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Abstract: The presence of a communication network in a control loop induces imperfections,
such as quantization effects, packet dropouts, time-varying transmission intervals, time-varying
transmission delays and communication constraints. The objectives of this paper are to provide
a unifying modeling framework that incorporates all these imperfections, and to present novel
techniques for the stability analysis for these networked control systems (NCSs). We focus on
linear plants, linear controllers and periodic protocols, which leads to a modeling framework
for NCSs based on discrete-time switched linear uncertain systems. Using an overapproximated
system in the form of a polytopic model with additive norm-bounded uncertainty, we use LMI-
based techniques to analyze the input-to-state stability (ISS) of the obtained NCS models with
respect to the norm-bounded additive disturbances on plant and controller signals induced by
quantization. These ISS conditions will be used to assess closed-loop stability and performance
for periodic communication protocols and uniform quantizers, although the framework allows for
extensions towards other types of protocols and other types of quantizers as well. We illustrate
the effectiveness of the developed theory on a benchmark example of a batch reactor.

1. INTRODUCTION

Networked control systems (NCSs) are feedback control
systems, in which the control loops are closed over a
shared communication network. Compared to a traditional
control system, in which the sensors, controllers and
actuators are connected through dedicated point-to-point
connections, NCSs offer advantages, such as, e.g., increased
flexibility and maintainability of the system, and reduced
wiring. However, NCSs also introduce new challenges that
need to be overcome before the advantages they offer
can be fully exploited. Generally speaking, NCSs are
subject to network-induced communication imperfections
and constraints that can be categorized into five types:
(i) quantization errors, (ii) packet dropouts, (iii) time-
varying sampling/transmission intervals, (iv) time-varying
transmission delays and (v) communication constraints,
requiring network protocols. All these networked-induced
imperfections may degrade the closed-loop performance of
an NCS, or even worse, may cause instability. Therefore,
it is important to investigate how these effects influence
closed-loop stability of the NCS. Because in any NCS all
the previously mentioned imperfections can be present, it
is important to develop a unified framework that allows to
study the joint presence of all the network-induced effects.
However, most of the available literature on NCS considers
only some of the network-induced phenomena. For instance,
Donkers et al. [2011], Heemels et al. [2010] considered (iii)-
(v) simultaneously, Gao et al. [2008] focuses on type (i),

? This work is supported by the Innovational Research Incentives
Scheme under the VICI grant “Wireless control systems: A new
frontier in automation” (no. 11382) awarded by NWO (Netherlands
Organization for Scientific Research) and STW (Dutch Science
Foundation), and the European Union Seventh Framework Pro-
gramme [FP7/2007-2013] under grant agreement no. 257462 HYCON2
“Network of excellence”.

(ii) and (iv) phenomena, Hetel et al. [2008], Naghshtabrizi
et al. [2010], van de Wouw et al. [2010] study (iii) and (iv)
simultaneously, and Nešić and Liberzon [2009] considers (i),
(iii) and (v). Up to now, the only result that considers all
these imperfections simultaneously, although under some
restrictions, is Heemels et al. [2009].

In this paper, we focus on linear plants and controllers
and study the stability of the corresponding NCSs in the
presence of (i), (iii)-(v) types of network-induced phenom-
ena, where the type (ii) network-induced phenomenon,
i.e., packet dropouts, can also be accommodated for by
modeling them as prolongation of the transmission interval,
see Remark 1 below. To obtain the methods for stability
analysis, this paper extends the work of Donkers et al.
[2011] by including quantization, which requires different
techniques to analyze the closed-loop stability, as we will
show below. The difference between Heemels et al. [2009]
and the work presented in this paper is that Heemels
et al. [2009] exploits an emulation-based approach for the
design of continuous-time controllers and uses a modeling
framework based on hybrid systems, while we take an
approach based on discrete-time switched linear uncertain
systems. As was shown in Donkers et al. [2011], the latter
approach can lead to less conservative results (e.g., in terms
of allowable bounds on delays and sampling intervals), in
the linear context, and allows the controller to be given
in continuous-time as well as in discrete-time. Given these
advantages of the switched linear systems approach, it is
of interest to extend the work of Donkers et al. [2011] to
incorporate quantization-induced disturbances as one of
the stability and performance limiting factors in a unified
modeling and analysis framework for NCSs. This forms
indeed the objective of this paper. In doing so, we focus
on one of the most common types of (memoryless) quan-



tizers used in practice, being uniform quantizers, see, e.g.,
Delchamps [1990], although the same modeling framework
allows to consider other types of quantizers as well, e.g.,
logarithmic quantizers and ‘zoom’ quantizers as introduced
in Elia and Mitter [2001] and Brockett and Liberzon [2000],
respectively, see e.g., Remark 6 below.

1.1 Nomenclature

Let Z, N, R, R>0 denote the set of integers, non-negative
integers, real numbers and nonnegative real numbers,
respectively. We denote a bock-diagonal matrix, with the
entries A1, . . . , An on the diagonal, as diag(A1, . . . , An) and
A> ∈Rm×n denotes the transposed of matrix A∈Rn×m.
For a vector x∈Rn, we denote by xi the i-th component

and ‖x‖ :=
√
x>x =

√∑
i |xi|2 its Euclidean norm. For

a symmetric matrix A, we denote by λmax(A), λmin(A)
the maximum and minimum eigenvalue of A, respectively.
We denote by ‖A‖ :=

√
λmax(A>A) the spectral norm

of a matrix A. Furthermore, for a discrete-time signal
z : N→Rn, the `∞-norm is defined as ‖z‖`∞=supk∈N ‖zk‖.
Furthermore, we define the sets of signals with a finite `∞-
norm as `∞ := {z : N→ Rn | ‖z‖`∞ <∞}. We sometimes

write symmetric matrices of the form
[
A B

B> C

]
, as

[
A B
? C

]
.

2. NCS MODEL AND PROBLEM STATEMENT

In this section, we introduce the model describing NCSs
subject to quantization, communication constraints and
varying transmission intervals and delays. We will later
comment on how dropouts can be included as well (see
Remark 1 below). The NCS that we consider in this paper
is schematically depicted in Fig. 1, where ZOH denotes a
zero-order hold function that transforms the discrete-time
control input û(tk) to a continuous-time control input û(t),
and Qy and Qu represent the uniform quantizers of the
plant output and control input, respectively. The plant
is given by a linear time-invariant (LTI) continuous-time
model of the form{ d

dtx
p(t) = Apxp(t) +Bpû(t)

y(t) = Cpxp(t),
(1)

where xp ∈ Rnp denotes the state of the plant, û ∈ Rnu
the control variable available at the actuator, y∈Rny the
(measured) output of the plant and t∈R>0 time. The LTI
controller is assumed to be given in discrete-time by{

xck+1 = Acxck +Bcŷk

u(tk) = Ccxck +Dcŷ(tk),
(2)

where xc ∈ Rnc denotes the state of the controller, ŷ ∈ Rny
a ‘networked’ version of the output of the plant available
at the controller, u ∈ Rnu denotes the controller output
and tk are the transmission instants. The ‘networked’
signals ŷ : R>0 → Rny and û : R>0 → Rnu will be
taken left-continuous, meaning that limt↑s ŷ(s)= ŷ(t) and
limt↑s û(s) = û(t) for all s∈R>0. At transmission instant
tk, k ∈ N, (parts of) the outputs of the plant y(tk) and
controller u(tk) are sampled and quantized, after which
they are transmitted over the network. We assume that
this data arrives after a delay τk at instant rk := tk + τk,
called the arrival instant. This is illustrated in Fig. 2. The
states of the controller xck+1 are updated after the most
recently received output of the plant ŷ is updated, i.e., by

LTI plant

LTI controller

Qy

Qu

ZOH
û(t) y(t) y(tk) ỹ(tk) := y(tk)

+εy(tk)

ŷ(tk)u(tk)
+εu(tk)

ũ(tk) := u(tk)

û(tk)

Fig. 1. Schematic overview of the NCS.

using ŷk :=limt↓rk ŷ(t). Note that this update of xck+1 has
to be performed in the time interval (rk, tk+1]. Although we
consider a discrete-time controller, the framework presented
in this paper also allows the controller to be given in
continuous-time, see Remark 2 below.

Let us now explain in more detail the consequences of
sampling, quantization and communication constraints. To
do so, let us consider the case where the plant is equipped
with ny sensors and nu actuators that are grouped into N
nodes. At each transmission instant tk, k ∈N, one node,
denoted by σk∈{1, . . . , N}, gets access to the network and
transmits its current values. These transmitted values are
received and implemented on the controller or the plant at
arrival instant rk. The sensor(s)/actuator(s), corresponding
to the node that is allowed access to the network, collect
their values from a sampled and quantized measurement
of the corresponding entries of y(tk) and u(tk). This
quantization process introduces a so-called quantization-
induced error in both y(tk) and u(tk), denoted by εy(tk)
and εu(tk), respectively, which are also illustrated in Fig. 1
and Fig. 2. The quantized signals are denoted by ỹ(tk)=
y(tk)+εy(tk) and ũ(tk)=u(tk)+εu(tk). We will make the
quantization-induced error precise for uniform quantizers
below. Furthermore, we assume that a transmission only
occurs after the previous transmission has arrived, i.e.,
tk+1>rk> tk, for all k∈N. In other words, we consider the
case where the delays τk are smaller than the transmission
intervals hk, i.e., τk < hk for all k ∈ N. After each
transmission and reception, the values in ŷ and û are
updated with the latest received data, while the other
values in ŷ and û remain the same. This leads to the
following constrained data exchange:{

ŷ(t) = Γyσk(y(tk) + εy(tk)) + (I − Γyσk)ŷ(tk)

û(t) = Γuσk(u(tk) + εu(tk)) + (I − Γuσk)û(tk)
(3)

for all t ∈ (rk, rk+1], which models all the network effects,
i.e., sampling, quantization, delays, scheduling and the
ZOH. In (3), Γσi := diag(Γyσi ,Γ

u
σi), i = {1, . . . , N}, are

diagonal matrices given by

Γi = diag(γi,1, . . . , γi,ny+nu). (4)

In (4), the elements γi,j , with i ∈ {1, . . . , N} and j ∈
{1, . . . , ny}, are equal to one, if plant output yj is in
node i and are zero elsewhere, and elements γi,j+ny , with
i ∈ {1, . . . , N} and j ∈ {1, . . . , nu}, are equal to one, if
controller output uj is in node i and are zero elsewhere.

The value of σk ∈ {1, . . . , N} in (3) indicates which node is
given access to the network at transmission instant tk, k∈N.
Indeed, (3) reflects that the values in ŷ and û are updated
just after rk, with the corresponding transmitted values at
time tk, while the others remain unaltered. In this paper,
we consider the case where both the transmission intervals
hk := tk+1−tk, k ∈N, as well as the transmission delays
τk :=rk − tk, k∈N, are time-varying, as also indicated in
Fig. 2. We assume that the variations in the transmission
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Fig. 2. Illustration of a typical evolution of y and ŷ for a
quantized control system.

intervals and delays are bounded and contained in the
sets [h, h] and [τ , τ ], respectively, with 0 < h 6 h and
06 τ 6 τ . Since we assume that delays are smaller than
the transmission interval, we have that (hk, τk)∈Θ, for all
k∈N, where

Θ := {(h, τ) ∈ R2 |h ∈ [h, h], τ ∈ [τ ,min{h, τ̄})}. (5)

Remark 1. The inclusion of packet dropouts can be re-
alized by modeling them as prolongations of the trans-
mission interval, see e.g., Donkers et al. [2011], Heemels
et al. [2010], Nešić and Teel [2004]. To do so, let us assume
that there is a bound δ̄d ∈N on the maximum number of
successive packet dropouts. The stability bounds derived
below are then still valid for (hk, τk) ∈ Θ′, for all k ∈ N,
where

Θ′ := {(h, τ) ∈ R2 |h ∈ [h, h
′
], τ ∈ [τ ,min{h, τ})}, (6)

in which h
′

:= h
δ̄d+1

.

2.1 The NCS as a Time-Varying Switched System

In this paper, we take a discrete-time modeling approach,
and to derive a discrete-time model description, we first
define the errors induced by the communication network
and the quantizer as{

ey(t) := ŷ(t)− y(t)

eu(t) := û(t)− u(t),
(7)

for all t ∈ R>0. The discrete-time switched uncertain
system can now be obtained by describing the evolution
of the states between tk and tk+1 = tk+hk. To do so, we
define xpk := xp(tk), yk := y(tk), uk := u(tk), ỹk := ỹ(tk),
ũk := ũ(tk), ûk := limt↓rk û(t), eyk := ey(tk), euk := eu(tk),
εyk := εy(tk) and εuk := εu(tk). Since both ŷ and û, as
in (3), are left-continuous piecewise constant signals, we
can write ŷk−1 = limt↓rk−1

ŷ(t) = ŷ(rk) = ŷ(tk) and
ûk−1 = limt↓rk−1

û(t) = û(rk) = û(tk). As (3) and (7) yield
ûk−1 =uk + euk and ûk−ûk−1 =Γuσk(εuk−euk), we can write
the exact discretization of (1) as follows:

xpk+1 = eA
phkxpk +

∫ hk
0

eA
psdsBp(uk + euk)

+
∫ hk−τk

0
eA

psdsBpΓuσk(εuk − euk). (8)

The complete NCS model is obtained by combining (3),
(7) and (8) and introducing

x̄k :=
[
xpk
>
xck
> eyk

>
euk
>
]>
, ε̄k :=

[
εyk
>
εuk
>
]>
,

z̄k :=
[
y>k u>k

]>
, (9)

which results in the discrete-time model (10), as shown

on the top of the next page, in which Ãσk,hk,τk ∈Rnx×nx ,

B̃σk,hk,τk ∈Rnx×nz , C̃σk ∈Rnz×nx , with nx :=np+nc+ny+
nu, nz :=ny+nu and

Aρ := diag(eA
pρ, Ac), B :=

[
0 Bp

Bc 0

]
, (11a)

C := diag(Cp, Cc), D :=

[
I 0
Dc I

]
, (11b)

Eρ := diag(
∫ ρ

0
eA

psds, I), ρ ∈ R. (11c)

Remark 2. In this paper, we consider the case where the
controller is given in discrete-time, see (2). However, the
same type of model (10) also allows the controller to be
given in continuous-time. In principle, this can be done by
using different matrices definitions (11) in (10), as given
in Donkers et al. [2011].

2.2 Periodic Protocols as Switching Function

Based on the previous modeling steps, the NCS is described
by a parameter-varying discrete-time switched linear sys-
tem (10) that is subject to an unknown disturbance ε̄
induced by quantization. In this framework, the scheduling
protocol is considered as a switching function determining
σk for each k ∈ N. In this paper, we consider the class of
periodic protocols, although quadratic protocols, with the
well-known Try-Once-Discard (TOD) protocol as a special
case, could be accommodated for in the same framework
as well, see van Loon et al. [2012] for details. A periodic

protocol is a protocol that satisfies for some Ñ ∈ N
σk+Ñ = σk, for all k ∈ N. (12)

Ñ is then called the period of the protocol. Actually, the
well-known RR protocol belongs to this class and is defined
by

{σ1, . . . , σN} = {1, 2, . . . , N}, (13)

and period Ñ = N , i.e., during each period of the protocol
every node has access to the network exactly once and in
a fixed sequence.

2.3 Uniform Quantizers

The quantizer introduces a quantization-induced error ε̄
that can be considered as a disturbance in the NCS model
(10). In this paper, we assume that each plant output
and control input is quantized separately according to the
mapping qi :R→Qi, i∈{1, . . . , nz}, in which Qi is a finite
or countable subset of R. We study the uniform quantizer,
which is defined by

qi(z̄ik) = ζi

⌊
z̄ik
ζi

⌉
, (14)

where ζi > 0, i ∈ {1, . . . , nz} denotes the step size and
b·e :R→Z is the rounding function that rounds off towards

the nearest integer. In case
z̄ik
ζi

in (14) is exactly in between

two integers, its value is rounded up towards the nearest

positive integer if
z̄ik
ζi
>0, and is rounded down towards the

nearest negative integer if
z̄ik
ζi
< 0. This quantizer results

in a quantization error for each input/output signal z̄ik,
i∈{1, . . . , nz}, satisfying

|ε̄ik| = |z̄ik − qi(z̄ik)| 6 ζi
2 , (15)

for all k∈N. Note that this type of quantizer introduces
a bounded but nonvanishing quantization error, which





x̄k+1 =

[
Ahk + EhkBDC EhkBD − Ehk−τkBΓσk

C(I −Ahk − EhkBDC) I −D−1Γσk + C(Ehk−τkBΓσk − EhkBD)

]
︸ ︷︷ ︸

=:Ãσk,hk,τk

x̄k +

[
Ehk−τkBΓσk

D−1Γσk − CEhk−τkBΓσk

]
︸ ︷︷ ︸

=:B̃σk,hk,τk

ε̄k

z̄k = [DC I −D−1]︸ ︷︷ ︸
=:H̃σk

x̄k

(10)

prohibits asymptotic stabilization of the NCS. However, we
can provide conditions that will guarantee the solutions to
remain bounded and to converge to a vicinity of the origin.
Hence, instead of (true) stability, only practical stability of
the NCS can be achieved. In Section 5, we will quantify the
steady-state performance in terms of an ultimate bound
(UB) on the response.

2.4 Input-to-State Stability of the NCS

The problem studied in this paper is to analyse practical
stability of the NCS given by (1), (2), (3) and (7), with
protocol (12), and quantizer (14), where the time-varying
and uncertain transmission intervals and transmission
delays are taken from the set Θ defined in (5). The
stability analysis will be based on studying exponential
input-to-state stability (EISS) of the system (10). We will
show in Section 5 how these stability conditions guarantee
(practical) stability for the corresponding NCSs with the
quantizer studied in this paper.

Let us now formally define EISS, in which we exploit the
linearity properties of the closed-loop NCS model (10).

Definition 3. Jiang and Wang [2001] System (10) with
switching sequence satisfying (12) is said to be exponen-
tially input-to-state stable (EISS) with respect to ε̄∈ `∞,
if there exist c>0, γISS>0 and 06λ< 1 such that for any
initial condition x̄0 ∈ Rnx , any sequence of transmission
intervals (h0, h1, . . .), and any sequence of transmission
delays (τ0, τ1, . . .), with (hk, τk)∈Θ, for all k∈N, it holds
that

‖x̄k‖ 6 cλk‖x̄0‖+ γISS sup
s∈[0,k−1]

‖ε̄s‖. (16)

3. OBTAINING A CONVEX OVERAPPROXIMATION

In the previous section, we obtained an NCS model in the
form of a discrete-time switched uncertain linear system,
as given by (10). However, the development of efficient
stability analysis techniques for (10) directly is obstructed
by the fact that the uncertainties appear in an exponential
fashion in both Ãσk,hk,τk and B̃σk,hk,τk . Therefore, we
apply a procedure that overapproximates system (10) by a
polytopic system with a norm-bounded additive uncertainty
of the form

x̄k+1 =
(∑L

l=1 α
l
kĀσk,l + B̄∆kC̄σk

)
x̄k

+
(∑L

l=1 α
l
kĒσk,l + B̄∆kF̄σk

)
ε̄k, (17)

where Āσ,l ∈ Rnx×nx , B̄ ∈ Rnx×q, C̄σ ∈ Rq×nx , Ēσ,l ∈
Rnx×nz , F̄σ ∈Rq×nz , for σ∈{1, . . . , Ñ} and l∈{1, . . . , L},
with L the number of vertices of the polytope. The vector
αk=[α1

k . . . α
L
k ]> ∈ A, k∈N, is time-varying with

A =
{
α ∈ RL

∣∣∑L
l=1 α

l = 1, αl > 0∀ l ∈ {1, . . . , L}
}

(18)

and ∆k ∈∆, k ∈ N, where ∆ is a norm-bounded set of
matrices in Rq×q that describes the additive uncertainty.
The system in (17) is an overapproximation of (10), in the

sense that for all σ ∈ {1, . . . , Ñ}, it holds that{ [
Ãσ,h,τ B̃σ,h,τ

] ∣∣(h, τ) ∈ Θ
}
⊆
{∑L

l=1 α
l
[
Āσ,l Ēσ,l

]
+ B̄∆

[
C̄σ F̄σ

] ∣∣α ∈ A, ∆ ∈∆
}
. (19)

Overapproximating the uncertain system (10) by (17), in
the sense of (19), is convenient for analysis, as obtaining
EISS with a certain upper bound on the ISS-gain γISS of
the system (17), implies that the system (10) is EISS with
the same upper bound on the ISS-gain γISS as well.

In this paper, we will employ an overapproximation
technique based on gridding and norm-bounding, described
in Donkers et al. [2011], to construct a polytopic system
with a norm-bounded additive uncertainty of the form of
(17), satisfying (19). For the sake of brevity, we not discuss
this overapproximation technique and refer to [Donkers
et al., 2011, Procedure III.1] for a detailed description of
the construction of all individual matrices in (17).

4. INPUT-TO-STATE STABILITY OF SWITCHED
SYSTEMS WITH PARAMETRIC UNCERTAINTY

In the previous sections, we obtained a switched discrete-
time uncertain NCS model (10) and introduced an overap-
proximation technique to embed system (10) in a switched
polytopic system with norm-bounded uncertainty as in (17),
satisfying (19). In this section, we will employ this overap-
proximated system to develop conditions that guarantee
EISS, given a periodic protocol and a set Θ as in (5). In
the following lemma, we state general sufficient conditions
in terms of dissipation inequalities that guarantee EISS.

Lemma 4. Consider the system (17) with switching func-
tion (12) and uncertainty set ∆. Suppose there exist some
positive scalars α1, α2, α3, κ and a function V : Rnx ×
N→ Rnx such that

α1‖x̄k‖2 6V (x̄k, k) 6 α2‖x̄k‖2 (20a)

V (x̄k+1, k + 1)−V (x̄k, k) 6 −α3‖x̄k‖2 + κ‖ε̄k‖2 (20b)

for all x̄k∈Rnx , ε̄k∈Rnz and all k∈N, with x̄k+1 given by
(17) for some αk∈A and some ∆k∈∆. Then, the system
(17) is EISS with respect to bounded disturbances, i.e.,

satisfies (16), where c =
√

α2

α1
, λ =

√
1− α3

α2
∈ [0, 1) and

γISS =
√

α2κ
α1α3

. (21)

A function that satisfies (20) is called an EISS-Lyapunov
function.

Proof: The proof follows from Theorem 2.5 of Lazar et al.
[2008], adapted for linear systems. �



Below, we will provide sufficient conditions in terms of
LMIs under which system (17), and thus the NCS model
(10) (due to (19)), with a given periodic protocol satisfying
(12), is EISS. To do so, let us introduce the set of matrices
R given by

R = {diag(r1I1, . . . , rKIK , rK+1I1, . . . , r2KIK ,

r2K+1I1, . . . , r3KIK) | ri > 0 for i ∈ {1, . . . , 3K}}, (22)

in which K is related to the total number of real Jordan
blocks of Ap, see Donkers et al. [2011].

We will now analyze EISS of the system (10) for the class
of periodic protocols (12). Let us introduce positive definite

matrices Pi, i∈{1, . . . , Ñ}, and a time-dependent periodic
candidate EISS-Lyapunov function, for k ∈ N, of the form

V (x̄k, k) = x̄>k Pk mod Ñ x̄k, (23)

where k mod Ñ denotes k modulo Ñ , which is the remain-
der of the division of k by Ñ .

Theorem 5. Assume that there exist positive definite ma-
trices Pi, i∈ {1, . . . , Ñ}, matrices Ri,l ∈R, i∈ {1, . . . , Ñ}
and l∈{1, . . . , L}, and positive scalars α3, κ, satisfying

Pi 0 0 Ā>σi,lPi+1 C̄
>
σiRi,l α3I

? κI 0 Ē>σi,lPi+1 F̄>σiRi,l 0

? ? Ri,l B̄>Pi+1 0 0

? ? ? Pi+1 0 0

? ? ? ? Ri,l 0

? ? ? ? ? α3I


� 0, (24)

where PÑ+1 := P1, for all i ∈ {1, . . . , Ñ}, l ∈ {1, . . . , L}.
Then, the system (10) with protocol (12), is EISS
with an upper bound on the ISS-gain γISS given by
(21), in which α1 = mini∈{1,...,Ñ} λmin(Pi) and α2 =

maxi∈{1,...,Ñ} λmax(Pi).

Proof: For the proof, see van Loon et al. [2012]. �

5. STABILITY AND PERFORMANCE FOR UNIFORM
QUANTIZERS

In the previous section, we derived conditions for guaran-
teeing EISS of the switched discrete-time uncertain system
(10) with protocol (12) in terms of LMIs. With these results,
we can analyse stability and performance for the NCS with
uniform quantizers discussed in Section 2.3.

The bound on the quantization-induced disturbance of the
i-th component of ε̄k, given a uniform quantizer, is given
by (15). Using the fact that ‖ε̄k‖2 =

∑nz
i=1 ‖ε̄ik‖2, we arrive

at a bound on ε̄k given by ‖ε̄k‖ 6
√∑nz

i=1

(
ζi
2

)2
. Using

both this bound on ε̄k and assuming EISS of (10) as in
Definition 3 (which can be verified by using the conditions
in Theorem 5), we arrive at an UB for the solutions x̄k of
(10) as k →∞, given by

lim sup
k→∞

‖x̄k‖ 6 γISS sup
s∈N
‖ε̄s‖6 γISS

√√√√ nz∑
i=1

(
ζi
2

)2

, (25)

that depends on both the ISS-gain γISS as well as the
quantization density of all input/output signals, where the
ISS gain γISS can be expressed as follows

γISS =

√
maxi∈{1,...,Ñ} λmax(Pi)κ

mini∈{1,...,Ñ} λmin(Pi)α3
, (26)

in which α3, κ > 0 and Pi > 0 satisfy the conditions of
Theorem 5.

As indicated by (25), practical stability of the system (10)
is achieved with respect to the quantization step-sizes ζi,
i∈{1, . . . , nz}, since it holds that selecting ζi→0, for all
i∈{1, . . . , nz}, implies that lim supk→∞ ‖x̄k‖→0. However,
for any fixed ζi, the solutions x̄k to system (10) have a
certain UB. To obtain the smallest upper bound on the
UB in (25), we aim at minimizing γISS subject to the LMIs
(24), with free variables Pi, and positive scalars α3 and κ.
Note that, minimizing the γISS is a nonlinear minimization
problem, which is in general not straightforward to solve.
However, one efficient technique to solve this problem is
discussed next.

Minimizing the upper bound on the ISS gain of the
system (10), with protocol (12) is achieved by fixing
α3>0, and putting a bound on bothmini∈{1,...,Ñ} λmin(Pi)

and maxi∈{1,...,Ñ} λmax(Pi), by using the additional con-

straints ωI 6 Pi 6 ωI, for some ω, ω > 0. Consequently,
we have α1 = mini∈{1,...,Ñ} λmin(Pi) > ω and α2 =

maxi∈{1,...,Ñ} λmax(Pi) 6 ω. Subsequently, we minimize
over κ.

Remark 6. The modeling and analysis framework pre-
sented in this paper also allows to include two other classes
of quantizers, namely, logarithmic and ‘zoom quantizers’,
as introduced in Elia and Mitter [2001] and Brockett and
Liberzon [2000], respectively. However, for the sake of
brevity, we refer to van Loon et al. [2012] regarding details.

6. ILLUSTRATIVE EXAMPLE

In this section, we illustrate the presented theory using a
well-known benchmark example in the NCS literature, see
e.g., Heemels et al. [2010], Nešić and Teel [2004], Walsh et al.
[2002], consisting of a linearized model of a batch reactor
controlled by a continuous-time proportional and integral
controller. We refer to the aforementioned references for
details regarding both the linearized model as well as the
controller.

We assume that the controller is given in continuous-time
which, as already indicated in Remark 2, requires only slight
modifications of the matrices (11) as given in Donkers
et al. [2011]. Furthermore, we consider an NCS setup
where the controller is collocated with the corresponding
actuators. Hence, only the two plant outputs (nz = 2) are
communicated via a network, where we assume that both
these signals are quantized using a uniform quantizer with
step size ζi = 10−3, i = {1, 2}. Furthermore, we assume
that the maximum number of successive dropouts δ̄d (see
Remark 1) is zero, that τ=0 and we take h=10−3. Using
[Donkers et al., 2011, Procedure III.1], we obtain a convex
overapproximation of the NCS model (10).

For the NCS with uniform quantizers, the objective is
to obtain the smallest upper bound on the UB (25) by
minimizing the ISS-gain (21) of (10) as described in Section
5. Hereto, we exploit the convex overapproximation of (10)
and check for numerous combinations of h and τ if the
LMIs of Theorem 5 are feasible, while minimizing γISS. This
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Fig. 3. Numerical results of minimization of γISS, resulting
in various upper bounds on the UB.

provides information on an upper bound on γISS depending
on the bounds on the transmission intervals and delays h
and τ , respectively. Using this information in (25), together
with the quantization step sizes of all plant outputs ζi =
10−3, i = {1, 2}, we can compute an upper bound on the
UB on the states. The results for this example are depicted
in Fig. 3, where we selected α3 =10−3, ω=10−1 and ω=50.
The solid black line represents the quantization-free tradeoff
curve between the maximum allowable transmission interval
h and the maximum allowable delay τ guaranteeing global
exponential stability (GES). This curve forms a boundary
for an NCS with uniform quantizers as it requires an infinite
UB to reach this curve. Notice that the gradient of the
UB becomes steeper the closer we approach the curve
for UB → ∞. This means that, for this example with
quantization step sizes ζi = 10−3, i = {1, 2}, we can have
a significantly smaller upper bound on the UB by allowing
only a slight reduction in h and/or τ .

7. CONCLUSIONS

In this paper, we analyze the stability and performance
of Networked Control Systems (NCSs) that are subject
to quantization effects, time-varying transmission inter-
vals, time-varying delays, communication constraints and
discussed how dropouts could be included as well. The
analysis is performed using a modeling framework for NCSs
based on discrete-time switched linear uncertain systems,
in which the communication sequence was determined by
a periodic protocol. To handle the exponential uncertainty
in the system matrices caused by the presence of varying
transmission intervals and delays, a procedure that yield
a convex overapproximation has been used. Exploiting
the resulting overapproximated systems, we derived LMI-
based conditions that guarantee exponential input-to-state
stability (EISS) of the NCS with respect to quantization-
induced disturbance inputs and showed how these condi-
tions can be used to compute an ultimate bound on the
state response for uniform quantizers. The application of
the newly derived theory to a benchmark example showed
that the developed theory can be used to make tradeoffs
between the various network properties, such as bounds
on transmission intervals and delays, the quantization
properties and control criteria, such as ultimate bounds.
Consequently, this work provides designers of NCSs with

new and computationally efficient tools to support their
multi-disciplinary design choices.
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