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Abstract— Hard-to-reach oil and gas reservoirs are nowadays
accessed by directional drilling techniques, which use a rotary
steerable system to drill complex curved boreholes. This paper
aims at providing understanding of the complex behavior of
directional drilling systems by developing a model for the
borehole evolution and providing a dynamic analysis of the
resulting model. The planar evolution of the borehole path
is modeled in the form of a delay complementarity system,
which accounts for undergauged stabilizers and a saturation of
the bit orientation with respect to the borehole orientation.
These are essential nonlinearities from a practical point of
view. The pursued dynamic analysis reveals that these systems
induce steady-state oscillations in the borehole path, which
are related to the planar equivalent of the highly detrimental
borehole spiraling observed in practice. The model and dynamic
analysis provide essential insights and can serve in the further
development of control techniques to track borehole paths while
mitigating borehole spiraling.

I. INTRODUCTION

Directional drilling allows for the drilling of boreholes
with complex shapes, which are needed to access hard-to-
reach reservoirs of oil, gas and mineral resources. A sketch
of a directional drilling system is depicted in Figure 1.
Such system includes a rig, which suspends the drillstring, a
hollow slender tube that can be several kilometers in length.
The rotary speed and the axial force (hook-load) are imposed
at the rig. Most of the drillstring is in tension under its own
weight, except for the bottom-hole assembly (BHA), which
is in compression to induce a sufficient weight on bit. The
BHA is usually in the order of ten meters long and consists
of drill collars, three to five stabilizers to center the BHA
in the borehole, a bit to drill the rock formation, various
logging tools and a rotary steerable system (RSS). The RSS
is a downhole robotic actuator that steers the bit in the desired
direction. In this work, we consider the family of tools called
push-the-bit RSS, which is located between the bit and the
first stabilizer and uses a set of extensible pads to induce a
lateral force on the side of the borehole and, thereby, on the
BHA, which consequently steers the bit.

Borehole spiraling, being self-excited steady-state oscilla-
tions in the borehole path, is a well-known problem in di-
rectional drilling [2, 3]. An illustration of borehole spiraling
is included in Figure 2, together with its two-dimensional
equivalent called borehole rippling. Since the 1950’s, many
borehole propagation models [4]–[6], mostly numerical, have
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Fig. 1: Overview of a rotary directional drilling system [1].

Fig. 2: Illustration of borehole spiraling and rippling.

been developed to gain insight in the evolution of the bore-
hole and/or to serve in the model-based control design for
the RSS [7]. An advanced mathematical model is proposed
in [8], which is able to determine conditions leading to
unstable oscillatory behavior. This model has also been used
to design controllers for the RSS to stabilize desired borehole
trajectories [9, 10]. An extension of this model [1, 11]
incorporates a saturation of the bit tilt, where the bit tilt
is defined as the orientation difference between the bit and
the borehole at the bit, see Figure 3. The saturation of the
bit tilt is relevant from a practical point of view [12] since it
occurs when the bit-gauge contacts a borehole wall. The bit
tilt saturation boundary depends on the bit-gauge length and
profile and is typically about 1◦ or less [1]. This nonlinearity
prevents oscillations to grow unbounded and, consequently,
these models capture borehole rippling and spiraling [11].

The aforementioned models do not consider stabilizers
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Fig. 3: Schematic overview of an n-stabilizer BHA. In this illustration, stabilizer j is perfectly centered inside the borehole
such that γ` j = γuj = y?.

that are undergauged with respect to the borehole, see
Figure 3. Such stabilizers, defined as non-ideal stabilizers,
are practically relevant due to a variety of reasons: (i) the
design of undergauged stabilizers; (ii) a hole enlargement
caused by erosion of the mud; and (iii) whirling of the
bit/BHA. Typically, the clearance is of order O(1) cm [8].

In this paper, we develop a planar borehole propagation
model as an extension of [1]. This model takes into account
the bit tilt saturation and any number of non-ideal stabilizers
in a framework based on linear complementarity problems,
which yields a closed-form mathematical model description.
Furthermore, we present a dynamic analysis of the resulting
model that shows the central role of the nonlinearities in the
so-called borehole rippling phenomenon.

II. MODEL COMPONENTS

The model relies upon the following assumptions [1]:
1) The drilling process can be viewed as being rate-

independent and, consequently, the independent variable
is the borehole length measuring the arc-distance from
the rig to the bit.

2) The drilling process can be averaged over several
revolutions of the bit as fast dynamic processes are
disregarded.

3) Only the lower part of the BHA, accounting for n
stabilizers, needs to be study; the rest can be lumped
into known forces acting on the last stabilizer, which is
assumed ideal.

4) The BHA can be modeled statically as an Euler-
Bernoulli beam with flexural stiffness EI.

5) There is no contact between the BHA and the borehole
walls except for the bit, the pads of the RSS actuator
and the stabilizers.

We present our model in dimensionless form where all forces
are scaled with F? := 3EI/`1 and all lengths are scaled
with `? := `1 with `1 the distance between the bit and
the first stabilizer. The inclination of the borehole and bit
are measured by the Θ(ξ ) and θ(ξ ), respectively, counter-
clockwise with respect to the downward vertical direction,
see Figure 3. These inclinations are tracked over the dimen-
sionless borehole length ξ , which measures the increasing
length of the borehole from the drill rig to the drill bit.
Figure 4 depicts an overview of the model components and
their interaction. These components are treated next.

A. Bit Kinematics

The bit kinematics describe the movement of the bit
through the rock formation by an axial and lateral penetration

variable d1 and d2, respectively, and an angular penetration
variable ϕ . The bit tilt ψ := θ −Θ can be expressed as

ψ =−arctan
(

d2

d1

)
≈−d2

d1
, (1)

since d1� d2 because bits are designed to drill axially. The
change of inclination of the bit with respect to the increasing
borehole length can be characterized by

dθ

dξ
≈ ϕ

d1
. (2)

Equations (1) and (2) relate the bit motion to the penetration
variables d1,d2 and ϕ and constitute the bit kinematics
component of the model.

B. Bit-Rock Interaction
The bit-rock interaction can be expressed by the laws [13]:

N0 =−G−H1d1, F0 =−H2d2, M0 =−H3ϕ, (3)

where G > 0 is a measure of bit bluntness, N0 and F0 are
the axial and lateral contact forces experienced by the bit,
respectively, and M0 is the contact moment acting on the bit
(all dimensionless). Coefficients Hi > 0, for i = 1,2,3, relate
the forces and moment acting on the bit to the penetration
variables measuring the amount of rock removed by the bit
in one revolution. With these definitions, the active weight
on the bit can be defined as Π := H1d1 = −(N0 +G). The
active weight on bit is the part of the weight on the bit that
is directly associated with the bit advancement into the rock.

The bit interface laws are formulated by combining the
kinematic relations (1) and (2) with the bit-rock interaction
laws (3)

F0 = ηΠ(θ −Θ), (4a)

M0 =−χΠ
dθ

dξ
, (4b)

where η := (H2/H1) and χ := (H3/H1) are the lateral and
angular steering resistance, respectively. The parameter η

takes a value between 5 and 100, while χ is generally one
or two orders of magnitude smaller than η [13].

C. BHA Model
Using the Euler-Bernoulli beam theory, we statically fit the

BHA, viewed as an elastic beam, inside the already drilled
borehole geometry. Since we use the history of the borehole
evolution, spatial delays, corresponding to the position of the
stabilizers, arise naturally. A detailed derivation is given in
[14], where we obtain analytical expressions for the scaled
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Fig. 4: Three model components and their interaction.

variables F0, M0 and the BHA deflection inside the borehole
for any number of n stabilizers.

By combining the lateral force F0 and the moment M0
at the bit formulated in the BHA model with the relations
found in the previous model components (4a) and (4b), the
borehole propagation model is obtained. In these derivations,
the forces experienced by the unilateral contact of the non-
ideal stabilizers with the borehole walls and the bit tilt are
treated as unknowns. These nonlinearities are modeled next.

III. MODELING OF THE NONLINEARITIES

The nonlinearities are modeled by formulating a linear
complementarity problem (LCP). First the non-ideal stabiliz-
ers are treated. After that, the bit tilt saturation is addressed.
Finally, an LCP that returns both the contact forces at the
non-ideal stabilizers and the bit tilt, is formulated.

A. Non-Ideal Stabilizers
The BHA deflection, derived in the BHA model, with

respect to the borehole center at stabilizer i is defined as
δi. The variables δi are collected in the column δ , which
can be written as

δ = K−1(F̀ −Fu)+ q̃(〈Θ〉1 , . . . ,〈Θ〉n ,θ ,FRSS), (5)

where K and q̃ are given in (20) and (21) in the appendix.
Variables F̀ and Fu are columns containing the contact
forces F̀ i and Fui experienced at each stabilizer as a result of
contact with the lower and upper borehole walls, respectively,
see Figure 3. The function q̃ depends on the applied RSS
force FRSS, the bit inclination θ and the average borehole
inclinations 〈Θ〉i, for i = 1, . . . ,n, defined as:

〈Θ〉i (ξ ) =
∫ si

si−1

Θ(ξ − s)ds (6)

with si the distance from the bit to the i-th stabilizer. Next,
Signorini’s contact law [15] is employed for the unilateral
contact between the non-ideal stabilizers and the (lower and
upper) borehole walls:

F̀ ≥ 0, γ` := y?+δ ≥ 0, F>` γ` = 0,
Fu ≥ 0, γu := y?−δ ≥ 0, F>u γu = 0.

(7)

The variables γ` and γu are columns of gap variables γ`i and
γui , which measure the gap between stabilizer i and the lower
and upper borehole wall, respectively, see Figure 3. Relations
(7) follow from considering that the lower wall contact force
F̀ i can only be positive when stabilizer i contacts the lower
wall, i.e., the gap γ`i = 0. On the other hand, when there is
a positive gap γ`i > 0, the contact force F̀ i = 0. The same
reasoning can be applied for upper wall contact. Parameters
y?i are collected in y? and represent the nominal clearance,
i.e., the clearance when the stabilizer i is centered inside the
borehole. The column vectors of gap variables are given by

γ` = K−1 (F̀ −Fu)+ q̃+ y?,

γu = K−1 (Fu− F̀ )− q̃+ y?,
(8)

Fig. 5: Graphical interpretation of set-valued law (11).

which are the linear equations required in the LCP formu-
lated later.

B. Bit Tilt Saturation

Next, we will focus on the saturation of the bit tilt. First,
we introduce parameter ε := χ/η , such that the interface
laws (4) contain only a product of η with Π:

F0 = ηΠ(θ −Θ), (9a)

M0 =−εηΠ
dθ

dξ
. (9b)

The parameter group ηΠ has the interpretation of a pseudo-
stiffness contrasting the flexural stiffness of the BHA with
the penetration stiffness of the rock formation. Laboratory
experiments [12, 16] show that the interface law (9a) is only
valid for |ψ| ≤ ψ?, where ψ? is the saturation boundary.
The lateral force at the bit F0 is set-valued when the bit
tilt saturates, i.e., |ψ| = ψ?. To model this nonlinearity, we
measure the bit tilt from the lower and upper saturation
boundary as follows:

ψ` := ψ +ψ
?, (10a)

ψu :=−ψ +ψ
?, (10b)

respectively. These variables are depicted in Figure 3 and
can be interpreted as gap variables, similar to γ` and γu.
The following set-valued force law [15] is introduced to
characterize the bit tilt saturation:

F̂̀ :=−F0 +ηΠψ ≥ 0, ψ` ≥ 0, F̂̀ ψ` = 0,
F̂u := F0−ηΠψ ≥ 0, ψu ≥ 0, F̂uψu = 0.

(11)

Figure 5 provides a graphical interpretation of the force
variables F̂̀ and F̂u as a function of the bit tilt ψ . From
(11), we can observe the relation

F̂ := F̂̀ − F̂u =−2F0 +2ηΠψ, (12)

which is used to write (10a) and (10b) as follows:

ψ` =
1

2ηΠ

(
F̂̀ − F̂u

)
+

F0

ηΠ
+ψ

?,

ψu =
1

2ηΠ

(
F̂u− F̂̀

)
− F0

ηΠ
+ψ

?,
(13)

where the lateral force at the bit is given by

F0 =
n

∑
i=1

ai (〈Θ〉i−θ)+ b(F̀ −Fu)+c1FRSS +c2 sin〈Θ〉1 (14)

with coefficients a1, . . . ,an,b,c1,c2 as in (24) in the ap-
pendix. Using (8), we eliminate F̀ and Fu in (14) and use
the result in (13).
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C. Combining both Nonlinearities
Considering the linear equations (8) and (13) and the

complementarity relations (7) and (11), we arrive at the LCP γ`
γu

ψ`
ψu


︸ ︷︷ ︸

w

=


K−1 −K−1 0 0
−K−1 K−1 0 0

b
ηΠ

− b
ηΠ

1
2ηΠ

− 1
2ηΠ

− b
ηΠ

b
ηΠ

− 1
2ηΠ

1
2ηΠ


︸ ︷︷ ︸

M

 F̀
Fu

F̂̀
F̂u


︸ ︷︷ ︸

z

+

 q̃+ y?
−q̃+ y?
q̂+ψ?

−q̂+ψ?


︸ ︷︷ ︸

q

, 0≤ w⊥ z≥ 0,

(15)

where K, q̃ and q̂ are given by (20) to (22) in the appendix,
respectively. This LCP returns both the contact forces at
the non-ideal stabilizers F̀ and Fu, together with their gap
variables γ` and γu, as well as the bit tilt gap variables ψ`

and ψu and the force variables F̂̀ and F̂u. Once solved, the
bit tilt can be calculated from the definition (10a) (or (10b))
and the lateral force at the bit F0 can be retrieved via (12).
The borehole inclination at the bit is simply given by

Θ = θ −ψ. (16)

IV. BOREHOLE PROPAGATION MODEL

Combining expressions for M0 from the interface law (9b)
and from the BHA component results in the dynamics of θ :

θ
′(ξ ) :=

dθ(ξ )

dξ
=− M0

εηΠ
(17)

=
n

∑
i=1

ai (〈Θ〉i−θ)+b(F̀ −Fu)+ c1F̃RSS + c2 sin 〈Θ〉1

with the coefficients a1, . . . ,an,b,c1,c2 given in (23) in the
appendix. The average borehole inclinations 〈Θ〉i, for i =
1, . . . ,n, defined in (6), are considered as additional state
variables with dynamics

〈Θ〉′i (ξ ) :=
d〈Θ〉i (ξ )

dξ
=

Θi−1−Θi

λi
, (18)

where λi is the distance between the (i− 1)-th and i-th
stabilizer and Θi is a delayed version of the current borehole
inclination defined as Θi := Θ(ξ − si) with si the distance
from the bit to the i-th stabilizer defined as si :=∑

i
k=0 λk. The

variables Θi represents the borehole inclination at stabilizer
i. The output of the model is the borehole inclination Θ(ξ )
calculated via (16).

The borehole propagation model consists of the set of
delay differential equations (17) and (18), and the output
equation (16), all subject to the LCP (15). This LCP returns
the necessary contact forces F̀ and Fu experienced by the
non-ideal stabilizers as well as the bit tilt ψ . The derived
model is in the class of delay complementary systems
[17], where the delayed geometric feedback of the borehole
through the stabilizers is captured by the delayed borehole
inclinations Θi in (18). The LCP framework is used to
model the unilateral characteristics of the nonlinearities.
These nonlinearities make the model exhibit many modes,
which is captured in a compact model description using the
LCP framework.

V. STABILITY ANALYSIS

Borehole rippling is an expression of instability-induced
steady-state oscillations in the borehole path. By performing
a stability analysis, we aim to understand whether and under
which conditions the developed model exhibits borehole
rippling. In [17], conditions for the local and global asymp-
totic stability of equilibria of linear delay complementarity
systems are proposed. Here we exploit these conditions
for local asymptotic stability by linearizing the dynamics
with respect to the considered borehole path and assessing
stability of the linearized dynamics. We emphasize that this
method is only valid as long as the borehole trajectory stays
sufficiently close to the considered borehole path and the
contact mode of the non-ideal stabilizers and the bit tilt mode
remain unchanged locally around the considered borehole
path. The dynamic behavior in which mode switching occurs
is assessed through numerical simulations in Section VI.

To investigate the root cause of oscillatory behavior, it is
sufficient to study the stability properties of straight borehole
paths [14]. The linearized dynamics in state-space form
examined near a straight borehole path read as

z′(ξ ) =
n

∑
i=0

A
(m)

i z(ξ − si), (19)

where z is the perturbed state, with respect to a nominal
straight borehole path, A

(m)
i , i= 0, . . . ,n, are system matrices

and m is the considered mode. This linear DDE has the
characteristic equation det(νI−∑

n
i=0 A

(m)
i e−νsi) = 0, which

has an infinite number of roots νi with i∈ {1,2, . . . ,∞} [18].
The roots of this characteristic equation represent the poles
of (19). All these poles are located in the complex half plane
characterized by R(νi)< υ , where υ ∈R can be calculated
numerically. The linearized dynamics in (19) are stable if
and only if all the poles νi, for i = 1,2, . . . ,∞, are located in
the open complex left half plane (CLHP).

VI. CASE STUDY

The method to assess stability described above is applied
to a two-stabilizer model. This model accounts for a non-
ideal stabilizer 3.66 m above the bit and an ideal stabilizer at
7.22 m above the bit, implying λ1 = λ2 = 1. The RSS actuator
is placed 0.6 m above the bit. The BHA is characterized by a
uniformly distributed weight of 1.08 ·103 N/m and a flexural
stiffness of 7.2 ·106 Nm2.

A key parameter in our model is ηΠ, which depends
on the distance between the first stabilizer and the bit,
the BHA stiffness, rock properties, bit design and active
weight on the bit. Consequently, in practice, this parameter
is often uncertain. Another important parameter is λ2, which
measures the dimensionless distance between the first and
second stabilizer, see Figure 3. Since λ1 := 1, representing
the (dimensionless) distance between the bit and first stabi-
lizer, λ2 can be interpreted as the ratio between positions of
the stabilizers. We assess stability for a grid of parameters
ηΠ and λ2. A two-stabilizer model can exhibit four modes
corresponding to the contact of the non-ideal stabilizer and
the saturation of the bit tilt. Based on this distinction,
Figure 6 presents a stability map in terms of the parameters
ηΠ and λ , where all the poles of (19) are in the open CLHP
in the green areas, at least one real pole in the complex right
half plane (CRHP) in the gray areas and at least one complex
pole pair is in the CRHP in the red areas.
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Fig. 6: Local stability of (19) for a grid of parameters ηΠ

and λ2 for a two-stabilizer model. A distinction in the four
subplots is made with respect to the active mode.

It can be observed in Figure 6 that in the mode where
the non-ideal stabilizer contacts one of the walls and the
bit tilt is not saturated, for some ηΠ, λ2 settings, complex
pole pairs are located in the CRHP, i.e., the red areas. This
leads to an oscillatory growth of perturbations caused by the
geometric feedback of the borehole sensed by the stabilizers
and amplified at the bit. However, in other modes, for the
exact same parametric setting, oscillatory instability does not
occur, and instead stable behavior or a drift instability is
observed. Steady-state borehole rippling is a consequence of
the switching between such stable and unstable dynamics.
Indeed, when a drilling system exhibits borehole rippling,
the mode will change due to the saturation of the bit tilt and
the contact of the non-ideal stabilizers. Thus the imposed
nonlinearities are crucial for capturing steady-state borehole
rippling oscillations. For the considered model, oscillatory
behavior can be expected for ηΠ < ηΠ|s = 0.147.

We illustrate our results with a simulation study, where
we numerically integrate θ ′ in (17), and 〈Θ〉′i, for i = 1, . . .n,
in (18), with respect to the independent variable ξ . The
borehole inclination at the bit Θ is calculated via (16), stored
and delayed to serve in the expressions for the delayed terms
in 〈Θ〉′i in (18). Furthermore, the LCP in (15) is solved during
the simulation to update the contact forces and the bit tilt.

The simulations presented in Figures 7 and 8 are per-
formed with ηΠ = 0.01 < ηΠ|s = 0.147 and for a zero RSS
actuation. An almost vertical downward borehole is taken as
initial condition. For a stable system, the response should
converge to a straight vertical borehole, i.e., Θ = 0. First,
in Figure 7, we present simulations with different bit tilt
saturation boundaries ψ? ∈ {2◦,1◦,0.5◦,0.1◦} to show the
effect of this nonlinearity on the obtained results. After that,
the effect of the nominal clearance of the non-ideal stabilizer
is addressed in Figure 8 by taking y? ∈ {1,1.5,2} ·10−3.

In Figure 7, it can be observed that all responses, except
the one with ψ? = 0.1◦, oscillate around the Θ = 0. During
one period, the bit tilt saturates on both sides and the non-
ideal stabilizer contacts on both walls. Our stability analysis
revealed that in case the bit tilt is not saturated, oscillatory
behavior is induced when the non-ideal stabilizer contacts a
wall. However, in all other modes the response should not
oscillate. In particular, when the non-ideal stabilizer loses
contact and the bit tilt does not saturate, the response is
stable. Taking ψ? sufficiently small, such as ψ? = 0.1◦,
generates a stable response. In general, a smaller ψ? results
in smaller oscillations in the bit and borehole inclinations and
smaller contact forces experienced by the non-ideal stabilizer.
This is expected as the BHA deforms less inside the borehole

Fig. 7: Simulation results with ηΠ = 0.01 and bit tilt satu-
ration boundaries ψ? = {2◦,1◦,0.5◦,0.1◦} and y? = 0.001.

for the bit tilt to reach the saturation boundary.
Figure 8 depicts the results of simulations with different

nominal clearances y? between the non-ideal stabilizer and
the borehole walls. This clearance being small requires a
small BHA deflection for the non-ideal stabilizer to contact
with the borehole walls and, therefore, makes the response
more prone to oscillatory behavior for such small ηΠ setting.
Increasing the clearance gives the non-ideal stabilizer more
room to move and, hence, being cleared from both walls.
In that case, the BHA acts as if equipped with only one
stabilizer. Such BHAs do not generate oscillatory responses
[1]. For a sufficiently large y?, the response thus remains
stable. Generally, allowing for a larger clearance makes the
response less prone to oscillatory behavior.

In field data displaying borehole spiraling [5, 11], it
is observed that the oscillation wavelength is related to
the distance between the bit and the first contact point of
the drillstring with the borehole walls. In the simulations
shown above in Figure 7 and Figure 8, the wavelength is
approximately 1.3 in dimensionless length, which we can
relate to the dimensionless distance between the bit and
the non-ideal stabilizer defined as 1. Furthermore, in field
data, the oscillation amplitude is of order O

(
10−3 ∼ 10−2

)
m [5, 19], which also corresponds to our numerical results.
Based on this comparison, we relate our results to borehole
rippling, which is the two-dimensional equivalent of the
harmful borehole spiraling observed in practice.

VII. CONCLUSIONS

This paper has presented a dynamic non-smooth borehole
propagation model in the form of a delay complementarity
system. The delay nature is a consequence of the delayed
geometrical feedback of the borehole on the deformation
of the drillstring through the stabilizers. A linear comple-
mentarity problem (LCP) framework is used to model two
essential nonlinearities: the saturation of the bit tilt and any
number of non-ideal stabilizers inducing unilateral contact.
The LCP framework enables a compact formulation of the
model, despite the large number of modes corresponding
to the contact mode of the non-ideal stabilizers and the
saturation mode of the bit tilt.

The local stability of equilibrium solutions in each mode
has been assessed using spectral methods for delay systems.
Our study revealed that in some modes, the system exhibits
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Fig. 8: Simulation results with ηΠ = 0.01 and different
nominal clearances y? = {1,1.5,2} ·10−3 and ψ? = 2◦.

an oscillatory-type of instability, while in other modes, the
system is stable. The combination of such stable and unstable
dynamics results in steady-state oscillations in the borehole,
which represent borehole rippling.

The work presented in this paper provides insights in the
behavior of directional drilling systems. The presented results
can be used to improve directional drilling system design and
form the basis for further work on control techniques to track
predefined borehole paths while mitigating borehole rippling.

APPENDIX

The coefficients used in (17) and (14) are given in (23)
and (24), respectively, where λi is the distance from stabilizer
i−1 to stabilizer i, si := ∑

i
k=1 λk is the distance from the bit

to the i-th stabilizer, λ := sn is the distance from the bit to
the last stabilizer, ∆ is the distance from the bit to the RSS
and w is the distributed weight of the BHA. The row vectors
b and b collect bi and bi, for i = 1, . . . ,n− 1, respectively.
The i, j-th element of the matrix K−1 is given by(

K−1)
i, j = σ(si,s j) for i≥ j,(

K−1)
i, j = σ(s j,si) for i < j, (20)

σ(si,s j) =
s2

i
4λ 3

(
s2

j (3λ − s j)(si−3λ )+2λ
3 (3s j− si)

)
.

Furthermore, the i-th row of q̃ is given by

q̃i =
i

∑
k=1

(
λ(k) (〈Θ〉k−θ)

)
+

n

∑
k=1

(ζk (si)(〈Θ〉k−θ))

+ζn+1 (si)FRSS +ζn+2 (si)sin〈Θ〉1 (21)

with functions

ζk(s) :=
s2(s−3λ )

2λ 3 λk, for k = 1,2, . . .n,

ζn+1(s) :=
∆2

4λ 3 (s
2(3λ − s)(∆−3λ )+2λ

3(3s−∆)),

ζn+2(s) :=
1

16
w̃s2(−3λ +2s)(λ − s).

Finally, the function q̂ is given by

q̂ =
n

∑
i=1

ai

ηΠ
(〈Θ〉i−θ)+

c1

ηΠ
F̃RSS +

c2

ηΠ
sin〈Θ〉1 . (22)

ai =
λ(i)

εηΠλ 2 (23a)

bi =
si(si−λ )(2λ − si)

2εηΠλ 2 (23b)

c1 =
∆(∆−λ )(2λ −∆)

2εηΠλ 2 (23c)

c2 =
1

8εηΠ
wλ

2 (23d)

ai =
λi

λ 3 (24a)

bi =
2λ 3−3λ s2

i + s3
i

−2λ 3 (24b)

c1 =
∆3−3λ∆2 +2λ 3

−2λ 3 (24c)

c2 =
5
8
wλ (24d)
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