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Abstract: A reset integral controller is discussed that induces improved low-frequency distur-
bance rejection properties under double integrator control without giving the unwanted increase
of overshoot otherwise resulting from adding an extra linear integrator. To guarantee closed-loop
stability, a (conditional) reset condition is used that restricts the input-output behavior of the
dynamic reset element to a [0, a]-sector with « a positive (finite) gain. As a result, stability can
be guaranteed on the basis of a circle criterion-like argument and checked through (measured)
frequency response data. Both stability and performance of the control design will be discussed
via measurement results obtained from a wafer stage system of an industrial wafer scanner.
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1. INTRODUCTION

This paper discusses a reset integral controller design to
cope with the conventional trade-off between a) improved
low-frequency disturbance suppression through integral
control and b) desired transient response, which in view
of the mentioned integral control usually deteriorates.
This trade-off generically arises in high-precision motion
control applications like for example wafer scanners, which
are used in the production of chips, and which require
nanometer accuracies under aggressive motion profiles; for
the control of wafer scanners see also (Butler, 2011).

Nonlinear control has been opted by many researchers
(Seron & Goodwin, 1996) in an attempt to balance the
above-mentioned trade-off in a more desirable manner.
An interesting concept in this regard is reset control,
see for example the Clegg integrator that later developed
into first-order reset elements (FORE), see Clegg (1958);
Horowitz & Rosenbaum (1975); Zaccarian et al. (2005).
The Clegg integrator is a simple integrator that resets
its state to zero upon zero input crossings. Its describing
function possesses a 20 dB/decade amplitude decay with
38.15 degrees of phase lag instead of the 90 degrees phase
lag corresponding to a linear integrator (Clegg, 1958).

With these advantages in mind, recently a variable-gain
integrator with reset properties has been proposed by
Heertjes et al. (2015). In this work, the variable-gain

integrator with reset combines a variable-gain integral con-
troller with a Clegg integrator. The measurement results
obtained for this type of controller applied to a piezo-
actuated lens system clearly demonstrated its benefits.
Stability of the closed-loop reset system essentially boils
down to satisfying two conditions: i) a flow condition in
the intervals between resets, and ii) a jump condition at
the resets, see also Aangenent et al. (2010); Bafos et
al. (2011); Beker et al. (2004); Zaccarian et al. (2005,
2011); Carrasco et al. (2010). For the base-nonlinear sys-
tem, i.e., the variable-gain integrator without the reset,
stability has been guaranteed by the application of the
positive real lemma, thereby guaranteeing satisfactory the
flow condition. For the closed-loop nonlinear system with
reset, a quadratic Lyapunov function candidate is found
that satisfies both the flow and the jump condition. This
is done by pursuing an LMI-(linear matrix inequalities)
based approach. In the high-precision industry, however,
using LMI-based design conditions is considered as less
desirable, because it requires a parametric model of the
plant to be controlled, which is often difficult to obtain and
which rarely meets the requirements imposed on model
accuracy. Moreover, LMI stability analysis only renders
limited physical or controller tuning insights compared
to frequency-domain techniques, while this is crucial in
support of the development of a generically applicable
controller strategy.
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In this paper, inspired by Heertjes et al. (2015), a lag
filter is used where the integrator is replaced by a Clegg
integrator. The flow and jump sets are designed such that
the input-output behavior of the reset element belongs to
the sector [0, o] with a > 0 a positive (finite) gain. Based
on this insight, input-to-state stability of the closed-loop
system with reset can be guaranteed by combining a circle
criterion-like argument (Arcak et al., 2003) together with
a detectability condition for the reset element; note that
the latter includes an integrator, which is not memoryless,
and thus requires extra attention beyond the conventional
circle criterion argument. The above stability conditions
can be assessed by evaluating (measured) frequency re-
sponse data of the linear part of the closed-loop system in
relation to the gain a.. The main contributions of the paper
are the application of this reset control to the wafer stage
of an industrial wafer scanner and the demonstration of
the frequency-domain design in practice.

The remainder of this paper is organized as follows.
In Section 2, the reset control design is discussed in
more detail. This includes a circle criterion-like stability
argument that results in easy-to-check stability conditions.
In Section 3, measurement results are discussed that are
obtained by application of the reset controller to a wafer
stage system. Section 4 summarizes the main conclusions.

2. RESET CONTROL DESIGN

Consider the reset control system in Fig. 1 where the
nonlinear element, i.e., the reset integrator, captured in
‘R is being isolated from the linear dynamics represented
by H. In the figure, r represents a reference to be tracked,

Fig. 1. Simplified schematics of a reset control system.

e is a closed-loop error signal, €, a nominal (linear) PID-
based feedback controller, d a force disturbance, & the
plant, n the output disturbance (e.g., sensor noise), and
—u the output of the reset integrator. For the ease of pre-
sentation, it should be mentioned that feedforward control,
which does not affect the upcoming closed-loop stability
analysis, has been omitted from the figure. However, all
measurement results presented later on will include the
effect of a mass/snap feedforward controller with delay
compensation (having the motion control setting in mind).

To obtain stability conditions that allow for verification on
the basis of frequency response data, the system in Fig. 1 is
transformed to a Lur’e-type system, see Fig. 2. Note that

the essential difference with a true Lur’e system lies in the
fact that a dynamical nonlinear system R — R contains
an integrator — is considered rather than a memoryless
(and static) nonlinearity. In Zaccarian et al. (2005) it is

_£ 5 .
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Fig. 2. Lur’e-type system representation.

remarked that a classical Clegg integrator (with input e
and output —u) is characterized by the property that input
and output can never have opposite signs. This particular
property has been exploited in, e.g. Zaccarian et al. (2005),
Nesié et al. (2008), and Aangenent et al. (2010), where the
integrator resets whenever eu < 0. From the frequency-
domain perspective such as pursued in this paper, this
reset condition can be viewed as the input-output pair
(e, —u) corresponding to the sector [0, co]. Application of
the (frequency-domain) circle criterion would then require
H to be positive real, a feature that is rarely met in motion
control applications. We therefore propose to choose the
reset condition of the switching integral controller with
reset such that the input-output pair (e, —u) corresponds
to the sector [0, o] with & € Rs¢ being constant. In the
case of R being a static memoryless element, input-to-
state stability of the closed-loop system as shown in Fig.
2 can be simply proved by evaluating the circle criterion.
However, since R contains dynamical elements (in this case
an integrator) additional arguments are needed to ensure
internal stability of R, and consequently ISS of the reset
control system in Fig. 2 including this integrator state.

2.1 Closed-Loop Model Representation

Consider Fig. 2 where H represents a continuous-time LTT
dynamical system that in state-space description reads
2 - {C'Eh(t) = Az (t) + Bu(t) + Bgf(t) (1)
" le(?) = Cuzp(t) + Dgf(t) ’
with e(t),u(t) € R, and zp(t) € R™ the state vector
containing the (physical) states of plant &2 and feedback
controller €%, in Fig. 1 at time ¢ € R>o. Moreover, {(t) =
[r(t) d(t) n(t)]T € R3*! denotes the augmented exogenous
input vector, and (A4,B,C) is assumed to correspond
to a minimal realization. The transfer function between
input u(s) and output e(s) of (1) is the complementary
sensitivity function .#(s), which is given by
Fen(s) = C(sI — A)'B

_ DP(s)Cr(s) (2)

1+ P(s)E(s)
Consider the nonlinear dynamical system R with input-
output pair (e, —u) which consists of the reset integrator

and which is given by the following impulsive differential
equation (IDE)

zi(t) = wse(t), if (e,—u) € F,
R:x(tt) =0, if (e,—u) e J, (3)
—u(t) = x(t).
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Note that the reset condition is defined in terms of a flow
set F and a jump set J. As such, system R behaves con-
tinuously conform the differential equation in (3) as long
as (e, —u) € F whereas state x; will jump instantaneously
from z; to ;7 = 0 when (e, —u) € J. Now define the flow
set F and the jump set J according to

F={(e,—u)eR|eu< —lu2}
@ 0
J ={(e,—u) eR | eu > —Eug},

with o € Rsg. Given (3) and (4), the input-output pair
(e, —u) of (3) is (apart from a possible initial condition)
restricted to the sector [0, o] as illustrated by Fig. 3.

—u &

Fig. 3. Graphical representation of the flow set F and the
jump set J as defined by (4).

Remark 1. The sets F and J can be defined in various
ways, although, one must be cautious to avoid Zeno behav-
ior, beating, and deadlock. Deadlock, beating, and Zeno
behavior can often be avoided by time-regularization (see
for example Nesi¢ et al. (2008) or Forni et al. (2011)),
i.e. after every reset instant, x; evolves according to the
continuous dynamics in (3) for some finite time interval.
Time regularization occurs quite naturally in most prac-
tical implementations that involve a sampled-data imple-
mentation of the controller, such as in the experimental
setting investigated in Section 3. As such, deadlock, beat-
ing, and Zeno behavior are disregarded in this paper and
it is assumed that solutions to the closed-loop system are
well-defined for all £ € Rxo.

2.2 Closed-loop Stability

Consider the closed-loop system in Fig. 2 with the cor-
responding state vector x(t) := [z;(t) L (t)]T € R" at
time ¢ € R>( in which z;(¢) € R is governed by (3) and
xp(t) € R™ consists of both the states of plant & as
well as the states of the controller €f;. System (1), (3),
(4) is said to be input-to-state stable (ISS) with respect
to input £ if for any initial condition xg € R™ and any
bounded input signal &, all solutions z satisfy

@Il < B0l 1) +([[§10,41]lo0), for all £ € Rxo, (5)

with S and v being class KL and class K functions,
respectively. As a result, the effect of the initial conditions
(for zero input r = n = v = 0) eventually fades away.
For non-zero input, multiple steady-state solutions may
occur within the compact (and invariant) set which is
characterized by ~.

The following result poses sufficient conditions under
which ISS of the closed-loop system (1), (3), (4) in Fig.
2 can be guaranteed; a detailed proof can be found in Van
Loon et al. (2016).

Theorem 1. Consider the closed-loop system in Fig. 2 with
H as in (1) and R as in (3), (4). Suppose there exists a
constant « € (0, co) satisfying the following conditions on
the frequency response function .7, (jw) given in (2):

a) Sen(jw) is Hurwitz,

b) 1+ aen(joo) > 0, (6)

1
¢) Re{Sw(jw)} > ——, for all w € R.
a

Then the closed-loop system (1), (3), (4) in Fig. 2 is input-
to-state stable (ISS) with respect to inputs &.

Sketch of Proof: A smooth function W : R*»+1 — R is
an ISS-Lyapunov function (ISSLF) for the system (1) with
(3) and (4), if it satisfies, for x; > 0, i € {1,2,3,4}, the
following conditions

kalloll* < W () < kallz]?, (7a)
W(z) < —rsllz]|® + kalw]?, forall z € F, (7b)
W(zt) < W(x), forall z € J. (7c)

The existence of an ISSLF guarantees ISS under the
assumption that solutions are well-defined for all ¢ €
R>o. In the remainder of the proof, the existence of
such a function W is concisely demonstrated (under the
hypotheses of the theorem) by the following four steps:

(1) disregard the internal (nonlinear) dynamics of R and
exploit the fact that the input/output pairs (e, —u)
of R satisfy the sector condition eu < —u?/a by the
grace of the form of F and J in (4); introduce the
following auxiliary system (called base-linear system)

. {;'vh = Az, + Bu+ B¢§

Ybls - e=Cuzxp + Dgf (8)
u=—¢(e),

in which ¢(e) satisfies the following sector condition

0 < ple) < ae, (9)

for all e € R; the circle criterion is used to prove that

the system ;s admits a quadratic ISSLF V : R?» —

R;

(2) use a detectability condition on the state of R to
construct a Lyapunov-like function V, : R — R for
the system R during flow, i.e., for (e, —u) € F;

(3) show that the resulting V' of Step 1 and V,. of Step
2 can be combined into a function W : R*»+! — R
that satisfies the ISSLF condition during flow of said
function, i.e., (7b), for all x € F of the total system
combining H and R;

(4) show that the ISSLF constructed in Step 3 does
not increase during resets, thereby also satisfying
the ISSLF condition during jumps, i.e., (7c), for all
x € J; combining the results of Step 3 and Step
4 allows to construct a bound on the norm of the
complete state as in (5).

The proof further consists of showing that there exists a
smooth ISSLF W : R™*! — R for the system defined by
(1), (3), and (4) that is ISS according to (5); the full proof
can be found in Van Loon et al. (2016). O



96 M.F. Heertjes et al. / [FAC-PapersOnLine 49-13 (2016) 093—098

3. CASE STUDY: WAFER STAGE SYSTEM

In order to study the effectiveness of the reset control de-
sign, consider the example of a wafer scanner, see Fig. 4 for
an artist impression of such a system. Most wafer scanners

Fig. 4. Artist impression of a wafer scanner.

exploit the lithographic principle in which ultraviolet light
from a reticle or so-called mask is projected — through a
lens system — onto the light-sensitive layers of a wafer.
In this process, both reticle and wafer are supported by
separate motion control systems being the reticle and the
wafer stage system, respectively, that conduct a series of
point-to-point motions, thereby allowing for different field
exposures. Exposure of a field takes place while scanning,
i.e., the wafer stage chuck moves with constant velocity
(and with nanometer precision) under a lens system. As
soon as one field exposure is finished, the wafer stage
chuck moves toward the next field. Roughly speaking, a
single wafer contains about 100 fields. As to minimize
time between two subsequent exposures, and thus enhance
throughput, positioning between fields is done with ag-
gressive motion profiles having acceleration levels in the
order of 50 m-s~2. In the remainder of the case study, we
particularly focus on the control of the wafer stage system.

The wafer stage system often exploits a dual-stroke prin-
ciple in which a long-stroke is used for coarse positioning
with micrometer accuracy while a short-stroke is used
for fine-positioning with nanometer accuracy. Consider
the short-stroke control design in scanning y-direction for
which the open-loop characteristics are depicted in Fig.
5. Based on measured frequency response function data,
firstly the figure shows the characteristics of £ (jw) =
Crp(jw) P (jw) in grey, i.e., the default control design from
Fig. 1, having a bandwidth of 259.6 Hz with a phase
margin of 19.9 degrees and a gain margin of 4.1 dB.
Secondly, the figure shows the estimated characteristics
for the reset control design in red, which are based on a
describing function analysis, and given by

Browali) = 2Ge) (142 (14 2)), o)

™

T T
default (w; =0 rad-s~!
m reset (w; = 200 rad - s?
= 50F lag (w; =324 radi<s™1) ===
=
= o-
3
=
N s
-100' = 5 3 "
10 10 10 10 10
2 180F
(9]
-
& ool
<
=
=
-~ oF
=
3
‘S_{ 90t
-
N -180 &

10 10 10° | 10 10
frequency in Hz

Fig. 5. Open-loop characteristics .£ € {Z, Lreset, Liag}
based on measurement data with (red) or without
(grey) extra reset integrator or with (dashed black)
an extra integrator (w = 1.62w;) but without having
reset functionality.

see also Heertjes et al. (2015). The latter clearly shows the
additional low-frequency gain induced by the extra reset
integrator, but with less phase lag otherwise induced when
introducing an extra linear integrator, or

gl = 2(00) - (1455

Jw

(11)

with wf = 1.62w; scaled with |1 4+ 4j/7| as to obtain
equal low-frequency gain, i.e., the extra integrator in Fig.
1 without reset functionality (indicated in dashed black).
For w; = 200 rad - s7!, Zeser from (10) demonstrates
a bandwidth of 302.8 Hz along with a phase margin
of 15.6 degrees and a gain margin of 2.9 dB. Thirdly,
Fig. 5 shows the characteristics obtained by removing the
reset functionality, giving %}, from (11). This leads to a
bandwidth of 263.3 Hz with a phase margin of 9.1 degrees
and a gain margin of 3.2 dB. Hence by application of
Nyquist’ Theorem, it can be concluded that the linear
designs £ and Zj,, render a robustly stable closed-
loop system. For the reset control system, in general, no
conclusions regarding closed-loop stability can be drawn
on the sole basis of % cset-

To guarantee closed-loop stability of the reset control
system, consider Theorem 1. Note that conditions a) and
b) are satisfied for the given choice of £. A graphical
representation of condition ¢) is shown in Fig. 6. From this
figure (grey curve), it is clear that condition ¢) is satisfied
for positive a < 1/2.38 = 0.4, which (in practice) may
be too small to render the reset control design effective; to
fully exploit the Clegg integrator it is typically desirable to
have a 3> 0.4. To increase the value of o, a (notch) filter A
can be applied to the output —u in Fig. 1 while leaving the
low-frequency signal intact; note that the introduction of
such a filter .4 generally does not affect the outcome of the
conditions a) and b) that were satisfied for the given choice
of .Z. The effect is shown by the red curve, which requires
the evaluation of ./} (jw) = A (jw)Fen(jw) in condition
c) and which is satisfied for positive a < 1/0.45 ~ 2.2.
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Fig. 6. Evaluation of condition ¢) from Theorem 1 with
measurement data either with (red) or without (grey)
extra notch filter in 7% (jw) = A (jw)Sen(Jw).

Having sufficient conditions to guarantee closed-loop sta-
bility, closed-loop performance can be studied using sensi-
tivity analysis. Based on the (measured) open-loop fre-

20

T a
default (w;:=0rad:s™t >

m reset (w; =200 rad - st
< o = —-lag (w} =324 rad - s71)
g
—-20r _|
3
=
) 40 i

60 1 2 ‘3 4

10 10 10 10 10

S (jw)} in degrees

al
]

2
S
=
=
2

frequency in Hz

Fig. 7. Sensitivity magnitude plots based on measure-
ment data with (red) or without (grey) extra reset
integrator or with (dashed black) an extra integrator
(wf = 1.62w;) but without having reset functionality.

quency response functions from Fig. 5 and transfer re-
construction using describing functions, Fig. 7 shows the
sensitivity function of the default control design (grey),
the reset control design (red) using the describing function
n (10), and the double integrator design (dashed black)
obtained with the lag filter design in (11). It can be seen
that the reset control design has extra (low-frequency) dis-
turbance suppression properties compared to the default
control design, which result from the extra integrator, but
which induce hardly any significant high-frequency dete-
rioration. The phase advantages associated with the reset
clearly show when considering the lag filter design that
resembles the reset control design apart from the reset,

i.e., the design based on (10) compared with the design
based on (11). Without reset, less suppression is obtained
between 20 and 200 Hz whereas more amplification results
around the bandwidth frequency of 260 Hz.

In time-domain, measurement results are shown in Fig.
8. For four equal scanning motions — the dashed black

default (w; = 0 rad - s~
reset (w; = 200 rad -s~!
sealed acc. setp. — — —

o
o

0.0302 0.05
time in seconds

Fig. 8. Time series measurement: data of four responses to
the same commanded reference (dashed) either with
(red) or without (grey) extra reset integrator.

curve represents the scaled acceleration profile — either
with (red) or without (grey) extra reset integrator, it can
be seen that extra disturbance suppression is obtained
without the unwanted effect of extra overshoot and set-
tling time. Note that there is not much room to improve
upon state-of-the-art performance obtained with the de-
fault controller. Nevertheless, a significant performance
improvement is demonstrated. This can be seen by filtering
the error signal e either with a moving average filter (M,)
or a moving standard deviation filter (Mgq), or

n
t+o

MAe®) = 5 [P etryar

t—

(12)

n
t+o
Mafe()} = |+ / 2 (e(r) — Ma{e(t)})2dr,

with 7 ~ 2.57 - 1073 s a process window, M, being a
measure for on-product overlay, and M4 being a measure
for imaging. The result in Fig. 8 shows that from the start
of exposure at t = 0.0302 seconds, ||[M,{e}|lo decreases
from 1.6 nanometer to 1.1 nanometer and ||Mq{e}] oo
decreases from 3.1 nanometer to 2.6 nanometer. Hence,
both signal norms are reduced with 0.5 nanometer, which
is a significant reduction for this application.

Remark 2. It is important to mention that the results in
Fig. 8 were obtained with o = 10 (further increase of «
did not have much effect on improved performance) and
without using an extra notch filter .4 in the evaluation
of % (jw) = N (jw)Fen(jw) in condition c). The circle
criterion evaluation for the industrial wafer stage case
guarantees stability for values of a@ < 0.4 that induce only
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marginal performance improvement. So regardless the fact
that a frequency-domain tool toward tuning and stability
of reset control systems is obtained, the practical effective-
ness of this tool toward the demonstrated value of o = 10
needs to be improved. Firstly, because closed-loop stability
based on the conditions of Theorem 1 in this case cannot
be guaranteed according to Fig.6. Secondly, because in-
creasing a gave no indication toward unstable closed-loop
behavior whatsoever. Closed-loop unstable behavior was
encountered when w; was increased from w; = 200 rad-s~!
toward w; = 600 rad -s~!, which relates to Zag no longer
satisfying condition a) in Theorem 1, i.e., the base-linear
system becoming unstable.

In terms of frequency content, Fig. 9 shows both a power
spectral density analysis (upper part) and a cumulative
root-mean-square representation (lower part). It can be

0.1

Gyy in nm?/Hz

T
default (w; = 0 rad s~}
reset (w; = 200 rad - s~!
estimation based on desc.funct.

L L
1 2 3 4

10
frequency in Hz

Fig. 9. Time series measurement; power spectral density
analysis (upper part) of four responses to the same
commanded reference either with (red) or without
(grey) extra reset integrator along with a cumulative
root-mean-square representation (lower part).

seen that the reset control design (red) has reduced low-
frequency content with respect to the default control de-
sign (grey) without significant high-frequency deteriora-
tion. Based on the measured power spectral densities of
the default control design (grey curves in Fig. 9) and
the respective sensitivities of the default design and the
reset control design (grey and red curves in Fig. 7), the
power spectral densities of the reset control design can
also be estimated, see the black curves in Fig. 9. The esti-
mates seem to provide fair lower bounds on the measured
power spectral densities (red curves), which can (partly)
be explained by the fact that higher-order harmonics are
neglected in the describing function analysis.

4. CONCLUSION

Reset integral control has been demonstrated to enhance
the performance of an industrial wafer stage system. More-
over, sufficient conditions, that can be checked by mea-
sured frequency-response functions, have been given that
render the closed-loop system stable. Less conservative

stability conditions and tighter frequency-domain based
performance estimates are expected to enhance the reset
control design even further and remain topics of interest.
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