at the outlet of the mechanical ventilator is
the output pressure pout . Due to the hose resistance Rlin,
the output pressure pout is not equal to the so-called airway
pressure paw at the patient’s mouth. The airway pressure paw
is the performance variable that is controlled and measured
using a pressure sensor on the module, see Fig. 3. The hose
resistance is approximated using a linear resistance model,
which is reasonably accurate for typical flows in ventilation.

Note that all pressures are defined relative to the ambient
pressure, i.e., pamb = 0, and the lung pressure plung cannot
be measured in general. The lung is modeled using a linear
one-compartmental lung model as described in [16], with
lung compliance Clung and resistance Rlung. Assuming linear
resistances Rlung, Rleak and Rlin, the pressure drop across
these resistances is related to the flow as follows:

Qout =
pout − paw

Rlin

Qleak =
paw

Rleak
(2)

Qpat =
paw− plung

Rlung
.

5415



++ pcontrol

Qout

pout
paw

Qpat
Blower

Patient
+

Hose
Controller

ptarget +
-

Fig. 4. Control scheme of closed-loop linear feedback control with unit
feedforward.

Moreover, the lung dynamics are governed by

plung(t) =
1

Clung

∫
Qpatdt, (3)

hence

ṗlung(t) =
1

Clung
Qpat . (4)

Combining (2) and (4), the lung dynamics are described by:

ṗlung =
paw− plung

ClungRlung
. (5)

The following relation for the airway pressure is obtained by
(1) and (2):

paw =
RlinRleak plung +RleakRlung pout

R̄
, (6)

with R̄ := RlinRleak + RlinRlung + RleakRlung. By substituting
(6) into (5), a differential equation for the lung dynamics is
obtained

ṗlung =
−(Rlin +Rleak)

ClungR̄
plung +

Rleak

ClungR̄
pout . (7)

Given (7), (6) and (2), the patient-hose system dynamics can
be written as a linear state-space system with input pout and
outputs paw and Qpat , and state plung:

ṗlung = Ah plung +Bh pout[
paw
Qpat

]
= Ch plung +Dh pout ,

(8)

with

Ah =−
Rlin +Rleak

ClungR̄
, Bh =

Rleak

ClungR̄
,

Ch =
[

RlinRleak
R̄ −Rlin+Rleak

R̄

]T
,

Dh =
[

RleakRlung
R̄

Rleak
R̄

]T
.

(9)

Since all resistances and the compliance are strictly positive
constants, Ah is negative and hence the patient-hose system
is asymptotically stable.

III. CONTROL PROBLEM FORMULATION AND APPROACH

In the previous section, a mathematical formulation of the
patient-hose model is presented. In this section, the control
problem formulation is presented and the state-of-practice
control approach is discussed in this context. Next, a high-
level description of the control approach proposed in this
paper is given.

In state-of-practice blower-driven respiratory systems, typ-
ically linear integral feedback controllers are used. Imple-
menting a linear feedback controller results in the closed-
loop system, where the airway pressure paw is the variable

to be controlled (i.e., to track the target pressure ptarget ), as
depicted in Fig. 4. The control goal is to minimize the track-
ing error (or ideally let it converge to zero asymptotically)
defined as:

e := ptarget − paw. (10)

To ensure that the blower output pressure (pout ) is as desired,
an accurate lookup table is used as well as a feedback
controller using feedback of the blower error (pcontrol− pout ).
This results in a transfer function from blower input pcontrol
to blower output pressure pout which is one in the fre-
quency domain of interest. Therefore, we assume unit-gain
blower characteristics (pout = pcontrol). Consequently, the unit
feedforward (see Fig. 4) in combination with the blower
characteristic ensures that pout is exactly tracking ptarget .
However, the feedback controller has to compensate for the
pressure drop ∆p = pout − paw along the hose. Note that it
is very complex to predict the pressure drop along the hose,
due to several factors:

• the type of lung attached (i.e., the patient) is in principle
unknown. Although the pressure target is a priori known,
the amount of flow entering a lung depends on the
lung resistance Rlung and lung compliance Clung and is
therefore unknown (therewith, also the flow through the
hose, and thus the pressure drop ∆p are unknown);

• the characteristic of the hose system attached is also
unknown, hence the pressure drop along the hose is
unknown;

• during (non-invasive) ventilation, there can be leakage
around the mask, which cannot be predicted, and there-
fore also results in an a priori unknown pressure drop;

• additionally, patients can have spontaneous breathing
activity (resulting in a flow and hence, a pressure drop
along the hose), which also cannot be predicted a priori.

Therefore, exact feedforward control cannot be used to
compensate for the pressure drop effects.

We propose a control strategy that uses an estimated hose
resistance R̂lin and the output flow Qout , which is measured
near the blower, to compensate for the the pressure drop ∆p
over the hose, see Fig. 5. Because the hose-filter resistance
Rlin is unknown, an off-line calibration could be conducted
by hospital personnel, to estimate the hose resistance Rlin
prior to ventilation. This requires extra time of the hospital
staff, which is undesired because of the already existing
lack of time for hospital staff, as emphasized in Section I.
Furthermore, the resistance might change over time.

++ptarget pcontrol
Qout

pout
paw

Qpat

∆p̂

R̂lin

Estimator

Blower
Patient

+
Hose

Fig. 5. Schematic representation of the proposed closed-loop system with
a recursive least squares estimator for the hose resistance estimation.
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Therefore, an adaptive control approach is developed,
which is using an online Recursive Least Squares (RLS)
estimator [15] to estimate (learn) the hose resistance au-
tomatically during ventilation, see Fig. 5. Practically, this
approach is considerably more robust than the state-of-
practice feedback method, which is using paw directly in the
feedback loop. The proposed strategy is only using paw for
updating the estimator. In practice, the sensor tube might get
detached, e.g., when it gets stuck behind something. In such
a scenario, the proposed controller can keep running without
updating the resistance, whereas the feedback controller is
useless and potentially dangerous. In the following section,
the design of this adaptive control approach is elaborated and
stability conditions for the resulting closed-loop dynamics are
presented.

IV. DEVELOPED CONTROL APPROACH

In this section, the proposed adaptive control approach,
as sketched in Section III, is described in detail. In Section
IV-A, the closed-loop dynamics with the new control strategy,
with a constant estimate R̂lin of the hose resistance Rlin, are
presented. In Section IV-B, the RLS estimator, used to esti-
mate the hose resistance, is given. Finally, in Section IV-C,
stability conditions for the resulting closed-loop dynamics are
presented.

A. Closed-loop dynamics for given hose-resistance estimate
Since feedback using the hose resistance estimate R̂lin is

included in the control approach, as depicted in Fig. 5, a
state-space description of the closed-loop controlled system
(without estimator) is derived. Using pout = pcontrol = ∆ p̂+
ptarget and (7), we have that

ṗlung = Ah plung +Bh (ptarget +∆p̂) . (11)

The estimated pressure drop ∆ p̂ is given by

∆p̂ = R̂linQout

= R̂lin (Qpat +Qleak)

= R̂lin

(
Clung ṗlung +

paw

Rleak

)
.

(12)

Note that pcontrol = ∆p̂+ ptarget together with (11) essentially
form the proposed feedback law that aims at compensating
for the pressure drop over the hose-filter system. Substituting
the airway pressure, given in (5), into (12) gives

∆p̂ = R̂lin

(
Clung

(
1+

Rlung

Rleak

)
ṗlung +

plung

Rleak

)
. (13)

Subsequent substitution of (13) in (11) gives

ṗlung =
−Rleak− eLS

ClungReLS
plung +

Rleak

ClungReLS
ptarget , (14)

with ReLS := eLS
(
Rleak +Rlung

)
+RleakRlung, and the estima-

tion error eLS := Rlin− R̂lin.
The variables paw, Qpat and Qout are considered as outputs

and the resulting closed-loop system model is as follows:

ṗlung = Al plung +Bl ptarget paw
Qpat
Qout

= Cl plung +Dl ptarget
(15)

with

Al =
−Rleak− eLS

ClungReLS
, Bl =

Rleak

ClungReLS
,

Cl =
[
1− (Rleak+eLS)Rlung

ReLS

−Rleak−eLS
ReLS

−Rleak
ReLS

]T
,

Dl =
[

RleakRlung
ReLS

Rleak
ReLS

Rleak+Rlung
ReLS

]T
.

(16)

B. Recursive least squares estimation of the hose resistance
In the previous section, the equations describing the pro-

posed controlled plant model are presented for a constant
hose resistance estimate R̂lin. Since the hose resistance is an
unknown parameter, we use an RLS estimator that estimates
the value of Rlin automatically during ventilation; hence
no additional calibration steps are required in the hospital.
Because data far in the past is considered to be less important
than more recent data, an RLS algorithm with exponential
forgetting factor β is used [15]. A schematic representation
of the system with resistance estimator is depicted in Fig. 5.

The RLS estimator with forgetting factor is given by:

˙̂Rlin = P
∆p− R̂linQout

m2 Qout , (17)

Ṗ =βP−P2 Q2
out

m2 , (18)

in which Qout
(

plung(t),eLS(t), ptarget(t)
)

is written as Qout
for readability, P(t) is called the covariance and m2 > 0 a
constant normalization parameter. Since ∆p = RlinQout and
eLS(t) = Rlin− R̂lin(t), the least squares error dynamics are
written as

ėLS =−P
Q2

out

m2 eLS, (19)

since Rlin is a constant. The resulting closed-loop dynamics
with estimator and adaptive controller are given by (15), (16),
(18) and (19).

C. Stability conditions
The closed-loop system dynamics with the adaptive con-

troller are given by (15), (16), (18), and (19). In this section,
stability conditions for this closed-loop controlled system are
presented. Using some mild assumptions on the estimator
design and pressure target, Theorem 1 is presented below.
This theorem provides sufficient conditions for exponential
convergence to zero of the tracking error e(t) and of the
estimation error eLS(t), for time varying pressure targets
ptarget(t).

First, it is assumed that the RLS estimator in (18) and (19)
is designed and initialized, such that Assumption 1 holds.

Assumption 1. The RLS estimator in (18) and (19) is
designed and initialized such that these following properties
hold:
• P(0) is chosen to be positive, i.e., P(0)> 0.
• R̂lin(0) is chosen such that the following inequalities

hold (with ε > 0 a small constant):

R̂lin(0)< Rlin +Rleak,

R̂lin(0)≤ Rlin +
RleakRlung

Rleak +Rlung
− ε.
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• β is chosen to be positive, i.e., β > 0.

We are free to design the RLS estimator, i.e., β , P(0), and
R̂lin(0) can be chosen freely. Therefore, we can always ensure
that Assumption 1 holds. Furthermore, choosing R̂lin(0) = 0
always ensures the satisfaction of the inequalities in Assump-
tion 1, since all resistances are positive.
Furthermore, Assumption 2 states that the target pressure
profile is always positive and bounded.

Assumption 2. ptarget(t) is bounded and positive by design;
in particular, ε1 < ptarget(t)< ∞, ∀t ≥ 0, with ε1 > 0 a small
positive constant.

This is a valid assumption since a positive and bounded
target pressure, i.e., input, is desired during positive pressure
ventilation see Fig. 2, with PEEP > 0.

Theorem 1 ensures exponential convergence of the least
squares error eLS(t) and the tracking error e(t) to zero for
time-varying target pressures. This Theorem can be proved
using the assumptions, the closed-loop dynamics, and estima-
tor dynamics presented in Section IV. The proof of Theorem
1 is omitted for the sake of brevity.

Theorem 1. Consider the system dynamics (15), (16), (18),
and (19) and suppose that Assumptions 1 and 2 hold. Then,
solutions of the dynamical system (15), (16), (18), and (19)
have the following properties:
• P(t), P−1(t), plung(t) and Qout(t) are bounded ∀t ≥ 0,
• eLS(t) = Rlin− R̂lin(t) and e(t) = ptarget(t)− paw(t) ex-

ponentially converge to zero.

Theorem 1 ensures exponential convergence of the track-
ing error e(t) to zero for a time-varying target pressure,
under mild conditions on the initial estimate for the hose
resistance and the target pressure profile ptarget(t). In control
systems, perfect tracking is typically possible when inverse-
plant feedforward is applied and no further disturbances are
present. Since the estimated resistance R̂lin describes the
relationship that is described by the hose resistance Rlin,
inverse feedforward is essentially applied through feedback.

Remark 1. The relation between the hose-induced pressure
drop ∆p and the measured flow through the hose Qout is
independent of the patient and leak parameters. The patient
and leak parameters only influence the measured blower
output. Therefore, we achieve exact tracking of the target
pressure independent of patient and leak parameters.

V. COMPARATIVE SIMULATION CASE STUDY

In this section, the improvement in tracking performance
of the adaptive control approach over state-of-practice control
strategies is shown through simulations. The following two
state-of-practice control strategies are considered:
• Feedforward control,
• Linear feedback control.

Fig. 4 shows a schematic representation of the closed-loop
controlled system with linear feedback and unit feedforward
control. The feedforward controller is a unit feedforward;
in other words, the desired airway pressure is applied as

TABLE I
ESTIMATION PARAMETERS OF THE ADAPTIVE CONTROLLER AND THE

PATIENT AND HOSE PARAMETERS, AS USED IN THE SIMULATIONS.

Parameter Value Unit
β 0.7 -
P(0) 5×10−8 -
R̂lin(0) 0 mbar s/L
m 1 mL/s
Rleak 24 mbar s/L
Rlung 5 mbar s/L
Rlin(0) 4.4 mbar s/L
Clung 20 mL/mbar

ptarget = pcontrol = pout and no feedback based on measure-
ments is used. The linear integral feedback controller is
used to ensure convergence of the tracking error to zero for
constant target pressures. Because in respiratory systems the
plant variation are large, the linear feedback controller has
to be tuned for robustness instead of performance resulting
in an integral controller with transfer function C(s) = 10

s ,
with s ∈ C. For the system with feedback control, also unit
feedforward is used. The RLS estimator parameters and the
patient-hose system parameters are presented in Table I. In
the simulations, target pressures of 5 and 20 mbar are used
for the PEEP and the IPAP, respectively. Furthermore, we
introduce a step of a factor 1.5 in the hose resistance at
t = 10 s, to show that the controller can handle a change in
resistance, e.g., when someone sits on the hose.

The resulting airway pressure of the simulations is shown
in Fig. 6. These results clearly show that the feedforward
controlled system has a steady-state tracking error, which
is caused by the pressure drop ∆p over the hose. For the
linear feedback controller we observe that the pressure is
converging to the desired pressure but there is undesired over-
shoot. This overshoot results in non-optimal patient support,
and clearly causes overshoot in the patient flow, resulting in
false triggers during ventilation modes that allow for patient-
triggered breaths, see [5]. The resulting airway pressure of the
developed adaptive controller is also displayed in Fig. 6. It
shows that during the first breathing cycle the proposed con-
troller behaves almost the same as the feedforward controller.
This is caused by the fact that the initial estimate of R̂lin(0)
is zero, see Table I, so we have pure feedforward, i.e., the
adaptive controller is not compensating the pressure drop yet.
In the third breathing cycle, we already obtain almost perfect
tracking with no overshoot and oscillations. Thereafter, the
controller has to adapt to the step in Rlin, introducing a small
error. This error vanished after the fifth breathing cycle.

In Fig. 7, the significant improvement in tracking per-
formance is visualized. The tracking error of the adaptive
controller is converging to zero. The tracking errors of the
feedforward and feedback controllers remain the same over
successive breathing cycles, with a slight increase when the
hose resistance is increased. Furthermore, this figure shows
that the estimated resistance is converging to the actual value,
as expected. It is also clearly seen that the controller can
handle the step in hose resistance, since the tracking error is
converging to zero again after the step in resistance.
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Fig. 6. Simulation results of the feedforward, feedback, and adaptive control
strategy. This figure shows the resulting airway pressure and patient flow.
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Fig. 7. Tracking errors of the different controllers and convergence of R̂lin
of the adaptive controller.

Pressure profiles for different lung characteristics (resis-
tance and compliance, see legend) are displayed in Fig. 8.
It can be concluded that the control approach works for a
broad range of lungs.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, an adaptive control approach for mechan-
ical ventilation has been developed to improve tracking
performance for large variations of patient-hose parameters,
unintended leakages, and unknown breathing efforts. Since
no calibration of the hose-filter system is required, this
approach does not require extra time to set up the machine.
The proposed method estimates the linear hose resistance
and uses the measured flow and estimated resistance to
compensate for the pressure drop over the hose. It is shown
that the estimated resistance converges exponentially to the
actual value and therewith the tracking error converges
exponentially to zero for time-varying pressure profiles. A

0 2 4 6 8 10 12 14 16 18 20

0

5

10

15

20

Fig. 8. Airway pressure paw for multiple types of lungs, with the adaptive
controller. The lung characteristics are given in the legend where the units
for R are mbar s/L and the units for C are mL/mbar.

stability analysis supports these claims. Furthermore, using
a simulation study, it is shown that the proposed control
approach improves tracking performance significantly over
state-of-practice linear feedback control. Also, the proposed
control method can handle a time-varying hose resistance.

In future work, the practical applicability of this method
will be analyzed through an experimental study.
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