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a b s t r a c t 

We overview a recent research activity where suitable reset actions induce stability and performance of 

PID-controlled positioning systems suffering from nonlinear frictional effects. With a Coulomb-only ef- 

fect, PID feedback produces a set of equilibria whose asymptotic (but not exponential) stability can be 

certified by using a discontinuous Lyapunov-like function. With velocity weakening effects (the so-called 

Stribeck friction), the set of equilibria becomes unstable with PID feedback and the so-called “hunting 

phenomenon” (persistent oscillations) is experienced. Resetting laws can be used in both scenarios. With 

Coulomb friction only, the discontinuous Lyapunov-like function immediately suggests a reset action pro- 

viding extreme performance improvement, preserving stability and inducing desirable exponential con- 

vergence of a relevant subset of the solutions. With Stribeck, a more sophisticated set of logic-based 

reset rules recovers global asymptotic stability of the set of equilibria, providing an effective solution to 

the hunting instability. We clarify here the main steps of the Lyapunov-based proofs associated with our 

reset-enhanced PID controllers. These proofs involve building semiglobal hybrid representations of the so- 

lutions in the form of hybrid automata whose logical variables enable transforming the aforementioned 

discontinuous function into smooth or at least Lipschitz ones. Our theoretical results are illustrated by 

extensive simulations and experimental validation on an industrial nano-positioning system. 

© 2020 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Setpoint control of motion systems with friction has been an

active field of research for the past forty years because of its

relevance in an abundance of applications, such as electron mi-

croscopy, robotics, pick-and-place machines, printers, semiconduc-

tor equipment and many more. As friction limits the system per-

formance in terms of, e.g., achievable accuracy and speed, many

different control solutions have been developed. These control so-

lutions can be roughly divided into two groups, namely, model-

based friction compensation techniques and non-model-based con-

trol techniques. 

Model-based compensation techniques rely on developing as-

accurate-as-possible friction models, which are used in a control

loop to compensate friction and, hence, to counteract its detrimen-

tal effects. Early friction models date back as far as the sixteenth

century, where Amontons and Coulomb ( Amontons, 1699 ) pro-

posed the first static friction models. Morin ( Morin, 1833 ) showed

that, at zero velocity, the friction force balances out the external

forces applied to the system where static friction may be larger

than Coulomb friction (which has led eventually to the math-

ematical set-valued description of static friction, see, e.g., ( Leine

& van de Wouw, 2008 )). In 1902, Stribeck showed a continuous,

velocity-dependent decrease from static to Coulomb friction lev-

els ( Stribeck, 1902 ), commonly present in lubricated contacts and

widely known as the Stribeck effect. Further developments have

led to dynamic friction models to accommodate to presliding ef-

fects (see, e.g., ( Al-Bender & Swevers, 2008; Ruderman & Iwasaki,

2015 )), such as the Dahl model ( Dahl, 1968 ), the LuGre model

( Canudas De Wit, Olsson, & Lischinsky, 1995 ), or the ones in ( Al-

Bender, Lampaert, & Swevers, 2005; Swevers, Al-Bender, Ganse-

man, & Prajogo, 20 0 0 ). 

These models are used for friction compensation in, e.g.,

( Armstrong-Hélouvry, Dupont, & Canudas de Wit, 1994; Freidovich,

Robertsson, Shiriaev, & Johansson, 2010; Makkar, Hu, Sawyer, &

Dixon, 2007; Mallon, van de Wouw, Putra, & Nijmeijer, 2006 ),

or for controller synthesis in Aguilar, Orlov, and Acho (2003) ;

Rijlaarsdam, Nuij, Schoukens, and Steinbuch (2012) . However,

model-based control techniques which use the above friction mod-

els in their design are prone to model mismatches, since friction

often varies due to, e.g., changing ambient or lubrication conditions

or wear. Model mismatch leads to over- or under-compensation of
riction, so that the system may exhibit limit cycles or nonzero

teady-state errors (jeopardizing the positioning accuracy), as thor-

ughly analyzed in Putra, Nijmeijer, and van de Wouw (2007) . In

rder to obtain some robustness to changing frictional conditions,

odel-based compensation methods are enhanced with parameter

daptation techniques in, e.g., ( Amthor, Zschaeck, & Ament, 2010;

hen, Kong, & Tomizuka, 2015; Na, Chen, Ren, & Guo, 2014 ). How-

ver, mismatches in the model structure (and hence the associated

erformance limitations) still remain. 

Non-model-based control techniques do not rely on online fric-

ion compensation, but on applying specific control signals that

ope with the apparent friction to achieve the desired perfor-

ance. Dithering techniques apply a persistent high-frequency

ontrol signal to the system to smooth out the discontinuity in-

uced by Coulomb friction, see, e.g., ( Iannelli, Johansson, Jönsson,

 Vasca, 2006; Pervozvanski & Canudas de Wit, 2002; Thomsen,

999 ). Impulsive control applies a carefully determined impulsive

ontrol signal so that the system escapes the stick phases with

 nonzero position error, see, e.g., ( Orlov, Santiesteban, & Aguilar,

009; Yang & Tomizuka, 1988 ), and ( van de Wouw & Leine, 2012 ).

n ( van de Wouw & Leine, 2012 ), finite-time stability of the set-

oint is shown. Second-order sliding mode has been applied for

etpoint control of systems with friction in Bartolini, Pisano, Punta,

nd Usai (2003) ; Bartolini and Punta (2000) . Once the sliding sur-

ace is reached, the setpoint is approached from one side (i.e., the

elocity does not change sign), rendering the Coulomb friction a

onstant disturbance and exponential convergence is shown. State

eedback control techniques have been explored in de Bruin, Doris,

an de Wouw, Heemels, and Nijmeijer (2009) to stabilize constant

non-zero) velocity references for systems with a motor-load struc-

ure. The controller design is based on a Popov-like criterion for

ystems with set-valued nonlinearities. Although persistent oscil-

ations in the velocity are shown to be effectively suppressed, the

roposed technique is not a solution for the setpoint regulation con-

rol problem that we consider in this work. 

Despite the existence of the above control techniques, classi-

al proportional-integral-derivative (PID) controllers are still com-

only used for the positioning of frictional motion systems in the

ndustry. With PID solutions, the integrator action is capable of

ompensating for unknown static friction values by building up

he control force while integrating the position error. However, PID

ontrol has performance limitations as well. First, convergence is
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low for PID-controlled systems with Coulomb friction. The inte-

rator action is required to escape the stick phase by building up

nough control force. If the solution overshoots the setpoint in the

esulting slip phase, however, the control signal must point in the

pposite direction to overcome the static friction again. This pro-

ess takes increasingly more time with a decreasing position error,

esulting in slow convergence that adversely affects the machine

hroughput. Secondly, the integrator action in the presence of the

elocity-weakening (Stribeck) effect induces persistent oscillations

the so-called hunting phenomenon ), jeopardizing the achievable

ccuracy ( Armstrong-Hélouvry et al., 1994; Hensen, van de Molen-

raft, & Steinbuch, 2003; Mallon et al., 2006 ). 

In order to address the limitations of PID control for frictional

ystems, we propose here the use of reset enhancements that

an serve as an add-on to the classical PID controller. Reset con-

rollers were first proposed 50 years ago in Clegg (1958) , with the

oal of providing more flexibility in linear controller designs and

otentially removing fundamental performance limitations of lin-

ar controllers. The first systematic designs for reset controllers

ere reported in the1970 ′ s by Horowitz and Rosenbaum (1975) ;

rishnan and Horowitz (1974) who introduced the so-called First

rder Reset Element (FORE). There has been a renewed interest in

his class of systems after the late1990 ′ s (see ( Beker, Hollot, Chait,

 Han, 2004 ) and references therein). 

In the past decade or so, reset controllers were addressed us-

ng the hybrid systems framework of Goebel, Sanfelice, and Teel

2012) , thus providing Lyapunov-based conditions for L 2 stability

nd exponential stability of reset systems possibly including an ex-

onentially unstable FORE ( Neši ́c, Teel, & Zaccarian, 2011; Neši ́c,

accarian, & Teel, 2008; Zaccarian, Neši ́c, & Teel, 2005 ). Parallel-

ng these works, the scientific community has addressed in mul-

iple ways the goal of generalizing the concept of reset systems

o broader classes of controllers reaching beyond classical control

olutions. Some key works with relevant references can be found

n Aangenent, Witvoet, Heemels, van de Molengraft, and Steinbuch

2010) where L 2 and H 2 properties are investigated, ( Tarbouriech,

oquen, & Prieur, 2011 ) where resets are addressed in a context

ith saturation, ( Zhao & Hua, 2017 ) where a generalized first-

rder reset element (GFORE) has been proposed and character-

zed, ( Heemels, Dullerud, & Teel, 2016 ) where a lifting approach

s used for the case of periodic resets, ( Zhao, Neši ́c, Tan, & Hua,

019 ) where a special focus is on the goal of characterizing the

erformance limitations that can be overcome by reset control, and

 van Loon, Gruntjens, Heertjes, van de Wouw, & Heemels, 2017 )

here frequency-domain tools for stability analysis of reset control

ystem have been proposed. Higher-dimensional generalizations of

hese reset controllers are proposed in Prieur, Tarbouriech, and Za-

carian (2013) by focusing on a full state feedback architecture and

s then generalized, in the context of linear plants, to the case of

utput feedback and Luenberger observers in Fichera, Prieur, Tar-

ouriech, and Zaccarian (2013) . The arising LMI-based conditions,

nally led to a state-feedback solution of the H ∞ 

design problem

n Fichera, Prieur, Tarbouriech, and Zaccarian (2016) and an out-

ut feedback modified version given in the recent paper ( Ferrante

 Zaccarian, 2019 ). Comprehensive overviews of these methods can

e found in the monograph ( Baños & Barreiro, 2011 ) and the recent

urvey paper ( Prieur, Queinnec, Tarbouriech, & Zaccarian, 2019 ).

everal additional relevant and successful industrial applications of

eset control can be found in the literature (see, e.g., ( Carrasco &

años, 2012; Deenen, Heertjes, Heemels, & Nijmeijer, 2017; Li, Guo,

 Wang, 2011; van Loon et al., 2017; Panni, Waschl, Alberer, & Zac-

arian, 2014 ) and references therein). These applications are mostly

ocused on performance improvement with linear plants. Here we

ddress a more challenging context involving the intrinsic nonlin-

ar phenomena associated with frictional systems. In particular, we

onsider in this paper the setpoint control problem of PID con-
rolled motion systems with friction, rendering the plant to be con-

rolled nonlinear and nonsmooth. We clarify the control problems

ssociated with PID control, and discuss reset control solutions to

vercome these limitations. 

The results presented in this paper provide a unified and com-

rehensive overview of the research accomplishments reported in

eerens (2020) ; Beerens et al. (2019 , January 2020 ); Bisoffi et al.

2019) ; Bisoffi, Da Lio, Teel, and Zaccarian (2018a) and the pre-

iminary works Beerens et al. (2018) ; Beerens, Nijmeijer, Heemels,

nd van de Wouw (2017) . As compared to those works we pro-

ide here a unified development, highlighting the importance of

uilding hybrid models comprising logic variables to allow for the

onstruction of smooth or Lipschitz Lyapunov functions, in addi-

ion to including a novel understanding of the exponential conver-

ence properties of certain solutions in the Coulomb friction case.

e also provide a deeper qualitative understanding of the reset

losed loop responses, based on extensive simulation results high-

ighting the fact that the net effect of the proposed reset actions

s to recover, loosely speaking, the qualitative transient behavior to

e expected from the linear responses. As such, a strong advantage

f the proposed approach is that it enables retaining the industrial

ractice on PID gain tuning, making it viable also in the presence

f unmodeled frictional effects. 

The remainder of this paper is outlined as follows. In

ection 2 we discuss the nonlinear dynamics and the peculiar fea-

ures of the Coulomb and Stribeck cases addressed in this pa-

er, which are then simulated in Section 3 , showing the limita-

ions of classical PID designs. Section 4 is devoted to providing

 few Lyapunov-based tools that are used throughout the paper.

ections 5 and 6 contain the two most important reset strate-

ies presented in our work, the first one addressing the Coulomb

ase and the second one addressing the Stribeck case. Some ex-

erimental validations of the proposed solutions are then re-

orted in Section 7 , and Section 8 contains additional illustrations

ith PID gains that are seldom found in the industrial context.

ection 9 concludes the paper and provides some directions of fu-

ure research. 

Notation. Given x ∈ R 

n , | x | is its Euclidean norm. sign ( · ) (with a

ower-case s) denotes the classical sign function, i.e., sign ( y ) := y /| y |

or y � = 0 and sign (0) := 0. Sign ( · ) (with an upper-case S) de-

otes the set-valued sign function, i.e., Sign ( y ) := { sign ( y )} for y � = 0,

nd Sign (y ) := [ −1 , 1] for y = 0 . For c > 0, the deadzone function

 �→ dz c ( y ) is defined as: dz c ( y ) := 0 if | y | ≤ c , dz c (y ) := y − csign (y )

f | y | > c . For column vectors x 1 ∈ R 

d 1 , ..., x m 

∈ R 

d m , the notation

(x 1 , . . . , x m 

) is equivalent to [ x 
 
1 

. . . x 
 m 

] 
 . ∧ , ∨ , ⇒ denote the log-

cal conjunction, disjunction, implication. A function f : D → R is

ower semicontinuous if lim inf x → x 0 f (x ) ≥ f (x 0 ) for each point x 0 
n its domain D . The distance of a vector x ∈ R 

n to a closed set

 ⊂ R 

n is defined as | x | A := inf y ∈A | x − y | . 〈 · , · 〉 defines the inner

roduct between its two vector arguments. 

For a hybrid solution ϕ (Goebel et al., 2012, Def. 2.6) with hy-

rid time domain dom ϕ (Goebel et al., 2012, Def. 2.3) , the function

( · ) is defined as j ( t ) := min ( t,k ) ∈ dom ϕk . Function j ( · ) depends on

he specific solution ϕ that it addresses, but with a slight abuse of

otation we use a unified symbol j ( · ) because the solution under

onsideration is always clear from the context. A hybrid solution is

aximal if it cannot be extended (Goebel et al., 2012, Def. 2.7) , and

s complete if its domain is unbounded (in the t - or j -direction)

Goebel et al., 2012, p. 30) . 

. Problem formulation 

.1. Plant dynamics and friction model 

Consider a point mass m on a horizontal plane described by

ts position s and velocity v , as in Fig. 1 . The mass is subject to a
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Fig. 1. A mass subject to friction and controlled by a PID controller. 

v
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u
f

Fig. 2. Pairs ( v, u f ) measured from the experimental nano-positioning motion stage 

discussed in Section 7 . 
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control input u and a friction force u f . The plant dynamics are then

given by 

˙ s = v , ˙ v = 

1 

m 

(−u f + u ) . (1)

To represent the friction force u f acting on the mass, we use

a well-known set-valued friction model v ⇒ �̄(v ) (the double ar-

rows clarify that �̄(v ) may be a set, rather than a single point),

which is motivated by many applications including the experi-

mental nano-positioning motion stage discussed in Section 7 . For

this motion stage we measured the particular shape of the exper-

imental pairs ( v, u f ) as represented in Fig. 2 . According to the de-

scriptions in (Armstrong-Hélouvry & Amin, 1993, Eq. (3)) or simi-

larly (Olsson, Åström, Canudas-de-Wit, Gäfvert, & Lischinsky, 1998,

Eq. (5)) , the overall friction force u f represented in Fig. 2 is charac-

terized by a two-fold phenomenon: 

• Slip phase . When the velocity v is nonzero, u f is uniquely de-

termined by v via three different components comprising a lin-

ear viscous friction component ᾱv v , a static friction component

F̄ s sign (v ) , where F̄ s > 0 is a positive scalar, and a velocity weak-

ening nonlinear component ψ̄ (v ) encompassing the so-called

Stribeck effect. 

• Stick phase . When the velocity is (and remains at) zero, causal-

ity reverses in the sense that the system residing in stick (i.e.,

remaining at v = 0 ) imposes what friction force is needed to re-

alize such a stick condition. Of course, stick can only be main-

tained if the required friction force lies in the set [ −F̄ s , F̄ s ] . For

the system in Fig. 1 , this means that u f is uniquely determined

by the force u exerted on the mass and corresponds to the

unique selection u f in the bounded static friction range [ −F̄ s , F̄ s ]

minimizing the (absolute value of the) net force u net = −u f + u

acting on the mass. 

According to the set-valued friction law (Filippov, 1988,

p. 53) (or (Leine & van de Wouw, 2008, Eqs. (5.36), (5.44)) ),

an effective way of capturing the above-discussed two-fold phe-

nomenon is to characterize friction as a velocity-dependent set-

valued map defined as 

v ⇒ �̄(v ) := −F̄ s Sign (v ) − ᾱv v + ψ̄ (v ) , (2)

where the set-valued mapping Sign is defined as 

Sign (v ) := 

{{ sign (v ) } , if v � = 0 

[ − 1 , 1 ] , if v = 0 . 
(3)
ased on the set �̄(v ) defined in (2) model (1) turns into the dif-

erential inclusion 

˙ 
 = v , ˙ v ∈ 

1 

m 

( �̄(v ) + u ) . (4)

.2. Control problem 

The presence of friction in motion systems poses major chal-

enges for accurate and fast positioning control. In this paper we

onsider point-to-point motion and, thus, we focus on the design

f a controller such that the resulting closed-loop system has the

roperty that along all solutions the position s is quickly stabilized

t a desirable (constant) setpoint reference r ∈ R , see again Fig. 1 .

otivated by the widespread use of PID-type controllers in indus-

rial practice, we consider the design of PID-like control structures.

To make this more precise, we consider an error-based feedback

ID control action u PID corresponding to 

 PID := −k̄ p (s − r) − k̄ i x c − k̄ d v , 
˙ x c = s − r, 

(5)

here the controller state x c is the integral of the position error

 − r and k̄ p , k̄ i , k̄ d represent the proportional, integral, derivative

ains, respectively. We emphasize that the presence of an integra-

or action in controller (5) is motivated by the fact that it is able

o compensate for an unknown static friction F̄ s , which is typically

he case in motion applications, so that the controller can robustly

eal with the static friction effect. 

By defining the overall state z := (x c , s − r, v ) , Equations (4) and

5) (with u = u PID ) can be written in a compact form as 

˙ 
 ∈ F 0 (z) := A 0 z + b 0 �(v ) , (6a)

A 0 := 

[ 

0 1 0 

0 0 1 

−k i −k p −k d 

] 

, b 0 := 

[ 

0 

0 

1 

] 

, 

here the nonlinear friction component � is given by 

(v ) := −F s Sign (v ) + ψ(v ) , (6b)

nd we introduced the normalized parameters 

 p := 

k̄ p 

m 

, k d := 

k̄ d + ᾱv 

m 

, k i := 

k̄ i 
m 

, F s := 

F̄ s 

m 

, ψ(v ) := 

ψ̄ (v ) 
m 

. (7)

e observe that matrix pair ( A 0 , b 0 ) naturally takes a controllable

anonical form. 

emark 1. As emphasized in Leine and van de Wouw (2008) and

 Bisoffi et al., 2018a ), the closed-loop dynamics described by

6) can be mathematically interpreted as the Filippov regular-

zation ( Filippov, 1988 ) of any alternative discontinuous descrip-

ion of the nonsmooth friction phenomenon obtained by replacing

4) with the single valued right-hand side 

˙ 
 = 

{
1 
m 

(
−F̄ s sign (v ) − ᾱv v + ψ̄ (v ) + u 

)
, if v � = 0 

“don’t care”, if v = 0 , 
(8)

here the “don’t care” selection does not make any difference in

he Filippov regularization (which discards sets of measure zero

uch as the collection of states where v = 0 ). Since this regular-

zation is well-posed according to Filippov (1988) , the existence of

olutions is structurally guaranteed. One may be tempted to be-

ieve that this Filippov regularization introduces extra solutions as

ompared to (8) , due to the “Filippov-enriched” right-hand side.

emma 1 below clarifies that this is not the case because solutions

re unique. 

The following lemma, whose proof is a straightforward exten-

ion of (Bisoffi et al., 2018a, Lemma 1) (see also (Beerens et al.,

anuary 2020, Lemma 1) ) establishes desirable properties of model

6) . 
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Fig. 3. Nonlinear component � of a friction graph satisfying Assumption 2 . Overall 

effect � ( ), static contribution −F s Sign (·) ( ), velocity-dependent contribution 

ψ ( ). Assumption 1 corresponds to the green curve being zero (in other words, 

the red curve coincides with the blue one). (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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emma 1. If ψ is globally Lipschitz, then for any initial condition

(0) ∈ R 

3 , system ( 6 ) has a unique solution 2 defined for all t ≥ 0 . 

emark 2. Lemma 1 can also be proven by taking a different per-

pective based on maximal monotone operators, see ( Brezis, 1973;

inty, 1962; Peypouquet & Sorin, 2010 ). In fact, system (6) can be

ritten as − ˙ z ∈ �(z) + γ (z) , where �(z) := b 0 F s Sign (b 
 
0 

z) defines a

aximally monotone operator � and γ (z) := −A 0 z − b 0 ψ(b 
 0 z) de-

nes a globally Lipschitz function γ under the stated assumptions.

n this case the celebrated work of Brezis ( Brezis, 1973 ) establishes

he existence and uniqueness of a solution to (6) from any initial

ondition, see (Brezis, 1973, Theorem 3.17) together with (Brezis,

973, Proposition 3.8) (as we are working in a finite-dimensional

tate space) and (Brezis, 1973, Remark 3.14) . 

Given the popularity of PID controllers in the industry, we em-

loy here reset enhancements that can be used in parallel with

 classical PID scheme. In this way, no additional (complex) de-

ign and tuning procedures need to be performed, which lowers

he threshold of using our proposed PID-based reset controllers in

ractice. Our control problem then corresponds to the following

ualitative goal. 

roblem 1. For the plant in (4) , design reset-enhanced PID con-

rollers that 

1. globally asymptotically stabilize the setpoint (s, v ) = (r, 0) for

any constant r, robustly with respect to unknown friction char-

acteristics �̄; 

2. result in short settling times (thereby providing good transient

performance). 

The design of reset enhancements for PID controllers differs sig-

ificantly depending on whether the friction force is of Coulomb

r Stribeck type. Hence, we describe more precisely these two sce-

arios in the following Section 2.3 . The motivation for introducing

eset enhancements is presented in Section 3 . 

.3. The Coulomb and Stribeck scenarios 

In this paper we will address two relevant scenarios for the

losed-loop model (5), (4) (equivalently, (6) ), characterized by the

ollowing two assumptions. 

ssumption 1 (Coulomb friction) . The scaled velocity weakening

omponent ψ in (6b) is identically zero. 3 

Moreover, the normalized gains k p , k d and k i in (7) satisfy

 i > 0, k p > 0, k d k p > k i , which is equivalent to the matrix A 0 in

6) being Hurwitz. 

ssumption 2 (Stribeck friction) . The scaled velocity weakening

omponent ψ in (6b) is globally Lipschitz, satisfies | ψ( v )| ≤ F s and

 ψ( v ) ≥ 0 for all v , and is linear in a small enough interval around

ero (namely, for some ɛ v > 0, | v | ≤ ε v ⇒ ψ(v ) = L 2 v ). 4 
Moreover, the normalized gains k p , k d and k i in (7) satisfy

 i > 0, k p > 0, k d k p > k i , which is equivalent to the matrix A 0 in

6) being Hurwitz. 

We emphasize that Assumption 1 is stronger than (implies)

ssumption 2 , but characterizes a simplified setting addressed, e.g.,

n Armstrong and Amin (1996) and more recently in our works

 Beerens et al., 2019; Bisoffi et al., 2018a ). Assumption 2 is weaker

nd therefore requires more advanced techniques, presented in
2 We consider a solution to (6) to be any absolutely continuous function z that 

atisfies ˙ z (t) ∈ F 0 (z(t)) for almost all t in its domain. 
3 Equivalently, the velocity weakening component ψ̄ in (2) is identically zero. 
4 Equivalently, the velocity weakening component ψ̄ in (2) is globally Lipschitz, 

atisfies | ̄ψ (v ) | ≤ F̄ s and v ̄ψ (v ) ≥ 0 for all v , and is linear in a small enough interval 

round zero (namely, for some ε̄ v > 0 , | v | ≤ ε̄ v ⇒ ψ̄ (v ) = ̄L 2 v ). 

h  

i  

s  

l  

C  

t  

p

eerens et al. (January 2020 ). These assumptions are exemplified in

ig. 3 . We emphasize that ɛ v can be selected arbitrarily small, and

he corresponding linearity requirement in Assumption 2 is quite

ild. 

emark 3. Under the stated assumptions on ψ , it holds that

(v ) ⊆ [ −F s , F s ] for all v , hence the PID-controlled system

6) evolves like a linear dynamical system subject to a globally

ounded input. Well-known results about bounded stabilization of

inear systems ( Sontag, 1984 ) establish that global exponential sta-

ility of the origin of these systems can only be obtained if the

nderlying linear dynamics (that is, the one governed by A 0 ) is

xponentially stable. This is the main motivation for the Hurwitz

ssumption on A 0 , namely there is no interest in addressing situ-

tions where the PID feedback is not stabilizing in the absence of

oulomb and Stribeck effects. 

Under either Assumption 1 or 2 , it is straightforward to prove

hat the set of all the equilibria of dynamics (6) is exactly the

ollowing compact set (appearing as a segment in the three-

imensional state space): 

 := { z = (x c , s − r, v ) : s − r = v = 0 , k i x c ∈ [ −F s , F s ] } . (9) 

e emphasize that any element of A is such that the position er-

or s − r and the velocity v are both zero and is therefore a desir-

ble equilibrium from the point of view of Problem 1 . On the other

and, the fact that a continuum of equilibria exists in A makes the

tabilization problem challenging and requiring non-standard con-

epts of set stability, generalizing the usual stability properties of

solated equilibria (e.g., the origin). 

In the next section we will demonstrate the problems that arise

ith standard PID control in the two scenarios corresponding to

ssumptions 1 and 2 , thereby highlighting the challenges and the

eed for new control strategies. Then in the rest of the paper we

ill propose several advanced control strategies comprising exten-

ions of PID controllers and exploiting ideas from reset control.

hese extensions will be shown to outperform the classical PID

ontrollers described in (5) . 

. Simulation and limitations of classical PID 

The presence of a set-valued friction calls for dedicated nu-

erical tools to simulate system (6) (or (6) with the reset en-

ancements presented in this paper). To this end, we provide

n Section 3.1 a numerical scheme based on well-known time-

tepping techniques, but specialized for (6) . This allows us to il-

ustrate in Section 3.2 the corresponding evolutions of (6) in the

oulomb and Stribeck scenarios, which already shows the limita-

ions of classical PID controllers and provide motivations for the

roposed reset enhancements. 
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3.1. Simulation using time-stepping techniques 

Even though Lemma 1 ensures that under Assumptions 1 and

2 dynamics (6) has unique solutions, simulating this unique solu-

tion from a specific initial condition is not a trivial task. Indeed, in

the stick phase the correct value of the friction force u f cannot be

determined only based on the velocity v . We discuss in this section

a time-stepping simulation framework that can be effectively used

to compute the solution by suitably determining the friction force

at each simulated time instant. The time-stepping method is dis-

cussed here in a concise manner. More in-depth information can

be found in, e.g., ( Leine & Nijmeijer, 2004 ) and ( Acary & Brogliato,

2008 ). 

The equations of motion of the considered closed-loop system

follow from (6) and are given by 

m ̇

 v − h (v ) + ̄k p (s − r) + ̄k d v + ̄k i x c = λ, 

˙ x c = s − r, 
(10)

with h (v ) := ψ̄ (v ) − ᾱv v being the smooth friction forces, and

where λ denotes the Coulomb friction force, which satisfies the

set-valued force law 

λ ∈ −F̄ s Sign (v ) . (11)

In order to suitably implement the constitutive friction force law

in a time stepping algorithm, we express (11) in the form of an

implicit equation (instead of an inclusion). To this end, we employ

an equivalent formulation using the concept of a proximal point on

a convex set. The proximal point y ∗ on a closed set C is defined as

follows: 

y ∗ = prox C (y ) := argmin ȳ ∗∈ C ‖ y − ȳ ∗‖ , (12)

which we use to equivalently write the set-valued force law (11) in

a proximal point formulation as follows: 

λ = prox C (λ − μv ) , C = { λ : −F̄ s ≤ λ ≤ F̄ s } , μ > 0 . (13)

Note that the proximal point formulation in (13) is indeed equiv-

alent to the set-valued friction law (11) , which can be verified by

evaluating all possible λ: 

1. | λ| > F̄ s : not possible, as λ lies outside the set C ; 

2. λ = F̄ s : we have F̄ s = prox C ( ̄F s − μv ) , which yields v ≤ 0 because

μ> 0, i.e., negative sliding or stick; 

3. −F̄ s < λ < F̄ s : λ lies in the interior of C , i.e., stick; 

4. λ = −F̄ s : we have −F̄ s = prox C (−F̄ s − μv ) , which yields v ≥ 0 be-

cause μ> 0, i.e., positive sliding or stick. 

We care to stress that the proximal point formulation of the

set-valued Coulomb force law (13) is an implicit equation, which

still expresses a set-valued force law. The actual friction force is

determined, at every specific time instant, by both the force law

and the equations of motion. 

We will now discuss the well-known time-stepping algorithm

of Moreau (see, e.g., (Acary & Brogliato, 2008, Chap. 10) ). The

method is based on a time discretization of the position s and ve-

locity v using a fixed step size. Consider a single step of length �t

from a starting time t A to an end time t E , whereby t E = t A + �t .

The position s A and the velocity v A are known at t = t A . First, the

algorithm performs a mid-step 

5 : s M 

= s A + 

1 
2 �tv A . Now, discretiz-

ing the equation of motion (10) yields 

m (v E − v A ) = h (v A )�t − k̄ p (s A − r)�t − k̄ d v A �t − k̄ i x c �t + λ�t, 

(14)
5 In a more general setting, the midpoint is often used to determine whether or 

not the contact is closed, which is always the case in our situation. 

n  

i  

z  

c  
here v E and λ are unknown. The controller state x c can be de-

ermined by a numerical integration scheme (e.g., backward Eu-

er or midpoint rule), as discussed below. The set of equations to

e solved by the time-stepping routine is given by (13) and (14) .

his set of nonlinear algebraic equations must be solved to ob-

ain the unknowns v E and λ, which can be done by several nu-

erical techniques such as Newton’s method or fixed-point itera-

ions. To this end, the prox-function in (13) can be easily imple-

ented by rewriting the function as a “min-max” function, i.e.,

rox C (y ) = min ( max (−F̄ s , y ) , F̄ s ) , for C as in (13) . Note that this

unction corresponds to saturating variable y between the values

F̄ s and F̄ s . When the velocity and the friction force at the end of

he time step are obtained, the procedure is completed by comput-

ng the position at time t = t E as s E = s M 

+ 

1 
2 �tv E . 

We provide a pseudo-code example in Algorithm 1 that can be

sed to simulate the controlled frictional system. The initial con-

itions s (0) = s 0 , v (0) = v 0 , and x c (0) = x c, 0 are assumed to be

nown, and a fixed-point iteration scheme is used to determine

he velocity and friction force at the end of each time step. Note

hat we use the auxiliary variables ˜ λ and 

˜ v E (with index i ) within

he iteration loop to iteratively solve (13) and (14) . The parame-

er μ in (13) is a tuning parameter trading off convergence speed

ersus accuracy, and “tolerance” is a user-defined error criterion of

he fixed-point iteration. Finally, we use a trapezoidal numerical

cheme to determine the integral action of the PID controller at

ach time step, without loss of generality. 

lgorithm 1 Time-stepping using fixed-point iterations. 

1: s A [0] = s E [0] = s 0 , v A [0] = v E [0] = v 0 , x c [0] = x c, 0 ; 

2: for k = 1 , 2 , . . . , N do 

3: s A [ k ] = s E [ k − 1] ; v A [ k ] = v E [ k − 1] ; 

4: s M 

[ k ] = s A [ k ] + 

1 
2 �tv A [ k ] ; 

5: x c [ k ] = 

1 
2 �t ( s A [ k − 1] + s A [ k ] ) ; 

6: converged = 0 ; i = 0 ; ˜ λ[0] = 0 ; 

7: while not converged do 

8: i = i + 1 ; 

9: ˜ v E [ i ] = 

1 
m 

(
h (v A [ k ]) − k̄ p (s A [ k ] − r) − k̄ d v A [ k ] − k̄ i x c [ k ] + 

˜ λ[ i − 1] 

)
�t + v A [ k ] ; 

10: ˜ λ[ i ] = min 

(
max 

(
−F̄ s , ̃  λ[ i − 1] − μ˜ v E [ i ] 

)
, F̄ s 

)
; 

11: error = | ̃ λ[ i ] − ˜ λ[ i − 1] | ; 
12: converged if: error < tolerance ; 

13: end while 

14: λ[ k ] = ̃

 λ[ i ] ; v E [ k ] = ̃

 v E [ i ] ; 
15: s E [ k ] = s M 

[ k ] + 

1 
2 �tv E [ k ] ; 

16: end for 

emark 4. Above we discussed the time-stepping scheme that

e apply throughout this paper for simulating systems with fric-

ion. Strictly speaking, the algorithm is more complicated than

eeded as it also applies to systems with impacts (in case, for in-

tance, of unilateral constraints in mechanical systems), see, e.g.,

 Acary & Brogliato, 2008 ). Indeed, we could also have used the

ore basic backward Euler scheme of the form 

z k +1 −z k 
˜ h 

∈ A 0 z k +1 +
 0 ψ(b 
 

0 
z k +1 ) − b 0 F s Sign (b 
 

0 
z k +1 ) , where ˜ h is the fixed step size.

his scheme stems originally from the work of Moreau ( Moreau,

977 ), where it was used for approximating the evolution of dy-

amical systems called sweeping processes − ˙ x ∈ ∂ϕ(t, x ) , where

ϕ denotes the subdifferential of a convex function ϕ, see, e.g.,

 Brezis, 1973; Minty, 1962; Peypouquet & Sorin, 2010 ). In fact,

ote that our set-valued Coulomb friction characteristic v �→ Sign ( v )

s the subdifferential of the absolute value function v �→ | v |, and

 �→ b 0 F s Sign (b 
 0 z) can be written as the subdifferential of the

onvex function z �→ F s | b 
 z| . Note that subdifferentials of (lower

0 
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Fig. 4. Simulations with the parameters of Table 1 and Coulomb friction (namely 

ψ ≡ 0) and without reset compensation. Evolutions of s − r (top), v (middle) and 

u PID (bottom). Slow convergence is apparent from the top plot. 
emi-continuous) convex functions are maximally monotone, see

emark 2 . The consistency (in the sense that the numerical ap-

roximations converge to an actual solution of the differential in-

lusion when the step size ˜ h goes to zero) of Moreau’s back-

ard Euler scheme (under maximal monotonicity assumptions)

as been studied extensively, see, e.g. ( Camlibel, Iannelli, & Tan-

ani, 2019; Moreau, 1977; Peypouquet & Sorin, 2010 ) and the

eferences therein. For the consistency of backward-Euler-based

chemes for the computation of periodic solutions to maximally

onotone differential inclusions, see, e.g., ( Heemels, Sessa, Vasca,

 Camlibel, 2017 ). 

emark 5. The time-stepping scheme of Algorithm 1 can be ex-

ended to cope with reset control strategies. In this case, the reset

onditions should be evaluated at the beginning of each time-step,

nd the integrator state x c should be updated in accordance with

he reset map before entering the “while”-loop. The time step-

ing framework is then essentially combined with an event-driven

cheme. 

.2. Limitations of classical PID control 

With Algorithm 1 we can simulate (6) for the two scenarios of

oulomb and Stribeck friction characterized in Assumptions 1 and

 . For the Coulomb case we select ψ ≡ 0 in (6b) , whereas for the

tribeck case we select 

(v ) := 

{
L 2 v , | v | ≤ ε v 
(F s − F ∞ 

) κv / (1 + κ| v | ) , | v | > ε v 
(15) 

ith F ∞ 

≤ F s . In particular, we use the parameters reported in

able 1 , providing the function ψ represented in Fig. 6 . This se-

ection clearly satisfies Assumption 2 . 

The PID gains in Table 1 are selected in such a way that matrix

 0 in (6) has two dominant complex conjugate eigenvalues and a

eal one (namely, −0 . 19 ± i 0 . 79 and −6 . 01 ). This configuration cor-

esponds to tuning the PID gains (on the linear part through loop-

haping) in order to achieve fast closed-loop response times at the

ost of some overshoot. This choice is most typical to obtain fast

ositioning in high-precision motion systems and is therefore the

ain setting discussed throughout this paper. Nevertheless, in our

ssumptions 1 and 2 we only enforce a mild requirement that A 0 

e Hurwitz and this leads to two other characteristic configura-

ions: the case where A 0 has all real eigenvalues or has a dominant

eal eigenvalue and two complex conjugate ones. These two alter-

ative settings are less interesting technologically and are briefly

llustrated in Section 8 . 

Solutions to (6) for different initial conditions (each initial con-

ition corresponding to a color) in the two scenarios of Coulomb

nd Stribeck friction are reported, respectively, in Figs. 4 and 5 . In

he figures, the control input u PID is obtained from (5) and (7) with

he values of m and ᾱv reported in Table 1 . 
Table 1 

Parameters considered for the simulations of the paper. 

Parameter and corresponding symbol Value 

Static friction F s 1 

Velocity weakening zero-velocity slope L 2 13.1 

Velocity weakening linear half-interval ɛ v 10 −3 

Velocity weakening asymptotic term F ∞ 1/3 

Velocity weakening shape parameter κ 20 

Proportional gain k p 3 

Integral gain k i 4 

Derivative gain k d 6.4 

Coulomb reset compensation factor α 1 

Mass m 1 

Viscous friction ᾱv 0 

Fig. 5. Simulations with the parameters of Table 1 and Stribeck friction (namely ψ 

as in (15) ) and without reset compensation. Evolutions of s − r (top), v (middle) and 

u PID (bottom). Persistent oscillations are apparent from the top plot. 
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The simulation in Fig. 4 (Coulomb scenario) illustrates that a

lassical PID controller induces asymptotic convergence to the set-

oint (s, v ) = (r, 0) , but also that the presence of Coulomb friction

nduces long stick phases where s − r is constant and u PID evolves

ccording to linear ramps in time (due to the dynamics ˙ x c = s − r

or the integral error). The depleting and refilling of the integral

rror associated with these ramps can be avoided through a reset

ction on x c when entering a stick phase, as detailed in Section 5 ,
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Fig. 6. Function ψ in (15) with the parameters of Table 1 , and the corresponding 

graph of � in (6b) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Solutions of Fig. 4 (Coulomb friction) represented in the coordinates (16) and 

the corresponding distance from A in (19) . 
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and motivate reset enhancements of PID controllers to improve the

settling times. 

The simulation in Fig. 5 (Stribeck scenario) illustrates that a

classical PID controller does not provide solutions converging to

the setpoint (s, v ) = (r, 0) , due to the persistent periodic oscilla-

tions of s − r (the so-called hunting phenomenon). This limitation

of a classical PID controller can also be overcome by reset enhance-

ments, as detailed in Section 6 . 

4. A Lyapunov perspective on the stability of A 

4.1. Stick and slip observed from insightful coordinates 

The simulations of Figs. 4 and 5 clearly reveal the stick-slip na-

ture of the solutions to (6) . To better understand and characterize

this behavior, it is convenient to represent dynamics (6) via the

next coordinate transformation, proposed in Bisoffi et al. (2018a) ,

x := 

[ 

σ
φ
v 

] 

:= 

[ −k i (s − r) 
−k p (s − r) − k i x c 

v 

] 

, (16)

where σ is a generalized position error, φ is the controller state

encompassing the proportional and integral control actions, and v

is the velocity of the mass. 

This change of coordinates is nonsingular under

Assumption 1 or 2 ( k i is positive) and it rewrites (6) as 

˙ x ∈ F (x ) := Ax + b 0 �(v ) , (17)

A := 

[ 

0 0 −k i 
1 0 −k p 
0 1 −k d 

] 

, b 0 := 

[ 

0 

0 

1 

] 

with the set-valued map � defined in (6b) . As compared to (6) ,

matrix A here can be considered part of an observable canonical

form. 

A first reason for introducing the new representation (17) is

that the set of equilibria A in (9) simplifies to 

A = { x ∈ R 

3 : σ = v = 0 , | φ| ≤ F s } , (18)

which, unlike (9) , is independent of the PID gains. The simple ex-

pression of A in (18) allows writing explicitly the distance of a

point x to the set A as 

| x | 2 A := 

(
inf 
y ∈A 

| x − y | )2 = σ 2 + v 2 + dz F s (φ) 2 (19)
here dz F s (φ) is the symmetric scalar deadzone function returning

ero when φ ∈ [ −F s , F s ] , as defined in Notation. Indeed, the right-

ost expression in (19) follows from separating the cases φ < −F s ,

 φ| ≤ F s , φ > F s and applying the definition given by the middle ex-

ression of (19) . 

A second reason for using the coordinates x in (16) is that these

rovide a simplified representation of the sets where solutions are

n the stick phase (the intervals where the top plots of Figs. 4 and

 are flat, namely the intervals where v ≡ 0) or in the slip phase

the time intervals associated with the speed bumps in the middle

lots of Figs. 4 and 5 ). In particular, we may define 

 stick := { x ∈ R 

3 : v = 0 , | φ| ≤ F s } , (20a)

 slip := R 

3 \E stick . (20b)

More specifically, the generalized controller state φ represents

ll the nonzero components of the control action at zero velocity

that is, the proportional and integral terms), and according to (20) ,

he size of φ compared to the static friction F s at v = 0 determines

hether the solution evolves in a stick phase or not. 

The same simulations reported in Figs. 4 and 5 (corresponding

o the parameters selection in Table 1 ) are represented in Figs. 7

nd 8 using the new coordinates x = (σ, φ, v ) of (16) , shown in the

hree top plots. The 3D plots in the middle of Figs. 7 and 8 show

he corresponding phase portraits and provide an insightful inter-
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Fig. 8. Solutions of Fig. 5 (Stribeck friction) represented in the coordinates (16) and 

the corresponding distance from A in (19) . 
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retation of the evolution of the solutions with respect to the at-

ractor A in (18) , which is represented as a dashed red segment. 

In both figures, solutions revolve around the attractor through

lternating slip phases (in the two tilted regions E slip where

 φ| > F s ) and stick phases (in the flat region E stick where v = 0 and

 φ| ≤ F s ). Moreover, from Fig. 7 we observe that in the Coulomb

ase solutions slowly approach the attractor (the slow convergence

henomenon already noted in Section 3.2 ) while in the Stribeck

ase, these solutions settle on a persistent oscillation away from

he attractor (the hunting phenomenon). This fact is confirmed by

he bottom plots of Figs. 7 and 8 , showing the evolution of the

squared) distance to A defined in (19) . In summary, Figs. 7 and

 clearly illustrate the fact that | x | A converges to zero in the

oulomb case and exhibits persistent oscillations (instability) in

he Stribeck case. 

The simulations reported in Fig. 7 suggest that, under

ssumption 1 , the PID controlled feedback is globally asymptot-

cally stable. This statement is the main result of Bisoffi et al.

2018a) and is stated below. 

heorem 1. Under Assumption 1 , the compact set A in (9) is glob-

lly KL asymptotically stable for ( 6 ). Namely, there exists a class KL
unction β such that all solutions x to ( 6 ) satisfy 

 x (t) | A ≤ β(| x (0) | A , t) , ∀ t ≥ 0 , (21)
here the distance | x | A of a point x to the set A is defined in (19) .

quivalently, the compact set in (18) is globally KL asymptotically

table for (17) . 

Note that no smaller set could be proven to be globally attrac-

ive (therefore asymptotically stable) because A is a union of equi-

ibria. It is also emphasized in Bisoffi et al. (2018a) that the stated

tability property is robust to perturbations as an immediate con-

equence of the results in (Goebel et al., 2012, Ch. 7) and the well-

osedness of dynamics (6) (equivalently, (17) ). 

emark 6. Theorem 1 addresses the case of a symmetric Coulomb

riction F s Sign ( v ) in (6b) (with ψ ≡ 0), but it easily extends to

he case of a translated attractor, when considering asymmetric

oulomb friction F s Sign (v ) − ψ 0 , for any constant scalar ψ 0 ∈ R .

his fact can be proven by shifting by ψ 0 the coordinate φ in-

roduced in (16) and observing that the closed-loop description

17) remains the same and is independent of ψ 0 . 

In Sections 4.2 and 4.3 , the analysis of key system properties

nd a Lyapunov function are presented that underlie the technical

roof of Theorem 1 , but also form a stepping stone towards the

nalysis and design of reset controllers in later sections. 

.2. Semiglobal dwell time and hybrid extended model 

Representation (17) provides a clear understanding of the main

ffect of the set-valued nature of Coulomb friction (the vertical

ine at v = 0 in Fig. 3 ), which literally tears apart the two half-

paces where φ > F s and φ < −F s by introducing a “stick band” sur-

ounding the line v = 0 , φ = 0 and corresponding to set E stick in

20a) and to the flat surface in the 3D plots of Figs. 7 –8 . With-

ut static friction (namely when F s = 0 ), the two half-spaces re-

onnect and the dynamics reduces to a PID-controlled mass with

 single-valued friction element that is linear in the Coulomb case

nd nonlinear in the Stribeck case. 

Although the effect of Coulomb friction is elegantly and con-

isely represented by the differential inclusion model in (17) , one

ay equivalently represent the solutions simulated in Figs. 7 –8 as

onsmoothly transitioning between two types of dynamical evolu-

ions associated with the stick and slip phases. The advantage of

uch an alternative description is that it allows building a hybrid

xtended model whose transition from stick to slip (and viceversa)

s conveniently represented by discrete jumps of an additional log-

cal variable, and whose stability properties are easier to certify

y means of hybrid Lyapunov functions. This approach is exploited

ere for the Coulomb case of Assumption 1 and in Section 6 for

he Stribeck case of Assumption 2 . 

To suitably define a hybrid extended model, consider first the

ollowing sets intuitively associated with a stick-to-slip transi-

ion: 

S 1 := { x : v = 0 ∧ 

(
φ > F s ∨ (φ = F s ∧ σ > 0) 

)} (22) 

 −1 := { x : v = 0 ∧ 

(
φ < −F s ∨ (φ =−F s ∧ σ < 0) 

)} . 
hen the following semiglobal dwell-time result has been proven

n (Bisoffi et al., 2019, Lemma 1) for the Coulomb case of

ssumption 1 . 

emma 2. Under Assumption 1 , for each compact set K, there exists

(K) > 0 such that each solution x = (σ, φ, v ) of (17) starting in K
atisfies the following. For each t such that x (t) ∈ S 1 ∪ S −1 , it holds

hat 

x (t) ∈ S 1 ⇒ v (s ) ≥ 0 , 

 (t) ∈ S −1 ⇒ v (s ) ≤ 0 , 

or all s ∈ [ t, t + δ(K)] . 
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Fig. 9. Top: hybrid automaton underlying (23). Bottom: “projections” on the 

( ̄σ , φ̄, ̄v ) space of the flow and jump sets in (23f) - (23j) . 
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Intuitively speaking, Lemma 2 states that once a solution per-

forms a stick-to-slip transition, it cannot perform a velocity rever-

sal unless a minimum positive time (namely, at least δ(K) time

units) has elapsed. Note that for any compact set K of initial con-

ditions, the quantity δ(K) remains uniform over all solutions start-

ing from that specific compact set. δ(K) is clearly expected to

shrink to zero as K becomes increasingly larger, because increas-

ingly faster slip transients can occur in the corresponding solu-

tions. 

Remark 7. A key property needed for proving the uniformity

stated in Lemma 2 is that for each compact set K, the ensuing so-

lutions are uniformly bounded. This boundedness result easily fol-

lows from the fact that, under Assumption 1 , the set-valued map

� is uniformly bounded by F s and acts, in (17) , on an exponen-

tially stable linear system, which is then clearly bounded-input

bounded-output stable. 

As suggested in Bisoffi et al. (2019) , based on Lemma 2 , we may

introduce an extended hybrid model capable of semiglobally repre-

senting dynamics (17) . More precisely, the following hybrid model

in (23) semiglobally reproduces the solutions of (17) in the sense

rigorously characterized in Lemma 3 below. The extended hybrid

model enables constructing simplified Lyapunov functions to prove

Theorem 1 and is parametrized by a quantity δ, from Lemma 2 . Its

extended state augments the state x in (17) with a logical variable

q̄ and a timer τ̄ as 

x̄ := ( ̄σ , φ̄, ̄v , q̄ , τ̄ ) ∈ �̄ := R 

3 × {−1 , 0 , 1 } × [0 , 2 δ] , (23a)

where q̄ ∈ {−1 , 0 , 1 } characterizes positive ( ̄q = 1 ) or negative ( ̄q =
−1 ) velocity slip, or stick ( ̄q = 0 ). Variable τ̄ prevents unwanted ar-

tificial Zeno solutions. Using the framework in Goebel et al. (2012) ,

the hybrid extended model H δ is defined as 

H δ : 

{
˙ x̄ = f̄ ( ̄x ) , x̄ ∈ C̄ := C slip ∪ C stick (23b) 

x̄ + ∈ Ḡ ( ̄x ) , x̄ ∈ D̄ := 

⋃ 

i ∈{ 1 , −1 , 0 } D i , (23c) 

where the flow and jump maps are given by 

f̄ ( ̄x ) := 

⎡ 

⎢ ⎢ ⎣ 

−k i ̄v 
σ̄ − k p ̄v 

−k d ̄v + | ̄q | ̄φ − q̄ F s 
0 

1 − dz 1 ( ̄τ/δ) 

⎤ 

⎥ ⎥ ⎦ 

, Ḡ ( ̄x ) := 

⋃ 

i : ̄x ∈ D i 
{ g i ( ̄x ) } , (23d)

the different jump maps g i are given by 

g 1 ( ̄x ) := 

⎡ 

⎢ ⎢ ⎣ 

σ̄

φ̄
v̄ 
1 

0 

⎤ 

⎥ ⎥ ⎦ 

, g −1 ( ̄x ) := 

⎡ 

⎢ ⎢ ⎣ 

σ̄

φ̄
v̄ 

−1 

0 

⎤ 

⎥ ⎥ ⎦ 

, g 0 ( ̄x ) := 

⎡ 

⎢ ⎢ ⎣ 

σ̄

φ̄
v̄ 
0 

τ̄

⎤ 

⎥ ⎥ ⎦ 

(23e)

and the flow and jump sets are given by 

 slip :={ ̄x ∈ �̄ : | ̄q | = 1 , q̄ ̄v ≥ 0 } (23f)

 stick :={ ̄x ∈ �̄ : q̄ = 0 , ̄v = 0 , | ̄φ| ≤ F s } (23g)

D 1 :={ ̄x ∈ �̄ : q̄ = 0 , ̄v = 0 , φ̄ ≥ F s , τ̄ ∈ [ δ, 2 δ] } (23h)

D −1 :={ ̄x ∈ �̄ : q̄ = 0 , ̄v = 0 , φ̄ ≤ −F s , τ̄ ∈ [ δ, 2 δ] } (23i)

D 0 :={ ̄x ∈ �̄ : | ̄q | = 1 , ̄v = 0 , q̄ ̄φ ≤ F s } . (23j)

The flow and jump maps for τ̄ ensure the invariance of the set

[0, 2 δ] for τ̄ , as per (23a) . Since D i ∩ D k = ∅ for i, k ∈ {−1 , 0 , 1 } and

i � = k , Ḡ is actually always a single-valued mapping. A pictorial rep-

resentation of (23) can be found in Fig. 9 , which gives a clear hy-

brid automaton interpretation of (23) similar to the one discussed

in (Goebel et al., 2012, §1.4.2) . 
As an important observation, the first three components of the

ow map in (23d) coincide in C slip and C stick with the right-hand

ides of (17) in the considered case of ψ ≡ 0. Then, it is intu-

tive that a solution to H δ captures the solution to (17) when the

ondition τ̄ ∈ [ δ, 2 δ] is removed from (23h) - (23i) . In such a case,

owever, (23) would also exhibit an undesired behavior associated

ith nonconverging Zeno solutions, not physically relevant, that

eep jumping forever without ever flowing (e.g., one such defective

olution would originate from the initial condition v̄ = 0 , φ̄ = F s ,

¯ � = 0 ). The timer τ̄ in H δ removes these Zeno solutions, and ex-

loits the inherent dwell-time property of solutions to (17) estab-

ished in Lemma 2 to make sure that the (unique, from Lemma 1 )

olution to (17) is semiglobally captured by H δ . Indeed, after solu-

ions to H δ exit a stick phase and enter a slip phase jumping from

 1 or D −1 , the timer is reset to zero via g 1 or g −1 and enforces

hat a time δ elapses before solutions exit a stick phase again (due

o the condition τ̄ ∈ [ δ, 2 δ] ), which corresponds to the property of

olutions to (17) in Lemma 2 . 

The fact that model H δ correctly represents, in a semiglobal

ashion, dynamics (17) is established in the next lemma, which is

roven in (Bisoffi et al., 2019, Lemma 2) . 

emma 3. Under Assumption 1 , for each compact set K ⊂ R 

3 , there

xists δ > 0 satisfying the following. For each solution t �→ x (t) =
(σ (t) , φ(t) , v (t)) of (17) starting at x 0 = (σ0 , φ0 , v 0 ) ∈ K, there exist

 0 and τ 0 and a solution x̄ = ( ̄σ , φ̄, ̄v , q̄ , τ̄ ) of H δ in (23) starting at

¯ 0 = (σ0 , φ0 , v 0 , q 0 , τ0 ) such that, for all t ≥ 0, 

¯ (t, j (t)) = σ (t) , φ̄(t, j (t)) = φ(t) , ̄v (t, j (t)) = v (t) , (24)

here j (t) = min 

(t,k ) ∈ dom ̄x 
k . 

The intuition behind Lemma 3 is that there exists one solution

o (23) that can evolve hybridly (by jumping and flowing) so as

o reproduce the (unique) flowing solution to (17) , although there

ight be other solutions to H δ that are not complete. An appealing

eature of the hybrid automaton (23) is that the component q̄ of its

olutions is informative about whether the solution is currently in

 stick phase (then its physical components are evolving in E stick 

s per (20) ), in which case q̄ = 0 , or in a slip phase with positive

elocity ( ̄q = 1 ) or negative velocity ( ̄q = −1 ). 

emark 8. The above result demonstrates that from compact sets

f initial states the hybrid model (23) can reproduce the solutions

f our differential inclusion model (17) . An interesting connection

f this result lies in the notion of (bi)simulation used in computer

cience. In computer science, the notions of simulation (or bisimu-

ation) relations have been used for approximations of purely dis-

rete systems, see ( Clarke Jr, Grumberg, Kroening, Peled, & Veith,

018; Milner, 1989 ), and, in recent years they were also extended

o continuous and hybrid systems ( Haghverdi, Tabuada, & Pappas,
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Fig. 10. Evolution of the Lyapunov function V in (25) along the solutions repre- 

sented in Fig. 7 , and of V̄ in (27) evaluated along the corresponding solutions to 

(23), as established in Lemma 3 . q̄ (along with σ̄ ) highlights stick and slip phases. 
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0 05; Pappas, 20 03; Pola, van der Schaft, & Di Benedetto, 2004;

an der Schaft, 2004 ). In fact, in these terms, one could say that

he hybrid model (23) semiglobally “simulates” the differential in-

lusion (17) , or, in other words, is a semiglobal simulation model

f the differential inclusion. This provides an interesting perspec-

ive on the statement in Lemma 3 . 

.3. Lyapunov functions for proving Theorem 1 

The proof of Theorem 1 given in ( Bisoffi et al., 2018a ) is quite

echnical and makes use of the discontinuous Lyapunov-like func-

ion 

 (x ) := 

[
σ
v 

]
 [ k d 
k i 

−1 

−1 k p 

][
σ
v 

]
+ min 

f ∈ F s Sign (v ) 
| φ − f | 2 

= min 

f ∈ F s Sign (v ) 

[ 

σ
φ − f 

v 

] 
 

P 

[ 

σ
φ − f 

v 

] 

, 

(25a) 

here the matrix P is given by 

 := 

⎡ 

⎣ 

k d 
k i 

0 −1 

0 1 0 

−1 0 k p 

⎤ 

⎦ . (25b) 

Function (25a) is rather intuitive because P in (25b) is a posi-

ive definite solution to A 


 P + PA ≤ 0 for A defined in (17) and V

orresponds to the minimum quadratic form induced by P when

ccounting for all possible values allowed by the set-valued fric-

ion model. Note that for v � = 0 the minimization in (25a) becomes

rivial because f can take only the value F s sign ( v ). Intuitively speak-

ng, the second term in (25a) mimics the deadzone-shaped tearing

isible in the 3D plot of Fig. 7 and suitably accounts for the flat

tick region associated with v = 0 and | φ| ≤ F s . 

Note that function V is discontinuous. For example, if we eval-

ate V along the sequence of points (σk , φk , v k ) = (0 , 0 , ε k ) for

k ∈ (0, 1) converging to zero as k = 1 , 2 , . . . approaches ∞ , V con-

erges to F 2 s , even though its value at zero is zero. Nevertheless,

 is nonincreasing along solutions and positive definite, as estab-

ished in the next proposition, combining the results of (Bisoffi

t al., 2018a, Lemma 2) and (Beerens et al., January 2020, Eq. (28)) .

roposition 1. The Lyapunov-like function in (25) is lower semicon-

inuous and, under Assumption 1 , it enjoys the following properties: 

1. V (x ) = 0 for all x ∈ A and there exist c 1 > 0, c 2 > 0 such that, for

all x ∈ R 

3 , 

c 1 | x | 2 A ≤ V (x ) ≤ c 2 | x | 2 + 2 F 2 s ;
2. each solution x = (σ, φ, v ) to (17) satisfies for all t 2 ≥ t 1 ≥ 0 

V (x (t 2 )) − V (x (t 1 )) ≤ −c 

∫ t 2 

t 1 

v (t ) 2 dt , (26)

with c := 2(k p k d − k i ) > 0 . 

Besides its intuitive relevance, function V is only a first step to-

ards the proof of Theorem 1 given in Bisoffi et al. (2018a) , which

equires nontrivial tools from nonsmooth analysis. This was a main

otivation for introducing the extended hybrid model (23). Indeed,

odel (23) simplifies the Lyapunov characterization of the desir-

ble behavior of solutions by way of introducing, in Bisoffi et al.

2019) , an equivalent smooth version of function V , corresponding

o 

¯
 ( ̄x ) := 

[
σ̄
v̄ 

]
 [ k d 
k i 

−1 

−1 k p 

][
σ̄
v̄ 

]
+ | ̄q | ( ̄φ − q̄ F s ) 

2 + (1 − | ̄q | )( dz F s ( ̄φ)) 2 . (27) 
unction V̄ is smooth in the extended state variable x̄ :=
( ̄σ , φ̄, ̄v , q̄ , τ̄ ) and it is natural to consider the extended counter-

art of the attractor A in (18) as 

¯
 := { ̄x ∈ �̄ : σ̄ = v̄ = 0 , φ̄ ∈ F s Sign ( ̄q ) } . 
ith respect to this extended attractor, V̄ enjoys the properties in

he next proposition (established in (Bisoffi et al., 2019, Lemma 3) ),

here we emphasize that we may now use a (simpler) standard

radient in place of integral expression in (26) . 

roposition 2. Under Assumption 1 , the Lyapunov function V̄ in

27) enjoys the following properties. 

i) V̄ is positive definite with respect to Ā in C̄ ∪ D̄ and radially un-

bounded relative to C̄ ∪ D̄ ; 

ii) with c := 2(k p k d − k i ) > 0 as in Proposition 1 , the directional

derivative of V̄ along the flow dynamics of (23) yield 

〈∇ ̄V ( ̄x ) , f̄ ( ̄x ) 〉 = −c ̄v 2 , ∀ ̄x ∈ C slip ∪ C stick (28a)

ii) V̄ and the jump dynamics of (23) yield 

V̄ (g) − V̄ ( ̄x ) ≤ 0 , ∀ ̄x ∈ D̄ , ∀ g ∈ Ḡ ( ̄x ) . (28b)

The matching and decreasing properties of V in

roposition 1 and of V̄ in Proposition 2 along their respective

olutions are illustrated in Fig. 10 , where the same colors are

sed for solutions starting from the same initial conditions. As

stablished in Lemma 3 , the two functions provide matching

volutions in the t direction, even though it should be kept in

ind that V̄ is evaluated along a hybrid solution of (23), whereas

 is evaluated along a (continuous-time) solution of (17), (6b) . In

he lower part of Fig. 10 we also represent the state variable q̄ ,

howing the different stick ( ̄q = 0 ) and slip ( | ̄q | = 1 ) phases of the

orresponding hybrid solutions. 

The advantage of using function V̄ for (23) over using func-

ion V for (17) comes from the fact that (28) enables applying in

 straightforward way the hybrid invariance principle of (Goebel

t al., 2012, Ch. 8) to conclude global attractivity of A , whereas

he global attractivity proof of Bisoffi et al. (2018a) (relying on V )
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o  
required using an ad-hoc nonsmooth (and lengthy) proof. Provid-

ing simplified Lyapunov certificates for attractivity (and stability) is

key to moving on to the next step of certifying these properties of

A under the action of the reset compensation laws. 

More specifically, using the tools introduced in this section, we

first address in Section 5 the design problem of reset augmenta-

tions of the PID control scheme with the goal of transient perfor-

mance improvement with Coulomb friction. Then, in Section 6 , we

present a different type of reset PID solution capable of eliminating

the hunting phenomenon and guaranteeing asymptotic stability of

the equilibrium set in the presence of Stribeck friction. 

5. Reset compensation of Coulomb friction 

While we already established in Theorem 1 that the set-

point is asymptotically stable in the Coulomb friction case of

Assumption 1 , the slow decrease of the Lyapunov functions shown

in Fig. 10 is associated with undesirably slow transients. As such,

the PID controller does not provide satisfactory transient perfor-

mance. In this section, we first establish rigorously, in Section 5.1 ,

the lack of exponential convergence to A ; then we present in

Section 5.2 the reset PID augmentation proposed in Beerens et al.

(2019) , aimed at improving the transient response. While the re-

sults of Section 5.2 (and those of Beerens et al. (2019) ) only pro-

vide a proof of asymptotic convergence, the increased transient

performance with the proposed reset laws is explained and clari-

fied in Section 5.3 , where we discuss exponential convergence of a

specific set of solutions, when represented in suitable coordinates

stemming from a generalization of the hybrid automaton represen-

tation introduced in Section 4.2 . 

5.1. Properties not enjoyed by A 

With Coulomb friction, namely under Assumption 1 , the main

result of Bisoffi et al. (2018a) , summarized in Theorem 1 above, es-

tablishes a desirable global asymptotic stability property of the set

A of all equilibria in (18) for the closed loop (6) . Nevertheless, the

simulations reported in Fig. 7 reveal an undesirably slow conver-

gence to A of the solutions. These long settling times are caused

by the depletion and refilling of the integral buffer that is required

to overcome the static friction F s upon overshoot, resulting in a

change of sign of the integrator state of the PID controller (see the

bottom plot of u PID in Fig. 4 or the plot of φ in Fig. 7 ). This process

is generally slow and takes increasingly more time with a decreas-

ing position error, resulting in long periods of stick and thus a poor

transient performance in the sense of settling times. This is also

visible from the long intervals when q̄ = 0 and V (or V̄ ) remains

constant in Fig. 10 . 

Slow convergence is well characterized mathematically by rec-

ognizing that the set A is indeed globally asymptotically stable,

but it is not locally exponentially stable, which means that there

exists no uniform exponential bound enjoyed by all solutions in

any small neighborhood of A . The lack of local exponential stabil-

ity has been pointed out in (Bisoffi et al., 2018a, Remark 3) and

is recalled here for the reader’s convenience. Consider an initial

condition x (0) = (σ (0) , φ(0) , v (0)) = (εk , 0 , 0) with εk ∈ (0, F s ) for

all k = 1 , 2 , . . . . Then we have from (19) , | x (0) | 2 A = ε2 
k 

. Since εk < F s
and v (0) = 0 , the initial evolution is in a stick phase, characterized

by φ(t) = εk t, σ (t) = εk , v (t) = 0 for all t ∈ [0 , T k ] := 

[ 
0 , F s 

εk 

] 
(this

is because φ(T k ) = F s ). Then, for a sequence { εk } ∞ 

k =1 
with εk → 0 as

k → ∞ , we obtain the following sequence of solutions: 

| x k (t) | A = | x k (0) | A = εk for all t ≤ T k , 

with lim 

k →∞ 

εk = 0 and lim 

k →∞ 

T k = + ∞ . 
(29)
uch a sequence of solutions clearly evolves arbitrarily close to A
nd remains at a constant distance to A for an arbitrarily long

ime, thus excluding local exponential convergence. 

emark 9. The sequence of solutions constructed in (29) also

hows that the set of equilibria A does not enjoy the property

f pointwise asymptotic stability (PAS), also called semistability

see Goebel (2019) and references therein). PAS is defined as the

roperty that every point in A be a Lyapunov stable equilibrium,

nd that each solution converges to one of the equilibria in the

et. The reason why the solutions in (29) disprove the PAS prop-

rty of A is that those solutions start arbitrarily close to the ori-

in x ◦ := (0 , 0 , 0) ∈ A , and each one of them reaches the point

 (T k ) = (εk , F s , 0) whose Euclidean distance from x ◦ is larger than

 s . As a consequence, x ◦ is not Lyapunov stable and PAS does not

old. 

This performance deficiency of PID control for motion systems

ith Coulomb friction inspired us to propose a PID-based reset

ontrol strategy, discussed in the next section. 

.2. Reset PID with time regularization 

The slow convergence induced by standard PID control for

 motion system with Coulomb friction has been addressed in

eerens et al. (2019) . Therein, we proposed a reset PID control

cheme cast in the context of hybrid dynamical systems and

trongly inspired by the Lyapunov function (25) (equivalently, its

hybrid” version in (27) ). In the design of this reset controller, it

as been essential to notice that, whenever φv ≤ 0, it is possible to

eset the controller state φ to any fraction −αφ (with α ∈ [0, 1])

f its opposite value without experiencing any increase of the Lya-

unov function. This reset mechanism is inspired by the intuition

hat changing the sign of φ allows jumping rapidly to the opposite

ide of the “stick band” (corresponding to the set E stick := { x ∈ R 

3 :

 = 0 , | φ| ≤ F s } in (20a) – see also the phase portrait of Fig. 7 , for

xample), thereby significantly decreasing the duration of the stick

hase, which is the main responsible for slow convergence. Reduc-

ng parameter α can then be used as an indication of how cautious

his reset action should be (lower α being more cautious) and can

elp in robustifying the scheme with respect to, e.g., asymmetric

riction characteristics. 

The exact reset PID solution presented in Beerens et al.

2019) extends the continuous-time model (17) and uses space reg-

larization (namely it inhibits the resets when φ is too small) to

void persistent resets resulting into nonconverging Zeno behav-

or. In particular, the resets are therein inhibited when | φσ | is

maller than a space regularization parameter ε. Here, in view of

he semiglobal dwell time guarantee established in Lemma 2 , we

refer using time regularization; namely, resets are inhibited for

ome time δ after each reset action. The advantage of this second

pproach, enabled by the recent intuitions reported in Bisoffi et al.

2019) , is that it preserves the homogeneity of the jump set. More

recisely, a time-regularized version of the design in Bisoffi et al.

2019) provides the following reset-augmented version of dynam-

cs (17) (equivalently, (6) ): 
 

 

 

 

 

˙ x ∈F (x ) = 

[ −k i v 
σ − k p v 

φ − k d v − F s Sign (v ) 

] 

˙ τ =1 − dz 1 (τ /δ) , 

(x, τ ) ∈ C, (30a)

 

 

 

 

 

x + = g(x ) := 

[ 

σ
−αφ

v 

] 

τ+ = 0 , 

(x, τ ) ∈ D. (30b)

In (30), the flow map is inherited from (17) in the Coulomb case

f Assumption 1 ( ψ ≡ 0), and the timer τ is introduced to enforce
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Fs =

−Fs =

I

Fig. 11. State evolution of (30) illustrating Remark 10 . The integrator resets via a 

sign change of φ are clearly visible just before t = 6 and just after t = 10 . 
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Fig. 12. State variables ( σ , φ, v ) and logarithm of | x | 2 A associated with two pairs 

of solutions (blue and orange), each pair starting from the same initial conditions 

for the Coulomb scenario with no reset as in (17) (dashed) and with resets as in 

(30) (solid). (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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6 To be precise, the Lyapunov-based proof of Theorem 1 given in Bisoffi et al. 

(2018a) used continuous-time invariance principles, therefore a proof based on hy- 

brid meagre-limsup invariance principles was given in Beerens et al. (2019) . 
he time regularization mechanism commented above. The set D ,

here the resets in (30b) are triggered, is selected as 

 := { (x, τ ) : (φσ ≤ 0) ∧ (φv ≤ 0) ∧ (τ ∈ [ δ, 2 δ]) } , (30c) 

hereas the flow set C is the closure of its complement ( τ evolves

n [0, 2 δ]), namely 

 := { (x, τ ) : (φσ ≥ 0) ∨ (φv ≥ 0) ∨ (τ ∈ [0 , δ]) } . (30d) 

As specified in Table 1 , the simulations reported in this section

bout the reset-PID feedback (30) focus on the high-performance

ase α = 1 . Smaller selections of α < 1 lead to increased robust-

ess to asymmetric friction. Such selections are illustrated in the

xperiments reported in Section 7 . 

emark 10. Let us elaborate on the rationale behind the design of

he jump set D using Fig. 11 . Loosely speaking, we reset φ when

he solution simultaneously satisfies two conditions: 1) it enters

 stick phase (where v = 0 ), and 2) the generalized position σ
vershoots the setpoint. A reset of φ in such conditions reduces

he time needed for the depletion and refilling of the integrator

uffer, and consequently the stick duration. Fig. 11 illustrates this

eset design for the case α = 1 (namely φ+ = −φ), which is the

ost representative one. In particular, φv ≤ 0 robustly represents

he zero crossing condition for the velocity, while φσ ≤ 0 only oc-

urs after an overshoot (interval I in the figure), thereby avoiding

esets when stick is reached without overshoot, due to, e.g., differ-

nt initial conditions, gain tuning, or friction characteristics. 

The effectiveness of the reset strategy in (30) can be appre-

iated in the comparative results of Fig. 12 , where two solutions

dashed) from Fig. 7 (i.e., for the Coulomb friction scenario and

ithout resets) are compared with two solutions (solid) of the

losed loop (30), with resets, starting from the same initial con-

itions and with the same parameters from Table 1 . It is apparent

rom the generalized position σ shown in the top plot, that the

ettling time is greatly reduced by the reset actions. This is even

ore evident from the bottom plot, showing the logarithm of the

squared) distance to A of the state component x . The faster con-

ergence of the solid curves as compared to the dashed ones is

learly visible on a logarithmic scale. 

Let us now further explain how the resets enable this transient

erformance improvement. Comparing the dashed and solid curves

n the middle-top plot in Fig. 12 it is evident that the jumps of φ
ause a substantial reduction of the stick phase, thereby inducing

aster convergence. A closer inspection of Fig. 12 actually reveals

hat over time the evolution of φ converges to a solution reset-

ing between F s and −F s , thereby precisely compensating for the

nknown friction force with the correct magnitude and the correct
ign. In Section 5.3 , the technical reasons for this behavior of φ are

xplored in greater detail. 

emark 11. The jump set D is expressed in (30c) in terms of x .

he states φ and σ are not measurable in the case of an unknown

ass m , as one can see from (16) and (7) . However, even for an

nknown mass m , we can define from (16) and (7) the measurable

tates 

◦ := mσ = −k̄ i (z 1 − r) , (31a) 

◦ := mφ = −k̄ p (z 1 − r) − k̄ i z 3 . (31b)

This leads to jump conditions that can be checked based on the

easurable states σ ◦ and φ◦, in which m does not appear. 

The main result of Beerens et al. (2019) establishes GAS of A
hen using the reset mechanism in (30) for the space-regularized

olution (without timer τ ). The proof of GAS of A relies on the

ollowing extension of Proposition 1 . 

roposition 3. Under Assumption 1 , for any α ∈ [0, 1], the Lyapunov-

ike function V in (25) satisfies all the items of Proposition 1 along

ynamics (30), in addition to the jump condition 

 (g(x )) − V (x ) ≤ 0 , for all (x, τ ) ∈ D. 

Using Proposition 3 , the Lyapunov-based proof 6 of

heorem 1 can be adapted to prove global KL asymptotic stability

f the extended attractor A × [0 , 2 δ] for the extended state ( x,

) of the reset dynamics (30) (where τ ∈ [0, 2 δ] is essentially a

don’t care” condition). As a matter of fact, resets cannot destroy

he Lyapunov decrease and the proof of the reset-free case of

heorem 1 . The next theorem is then the time-regularized result

arallel to the space-regularized result in Beerens et al. (2019) . 
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Fig. 13. Solutions of (30) from the same initial conditions as those of Fig. 7 and the 

corresponding distance from A in (19) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. Evolution of function V of (25a) for the solutions to (30) reported in 

Fig. 13 (top). Logarithm of V suggesting exponential convergence (middle), and 

inter-reset times suggesting homogeneous behavior (bottom). The vertical segments 

of the bottom plot are positioned at each reset time, and their height is the differ- 

ence between the current and the previous reset time. 
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Theorem 2. Under Assumption 1 , for each α ∈ [0, 1] and each δ > 0,

the compact set A × [0 , 2 δ] (see (18) ) is globally KL asymptotically

stable for (30), and function V in (25) is non-increasing and converg-

ing to zero along all solutions. 

To illustrate Theorem 2, Fig. 13 shows the solutions to (30)

starting from the same initial conditions as those used in Fig. 7 in

the absence of resets (the colors are matched for the same initial

conditions). The fast convergence to zero of the (squared) distance

to A × [0 , 2 δ] reported in the lower plot clearly illustrates the pos-

itive effects of the resets (this was already observed in the lower

plot of Fig. 12 using a logarithmic scale). An even deeper under-

standing of the behavior of solutions is visible in Fig. 14 . This fig-

ure shows the evolution of the Lyapunov function V along the same

solutions (again, with matching colors), which confirms the results

of Proposition 3 and should be compared with the evolution of V

along the solutions to (17) (namely, the classical PID closed loop

without resets) already reported in Fig. 10 . Fig. 14 also shows the

logarithm of V (middle plot) and the inter-reset times for each one

of the five simulated initial conditions (bottom plot, again with

matching colors). Both these plots seem to suggest that solutions

converge exponentially to A , thereby improving upon the lack of

exponential convergence discussed in Section 5.1 . These exponen-

tial convergence features are discussed in the next section. 
.3. Remarks on local exponential convergence 

In this section, we will present a conjecture, with supporting

nalysis, showing that a relevant subset of solutions to (30) ac-

ually converges exponentially fast to the set A . This provides a

artial explanation for the observations on the exponential decay

f the Lyapunov function in the previous section and highlights a

eneficial performance feature of the proposed reset controller. 

Inspecting the simulation results of Figs. 13 and 14 a natural

uestion arises about whether the attractor A × [0 , 2 δ] is actually

ocally exponentially stable (in addition to globally asymptotically

table, as established in Theorem 2 ) for the reset-augmented dy-

amics (30). This intuition is supported by the two bottom plots

n Fig. 14 . The second plot in Fig. 14 clearly suggests a linearly de-

reasing upper bound for log ( V ), i.e., a decreasing exponential up-

er bound for V . The third plot in Fig. 14 shows an almost periodic

attern for the reset times along all five simulated solutions (even

hough the resets are state-triggered), suggesting that the solutions

njoy a desirable homogeneity property where smaller evolutions

re scaled versions of the larger ones. 

A fact that was not observed in Beerens et al. (2019) is that,

espite the desirable transient performance improvement, the set

 × [0 , 2 δ] is not locally exponentially stable for (30). The lack

f (local) exponential convergence is established by using the se-

uence of solutions defined in the text before (29) . These solu-

ions (augmented with any evolution of the additional state τ ) are

lso solutions to (30), because they belong to the flow set C in

30d) during their initial stick phase. As a consequence, while the

eset strategy in (30) provides very desirable simulation and exper-

mental results (see the experiments in Beerens et al. (2019) and in

ection 7 ), it does not resolve the lack of (local) exponential stabil-

ty pointed out in Section 5.1 . 

A partial explanation of the desirable exponential decay visible

n the solutions to (30) represented in Fig. 14 is given by introduc-

ng a generalized version of the hybrid dynamics (23) stemming
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x̄ ∈ D−1

x̄ ∈ D1x̄ ∈ D0

x̄ ∈ D0

Cstick

q̄ = −1
ā = −1

Cstick

Cslip Cslip

q̄ = 0
ā = 1

q̄ = 1
ā = 1

q̄ = 0
ā = −1

Fig. 15. Extended hybrid automaton underlying (32) with the new logical state ā 

capturing the alternating velocity over consecutive stick-slip transitions. 
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rom the observation that, when the PID gains selection induces

vershoots, the state variable φ is never zero along these solu-

ions and always satisfies φv ≥ 0 with a suitable initialization of

through the controller state x c (see the corresponding traces at

he top of Fig. 13 and also the traces in Fig. 11 ). Consider then the

ugmented state 

¯
 ∈ �̄ := 

{
x̄ = ( ̄σ , φ̄, ̄v , q̄ , τ̄ , ā ) ∈ R 

3 × {−1 , 0 , 1 } × [0 , 2 δ] 

× {−1 , 1 } : ā ̄φ ≥ 0 , ā ̄v ≥ 0 

}
, (32a) 

here we keep the same symbols as in (23a) to avoid making the

otation unnecessarily complex. State x̄ incorporates the extra logic

ariable ā ∈ {−1 , 1 } satisfying ā ̄φ ≥ 0 (and therefore ā ̄φ > 0 along

he solutions of interest because neither of them is ever zero) in

ddition to ā ̄v ≥ 0 because we observed above that φv ≥ 0. 

With this new variable ā , the automaton of Fig. 9 is lifted into

he extended automaton shown in Fig. 15 , which better highlights

he fact that stick-slip and slip-stick transitions are characterized in

ig. 13 by alternating and consistent signs of v̄ and φ̄ (and there-

ore also of the new variable ā ). 

The extended hybrid automaton then corresponds to (23b),

23c) with the extended selections of f̄ and Ḡ as 

f̄ ( ̄x ) := 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

−k i ̄v 
σ̄ − k p ̄v 

−k d ̄v + | ̄q | ( ̄φ − ā F s ) 
0 

1 − dz 1 ( ̄τ/δ) 
0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, Ḡ ( ̄x ) := 

⋃ 

i : ̄x ∈ D i 
{ g i ( ̄x ) } , (32b)

here we used the fact that ψ ≡ 0 for the Coulomb case. Moreover,

he jump maps in (32b) are selected as 

 1 ( ̄x ) := 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

σ̄

φ̄
v̄ 
1 

0 

ā 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, g −1 ( ̄x ) := 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

σ̄

φ̄
v̄ 

−1 

0 

ā 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, g 0 ( ̄x ) := 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

σ̄

−αφ̄
v̄ 
0 

τ̄
−ā 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, (32c)

here we incorporated the reset law (30b) and the toggling of the

ew logic variable ā within g 0 , because the jump set in (30c) trig-

ers jumps whenever the automaton of Fig. 15 performs a transi-

ion from q ∈ {−1 , 1 } (slip) to q = 0 (stick). The description is com-

leted by the next flow and jump sets 

 slip :={ ̄x ∈ �̄ : | ̄q | = 1 , q̄ ̄v ≥ 0 } (32d)

 stick :={ ̄x ∈ �̄ : q̄ = 0 , ̄v = 0 , ā ̄φ ≤ F s } (32e)

 1 :={ ̄x ∈ �̄ : q̄ = 0 , ̄v = 0 , ā ̄φ ≥ F s , τ̄ ∈ [ δ, 2 δ] } (32f)

 −1 :={ ̄x ∈ �̄ : q̄ = 0 , ̄v = 0 , ā ̄φ ≥ F s , τ̄ ∈ [ δ, 2 δ] } (32g)

 0 :={ ̄x ∈ �̄ : | ̄q | = 1 , ̄v = 0 , ā ̄φ ≤ F s } , (32h)

here we emphasize the consistent expressions of C stick , D 1 , D −1 

nd D 0 using the new variable ā , which follow immediately from

23g) –(23j) together with the constraints on �̄ in (32a) . 
The hybrid dynamics (23b), (23c) with the extended selections

32) can be now represented using the set of coordinates 

ˆ 
 := ( ̂  σ , ˆ φ, ̂  v , ̂  q , ˆ τ , ̂  a ) = ( ̄σ , φ̄ − ā F s , ̄v , q̄ , τ̄ , ā ) . (33a) 

oordinates (33a) intentionally disregard the “stick” strip corre-

ponding to the flat region in the phase portrait of Fig. 13 where

 ̄φ| ≤ F s , by way of the shifted state variable φ̄ − ā F s , where ā tog-

les between ± 1. These new coordinates are easily shown to sat-

sfy the following transformed version of dynamics (23b), (23c),

32) (where we used ā 2 = 1 ) 

˙ ˆ x = 

ˆ f ( ̂  x ) , ˆ x ∈ 

ˆ C := 

ˆ C slip ∪ 

ˆ C stick 

ˆ x + ∈ 

ˆ G ( ̂  x ) , ˆ x ∈ 

ˆ D := 

⋃ 

i ∈{ 1 , −1 , 0 } ˆ D i 

(33b) 

ˆ f ( ̂  x ) := 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

−k i ̂  v 
ˆ σ − k p ̂  v 

−k d ̂  v + | ̂  q | ̂  φ
0 

1 − dz 1 ( ̂  τ/δ) 
0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, ˆ G ( ̂  x ) := 

⋃ 

i : ̂ x ∈ ̂ D i 

{ ̂  g i ( ̂  x ) } , (33c) 

ˆ 
 1 ( ̂  x ) := 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ˆ σ
ˆ φ
ˆ v 
1 

0 

ˆ a 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, ̂  g −1 ( ̂  x ) := 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ˆ σ
ˆ φ
ˆ v 

−1 

0 

ˆ a 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, ̂  g 0 ( ̂  x ) := 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ˆ σ

(1 − α) ̂  a F s − α ˆ φ
ˆ v 
0 

ˆ τ
− ˆ a 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

ˆ 
 slip :={ ̂  x : | ̂  q | = 1 , ̂  q ̂ v ≥ 0 } (33d)

ˆ 
 stick :={ ̂  x : ˆ q = 0 , ̂  v = 0 , ̂  a ̂  φ ≤ 0 } (33e)

ˆ 
 1 := 

ˆ D −1 :={ ̂  x : ˆ q = 0 , ̂  v = 0 , ̂  a ̂  φ ≥ 0 , ˆ τ ∈ [ δ, 2 δ] } (33f)

ˆ 
 0 :={ ̂  x : | ̂  q | = 1 , ̂  v = 0 , ̂  a ̂  φ ≤ 0 } . (33g)

The interesting feature of dynamics (33) is that with the excep-

ion of the second entry in ˆ g 0 , all the flow and jump maps and the

ow and jump sets are partially homogeneous in the coordinates

( ̂  σ , ˆ φ, ̂  v ) . This property also applies to the second entry of ˆ g 0 for

he special case α = 1 , which implies (1 − α) ̂  a F s = 0 . We then have

he next property. 

emma 4. Select α = 1 . For any solution ˆ x = ( ̂  σ , ˆ φ, ̂  v , ̂  q , ̂  τ , ̂  a ) of dy-

amics (33) and any λ> 0, function ˆ x λ := (λ ˆ σ , λ ˆ φ, λˆ v , ̂  q , ̂  τ , ̂  a ) is a

olution too. 

Exploiting the homogeneity property of Lemma 4 and the fact

hat the two hybrid models (23b), (23c), (32) and (33) provide rep-

esentations of the solutions to (30), we may better understand

nd characterize the exponential decrease that we had noticed in

he time evolutions of Fig. 12 , in addition to the desirable prop-

rty (also visible in Fig. 13 ) that the norm of the state variable

asymptotically converges to F s , with the actual variable φ tog-

ling persistently (and homogeneously) between its positive and

egative estimate. We recall that this fact ( φ converging to the un-

nown F s in a resetting fashion and immediately compensating for

t since it represents the proportional-integral action of the con-

roller) was already observed in the simulations in Section 5.2 . 

More specifically, we reach the following conjecture, whose

roof would be lengthy and is left as future work along the main

teps provided in the sketch below. We emphasize that an assump-

ion is made in this conjecture about a specific set of solutions

nder consideration, both in terms of their initial conditions and

heir evolution. While this condition might be hard to check theo-

etically, we emphasize that in many of the simulations shown in

his paper (and experienced experimentally) we exactly see these

ypes of solutions, which hopefully provides a convincing argu-

ent about the relevance of this statement. 
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Fig. 16. Solutions of (33) from initial conditions corresponding to those of 

Fig. 13 and the corresponding value of the quadratic Lyapunov-like function ˆ V sat- 

isfying (35). 
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Conjecture 1. Consider system (30) with α = 1 and assume that the

set of solutions starting at the beginning of a slip phase (namely,

with x (0 , 0) = (σ (0 , 0) , φ(0 , 0) , v (0 , 0)) = (σ0 , F s sign (σ0 ) , 0) for

any σ 0 � = 0 ) are characterized by alternating positive/negative slip to

stick transitions with φ never vanishing. Then such solutions converge

uniformly and exponentially, namely there exist M > 0 and μ> 0 such

that ∣∣∣∣∣
[ 

σ (t, j) 
φ(t, j) − sign (φ(t, j)) F s 

v (t, j) 

] 

∣∣∣∣∣ ≤ Me −μt | σ0 | . (34)

Moreover, | φ( t, j )| converges exponentially to F s . 

Sketch of the proof. While a complete proof of Conjecture 1 is

beyond the scope of this paper, we believe that most of the neces-

sary tools are well summarized in this section. In particular, a first

step should involve a formal proof of the fact that the solutions of

(23b), (23c), (32) are a representation of the solutions to (30) (in

the sense of Lemma 3 ) for the initial conditions specified in the

statement. Then the GAS result of Theorem 2 implies that solutions

to (23b), (23c), (32) (equivalently (33)) converge to a bounded set,

and finally this means from Lemma 4 that solutions converge ex-

ponentially and uniformly to zero (homogeneity indeed can be

used to show uniform exponential convergence as in Goebel and

Teel (2010) or also (Teel, Forni, & Zaccarian, 2012, §IV.A) ). The ex-

ponential bound (34) then is carried over from the hybrid automa-

ton (33) to the original model (30) due to the representation prop-

erties established in the first step. Moreover, by assumption the so-

lutions under consideration start at 

∣∣∣∣∣
[ 

σ (0 , 0) 

φ(0 , 0) − sign (φ(0 , 0)) F s 
v (0 , 0) 

] 

∣∣∣∣∣ =
∣∣∣∣∣
[ 

σ0 

0 

0 

] 

∣∣∣∣∣, which explains the right-hand side in (34) . Note also

that the dwell time enjoyed by the dynamics enables transform-

ing any (t + j) exponential bound into a bound only involv-

ing the t direction. Finally, since | ̄φ(t, j) − ā (t, j) F s | = | φ(t, j) −
sign (φ(t, j)) F s | converges exponentially to zero (since φ is never

zero), this implies that | φ( t, j )| converges exponentially to

F s . �
Conjecture 1 captures the main intuition behind the reset PID

solution of Beerens et al. (2019) reported in (30). Loosely speaking,

the essential effect of the reset mechanism is to force solutions to

jump across the “stick band” E stick (the flat region in the phase por-

trait of Fig. 13 ), as indicated by the jumps (dotted) in Fig. 13 . This

transforms the dynamics into a homogeneous behavior emerging

from patching together the two “slip” half spaces E slip (the tilted

regions in the phase portrait of Fig. 13 ). 

Fig. 16 shows the hybrid representation of the solutions shown

in Fig. 13 using the alternative coordinates ( ̂  σ , ˆ φ, ̂  v ) . Observe the

desirable linear-like exponentially converging aspect of the result-

ing transients, revealing the successful effect of the reset PID com-

pensation. In fact, the actual dynamics obeys a nontrivial switching

mechanism between (short) stick phases and slip behavior and this

mechanism is necessary for compensating the unknown static fric-

tion level F s . The bottom plot of Fig. 16 shows the evolution of the

logarithm of the quadratic function 

ˆ V ( ̂  x ) := 

⎡ 

⎣ 

ˆ σ
ˆ φ
ˆ v 

⎤ 

⎦ 


 

P 

⎡ 

⎣ 

ˆ σ
ˆ φ
ˆ v 

⎤ 

⎦ , with P

defined in (25b) . It is straightforward to show that this function

satisfies 

〈∇ ̂

 V ( ̂  x ) , ˆ f ( ̂  x ) 〉 = −c ̂ v 2 , ∀ ̂

 x ∈ 

ˆ C slip ∪ 

ˆ C stick (35a)

ˆ 
 (g) − ˆ V ( ̂  x ) ≤ 0 , ∀ ̂

 x ∈ 

ˆ D , ∀ g ∈ 

ˆ G ( ̂  x ) , (35b)

along dynamics (33), where c := 2(k p k d − k i ) > 0 was introduced

in Proposition 1 . In particular, it is evident that the evolution of the
ogarithm of ˆ V at the bottom of Fig. 16 mimics the corresponding

volution for function V in (25), reported in Fig. 14 . 

. Reset compensation of Stribeck friction 

In this section, we illustrate how a reset-augmented PID con-

roller remedies the lack of convergence to the setpoint witnessed

y a classical PID, in the Stribeck scenario of Assumption 2 . 

.1. Lyapunov-based understanding of hunting 

It is commonly acknowledged that the so-called “velocity weak-

ning” shape of the friction nonlinearity � is the key characteristic

f Stribeck friction that causes instability and the oscillatory re-

ponse called hunting. In particular, as visible in the red curve of

ig. 3 , or in the lower diagram of Fig. 17 , as the magnitude of the

elocity increases from zero, the magnitude of the friction force

weakens”. Simulating model (23) enables understanding the net

ffect of the velocity weakening: at a stick-to-slip transition the

ontrol force exactly compensates for the static friction F s . Imme-

iately after this transition the magnitude of the friction force u f 
ecreases (due to the velocity weakening characteristic of Stribeck

riction) and the control action dramatically overcompensates the

riction. The latter induces a highly accelerated motion leading

o overshoot. This mechanism ultimately leads to the oscillatory

hunting) response. 
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Fig. 17. Function ψ given in (15) with increasing values of κ and decreasing values 

of εv , and corresponding graph of � in (6b) . 

Fig. 18. Typical evolution of the position error (top), the friction force (middle) and 

the net force acting on the mass with the steepest (darkest) Stribeck function in 

Fig. 17 . 
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Fig. 19. Evolution of the Lyapunov function V̄ ∞ in (37) along the solutions to (23), 

(36) and corresponding values of q̄ , φ̄ and σ̄ with the steepest (darkest) Stribeck 

function in Fig. 17 . 
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To better understand the instability described above, we con-

ider the prototypical Stribeck effect shown in Fig. 17 (correspond-

ng to equation (15) ) for increasing values of κ and decreasing val-

es of ɛ v (for example we choose here ε v = 1 /κ). Fig. 18 shows

he position error s − r, the friction force u f and the net force

 net = u PID − u f acting on the mass for the steepest (darkest) fric-

ion curves of Fig. 17 , clearly showing an abrupt friction force drop

or such a large κ . 

The limiting shape of � , corresponding to the darkest curve

n Fig. 17 , resembles a Coulomb friction contribution with ampli-

ude F ∞ 

away from zero, but a larger value of static friction F s > F ∞ 

hat must be overcome by the control input to exit a stick phase,

hus causing a discontinuous drop of the friction force in Fig. 18 at

ny stick-to-slip transition. This limiting phenomenon can be effec-

ively modeled by adapting the hybrid automaton underlying (23)

ith the flow map f̄ of (23d) replaced by 

f̄ ( ̄x ) := 

⎡ 

⎢ ⎢ ⎣ 

−k i ̄v 
σ̄ − k p ̄v 

−k d ̄v + | ̄q | ̄φ − q̄ F ∞ 

0 

1 − dz 1 ( ̄τ/δ) 

⎤ 

⎥ ⎥ ⎦ 

. (36) 
uch an adaptation accounts for the fact that the value of | �( v )|

hen v � = 0 is now F ∞ 

instead of F s . Instead, the quantity character-

zing the stick and slip sets ( ̄q = 0 or | ̄q | = 1 , respectively) in (23f) –

23j) remains unchanged and equal to F s because in Fig. 17 we

learly see that φ̄ (corresponding to the PID force when the ve-

ocity is zero) must overcome F s to exit a stick phase (namely to

ompensate for the static component of the friction when the ve-

ocity is zero). 

Simulating model (23), (36) we may further understand the net

ffect of the velocity weakening by inspecting the evolution of the

ollowing adaptation of the smooth function in (27) , 

¯
 ∞ 

( ̄x ) := 

[
σ̄
v̄ 

]
 [ k d 
k i 

−1 

−1 k p 

][
σ̄
v̄ 

]
(37) 

+ | ̄q | ( ̄φ − q̄ F ∞ 

) 2 + (1 − | ̄q | )( dz F ∞ ( ̄φ)) 2 , 

hose evolution is reported in Fig. 19 . In particular, it is immediate

o verify that properties (28) are still satisfied by V̄ ∞ 

along the so-

utions to (23), (36) , except for the flowing intervals in C stick when

 ̄φ| ∈ (F ∞ 

, F s ) (corresponding to the intervals marked by the dotted

ertical lines in Fig. 19 ). 

Since both σ̄ and v̄ are constant during those stick intervals,

ne can well interpret this phenomenon as an injection of en-

rgy into the Lyapunov function caused by the ramping up of | ̄φ|
rom F ∞ 

to F s , as illustrated in the middle-top plot of Fig. 19 .

his increase of V̄ ∞ 

is subsequently compensated by the quasi-

omogeneous decrease of V̄ ∞ 

happening in the follow-up slip

hase, where v̄ � = 0 introduces dissipation from (28a) . 

This interplay between injected and dissipated energy can be

roven to always lead to the occurrence of a nontrivial attractive

ybrid periodic orbit by following similar steps to those reported

n Bisoffi, Forni, Lio, and Zaccarian (2018b) (see also Lou, Li, & San-

elice (2018) ). While a rigorous proof of this energy-based expla-
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Fig. 20. The Coulomb-based reset PID solution of Section 5 reduces the stick phases 

in the presence of Stribeck friction but does not eliminate the hunting instability. 

Function V̄ ∞ is defined in (37) . 
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nation of the hunting phenomenon is beyond the scope of this pa-

per, the key mechanism behind it is that the injection of energy

is always constant and equal to (F s − F ∞ 

) 2 (due to the second line

of (37) ), whereas the dissipated energy during the flow phase is

proportional to the value of σ̄ at the stick-to-slip transition. In-

deed, with a larger | ̄σ | at the stick-to-slip transition we obtain a

larger velocity response v̄ and thus a more significant decrease of
¯
 ∞ 

. Instead with a smaller | ̄σ | at the stick-to-slip transition, the

velocity v̄ is smaller and the decrease of V̄ ∞ 

is arbitrarily small.

As a result, there exists a critical value of | ̄σ | (at the stick-to-slip

transition) such that the dissipated energy is equal to the injected

energy, thus characterizing an attractive periodic hybrid motion (a

hybrid periodic orbit) associated with the hunting phenomenon. 

While this analysis is carried out for the limiting case of κ →
+ ∞ , the essential closed-loop behavior shown in Fig. 18 is quali-

tatively the same. 

6.2. Stribeck effects vs Coulomb ones 

We illustrate here the fact that the Stribeck-induced prob-

lem addressed in this section is substantially different from the

Coulomb problem solved in Section 5 . In particular, the reset con-

trol strategy of Section 5 does not provide a solution for solving

the hunting problem (i.e., for stabilizing the unstable setpoint). In-

deed, as established in Theorem 1 , the closed loop with Coulomb

friction enjoys stability of the setpoint, but suffers from long set-

tling times. The reset controller of Section 5 then improves the

performance by reducing the settling times. Systems with Stribeck

friction, instead, do not enjoy stability of the setpoint, so the con-

trol problem must address stabilization. While the reset strategy

of Section 5 well compensates for the long depletion and refilling

phases of the integral state φ, it is not designed to compensate for

the energy injection experienced at each stick-to-slip transition (as

illustrated by the analysis in Section 6.1 and Fig. 19 ). 

A confirmation of this fact arises from applying the reset con-

trol strategy of Section 5 also to the Stribeck case. The resulting

responses show successful compensation of the long filling phases

for the integral state φ, but are not designed to stabilize the set-

point nor to compensate for the energy injection experienced at

each stick-to-slip transition. This is shown in Fig. 20 , which depicts

the solutions of the reset-compensated closed loop (30) with F in

(30a) replaced by 

F (x ) = 

[ −k i v 
σ − k p v 

φ − k d v − F s Sign (v ) + ψ(v ) 

] 

, (38)

namely with the extra Stribeck velocity weakening term ψ of

(15) (with the parameters in Table 1 ) that was missing in the

Coulomb case of (30a) . From the evolution of σ and of the Lya-

punov function V̄ ∞ 

evaluated along the solutions x̄ in Fig. 20 , we

can observe that the resetting mechanism works as expected in

reducing significantly the stick phases where the reset-free simu-

lations of Fig. 19 showed a constant value of V̄ ∞ 

. Nevertheless the

fundamental interplay of energy injection/dissipation highlighted

in the previous section is still present and clearly visible by the os-

cillatory behavior of the Lyapunov function (lower plot of Fig. 20 ),

where V̄ ∞ 

increases during stick and decreases during slip. In the

next section, we present a different resetting logic resolving this

instability, taken from our recent work Beerens et al. (January

2020 ). 

6.3. Two-step reset PID law 

An effective reset PID solution solving the hunting phenomenon

is proposed in our recent work Beerens et al. (January 2020 ). The

key idea is based on the preliminary observation that hunting is
ssociated with alternating zero crossings of σ and v (see the time

volutions of Fig. 8 ). Then we may proceed as follows. 

1. Similar to variable ā of Section 5.3 , we augment the controller

state with an extra logical variable b ∈ {−1 , 1 } toggling with the

alternating zero crossings of σ and v ; to suitably keep track of

this toggling, we impose the constraint bv σ ≥ 0 on variable b . 

2. We impose two different types of jump laws on the (gener-

alized) controller state φ, whose net effect is to ensure that

the constraint σφ ≥ k p 
k i 

σ 2 is always satisfied. We note that this

constraint is equivalent to (s − r) x c ≥ 0 in the original coordi-

nates z (see (6) and (16) ), namely that the integrator state x c 
always points in the same direction as the position error s − r.

As a consequence, we also impose bv φ ≥ 0 because also when

σ = 0 , bv and φ must have matching signs. 

The interesting feature emerging from the mechanism de-

cribed above is that, unlike our “simple” Coulomb-oriented so-

ution of Section 5 , algebraic restrictions are imposed on certain

tate variables during in the description of the reset-PID controlled

otion system. More specifically, using once again symbols x, σ , v

nd φ to avoid heavy notation, the overall state of the controlled

otion system corresponds to 

ξ := (x, b) := (σ, φ, v , b) ∈ � (39a)
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:={ (x, b) ∈ R 

3 ×{−1 , 1 } : bv σ ≥ 0 , σφ ≥ k p 
k i 
σ 2 , bv φ ≥ 0 } . 

These constraints on the control variables φ and b are implicitly

atisfied along the solutions, as long as the controller states are

uitably initialized. 

To ensure that constraints (39a) are respected (and that the

unting instability is removed), the two jump laws that we im-

lement are triggered by the alternating zero crossings of σ and v

ccording to the following rules: 

• when σ crosses zero (which happens when b = 1 because σ 2 is

decreasing if and only if 0 ≥ σ ˙ σ = −σk i v , which implies b = 1 ),

both b and φ jump to their opposite value (i.e., b + = −b and

φ+ = −φ), so that the constraints of � are preserved; 

• when v crosses zero (which happens when b = −1 because φ2 

is decreasing only if 0 ≥ v φ, which implies b = −1 ), b is toggled

once again to preserve the constraints of � and φ is reset to

φ+ = 

k p 
k i 

σ, the smallest possible amplitude satisfying the con-

straints of �. 

Let us now formalize more precisely the equations of the PID

ontrolled plant (17) with the extra logical state b and the above

escribed two-fold reset mechanism. Using the state in (39a) , we

ay write the hybrid dynamics as 

˙ ∈ 

⎡ 

⎢ ⎣ 

−k i v 
σ − k p v 

φ − k d v − F s Sign (v ) + ψ(v ) 
0 

⎤ 

⎥ ⎦ 

, ξ ∈ C := � (39b) 

+ = 

{
g σ (ξ ) , if ξ ∈ D σ

g v (ξ ) , if ξ ∈ D v , 
ξ ∈ D := D σ ∪ D v , 

here the jump maps and jump sets are given as follows (the sub-

cript “σ ” or “v ” indicates whether we are focusing on the zero

rossing of σ or v ) 

 σ (ξ ) := 

⎡ 

⎢ ⎣ 

σ
−φ
v 

−b 

⎤ 

⎥ ⎦ 

, g v (ξ ) := 

⎡ 

⎢ ⎣ 

σ
k p 
k i 
σ

v 
−b 

⎤ 

⎥ ⎦ 

, (39c)

 σ := { ξ ∈ � : σ = 0 , b = 1 } , (39d)

 v := { ξ ∈ � : v = 0 , b = −1 } . (39e)

Note that the jump map in (39b) is well defined because the

wo sets D σ and D v are disjoint (they involve different values of

tate b ). 

emark 12. We mentioned above that in the original coordinates

 (see (16) ), constraint σφ ≥ k p 
k i 

σ 2 is equivalent to (s − r) x c ≥ 0 ,

amely the integrator state x c always points in the same direc-

ion as the position error s − r. This behavior is inspired by, and

esembles the reset control logic of the so-called Clegg integra-

or Clegg (1958) ; Zaccarian et al. (2005) . The difference between

ur solution and the one of Clegg is in the specific resetting law,

here Clegg would merely reset x c to zero at the zero crossing of

 − r (equivalently, of σ ). Instead our logic reverses the value of φ,

hich corresponds to x + c = −x c because σ = 0 at those reset times.

A partial motivation for the resetting mechanism φ+ = 

k p 
k i 

σ at

he zero crossing of v can be understood once again by study-

ng its effect in the original coordinates z in (6) . In particular,

ince ˙ x c = s − r and x c (s − r) ≥ 0 , one clearly obtains d 
dt 

| x c | = | s −
| along flowing solutions, which could possibly lead to an un-

ounded growth of x c . Moreover, we just observed that | x c | re-

ains unchanged when jumping at the zero crossing of σ . Then a

echanism is necessary for reducing the norm of x c during the hy-

rid evolution, which otherwise would be a non-decreasing func-

ion of time. Such a mechanism is exactly triggered by the jump
+ = 

k p 
k i 

σ imposed at the zero crossing of v , which corresponds to

 

+ 
c = 0 when translated to the original coordinates. 

By the above interpretation, it appears that the proposed reset-

ing strategy is an essential sophistication of Clegg’s original mech-

nism. Indeed, instead of resetting to zero the integrator state x c 
t the zero crossing of the position error s − r, we reverse the in-

egrator state at that zero crossing and then we reset it to zero at

he subsequent zero crossing of the velocity v . A fair question to

ose is whether applying the original mechanism of Clegg would

esult in a stabilizing action. A partial answer to this question is

iven by the experimental results reported later in Section 7.3 , but

 rigorous study of this solution has not been carried out yet and

s subject of future work. 

An important question that arises is whether the constraints

mposed by � in (39a) on the (continuous and discrete) evolution

f the resetting solutions of the closed loop (39) still allow (max-

mal) solutions to be defined for arbitrarily large times (namely

hether maximal solutions are complete). The affirmative answer

s established in the next lemma, proven in (Beerens et al., Jan-

ary 2020, Prop. 1) , which also proves important regularity con-

itions of the hybrid system data, ensuring robustness of stabil-

ty and compactness of the solutions set (see (Goebel et al., 2012,

h. 5–7) for details). 

emma 5. Hybrid system (39) satisfies the hybrid basic conditions of

 Goebel et al., 2012 , Assumption 6.5). Moreover, under Assumption 2 ,

ll maximal solutions are complete. 

Since we introduced the additional state variable b ∈ {−1 , 1 } ,
he stability properties of A in (18) (equivalently (9) ) should be

tudied by focusing on the extended compact set 

 e := A × {−1 , 1 } = { ξ ∈ � : σ = v = 0 , | φ| ≤ F s } . (40)

omprising all possible equilibria of dynamics (39). The main re-

ult of (Beerens et al., January 2020, Thm. 1) is summarized by

he following clean statement which follows from combining the

lobal asymptotic stability results of (Beerens et al., January 2020,

hm. 1) with the equivalent stability properties established in

Goebel et al., 2012, Thm. 7.12) . 

heorem 3. Under Assumption 2 , the set A e in (40) is globally KL
symptotically stable for (39). 

When running simulations and experiments of the reset-PID so-

ution of (39), a possible issues emerges due to the fact that sets

 σ and D v are “thin sets” because they require checking a zero

alue of the speed v or the position σ . It is however established

n (Beerens et al., January 2020, Prop. 2) that, as long as state φ
s not initialized at zero, no solution ever reaches a point where

= 0 (unless it reaches A e ). Then, in view of the constraints on �

n (39a) , a numerically robust version of the jump sets D σ and D v 
s given by the alternative selection 

 

r 
σ := { ξ : σφ ≤ 0 , b = 1 } (41)

 

r 
v := { ξ : v φ ≥ 0 , b = −1 } , (42)

hich satisfy D 

r 
σ ∩ �0 = D σ ∩ �0 and D 

r 
v ∩ �0 = D v ∩ �0 , with

0 := { ξ ∈ �: φ � = 0}. Using these selections, we have run a set of

imulations of (39) from the same initial conditions reported in

igs. 8 and 20 . The resulting solutions show the desirable con-

ergence properties established in Theorem 3 and are reported in

ig. 21 . From the bottom plot it is apparent that the distance to A e 

onverges to zero, as established in Theorem 3 , but it is also evi-

ent that the convergence is not exponential, due to the increas-

ngly long stick phases characterizing the convergence transient. 
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Fig. 21. Solutions of (39) from the initial conditions of Fig. 8 and logarithm of the 

corresponding (squared) distance of ξ = (x, b) from A e in (40) , where | ξ | A e = | x | A 
with A in (18) . 
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7 Here, just as in Lemma 3 , for any solution ξ we denote j (t) := min k . 
6.4. Semiglobal dwell time and hybrid extended model 

The proof of Theorem 3 given in Beerens et al. (January 2020 )

is carried out by relying on a generalization of the extended hy-

brid model introduced in Section 4.2 . In particular, following sim-

ilar steps to those of Section 4.2 , we may establish a semiglobal

dwell-time property parallel to the one of Lemma 2 , suitably stated

by introducing the following generalized version of the incipient

slip sets of (22) , where we now include the new state variable b ,

S 1 := { ξ ∈ � : φ ≥ F s , v = 0 , b = 1 } , 
S −1 := { ξ ∈ � : φ ≤−F s , v = 0 , b = 1 } . (43)

The next lemma, which parallels Lemma 2 for the reset - augmented

system (39), shows that any solution visiting the sets in (43) en-

joys a uniform semiglobal dwell time before its velocity changes

sign, unless it reaches the attractor A e , where it will remain for-

ever. Its proof comes from combining the results in (Beerens et al.,

January 2020, Prop. 3(i)) and (Beerens et al., January 2020, Prop. 5) .

Lemma 6. Under Assumption 2 , for each compact set K, there ex-

ists δ(K) > 0 such that each solution ξ = (σ, φ, v , b) of (39) starting

in K satisfies the following. For any ( t, j ) ∈ dom ξ such that ξ (t, j) ∈
S 1 ∪ S −1 , then either ξ (t ′ , j ′ ) ∈ A e for some t ′ ∈ [ t, t + δ(K)] , and

the solution remains in A e for all subsequent times, or otherwise it
olds 7 that ( s , j ( s )) ∈ dom ξ and 

ξ (t, j) ∈ S 1 ⇒ v (s, j (s )) ≥ 0 , 

(t, j) ∈ S −1 ⇒ v (s, j (s )) ≤ 0 , 

or all s ∈ [ t, t + δ(K)] . 

emark 13. It is interesting to observe that, differently from

emma 2 , the proof of Lemma 6 requires proving a prelimi-

ary boundedness result (stated in (Beerens et al., January 2020,

rop. 4) ) whose proof is not straightforward, due to the presence

f the reset actions, which make it not possible to follow the

ame simple bounded-input bounded-output reasoning reported in

emark 7 . 

Similar to Section 4.2 , based on Lemma 6 , we may now intro-

uce a hybrid extended model capable of semiglobally represent-

ng dynamics (39). The extended hybrid model enables construct-

ng a Lyapunov function to prove Theorem 3 and is parametrized

y quantity δ from Lemma 6 . 

To this end, just as before, we augment the state ξ with a log-

cal variable q̄ and with a timer τ̄ so that the augmented state in-

erits the constraints of � in (39a) and corresponds to 

ξ̄ := ( ̄σ , φ̄, ̄v , ̄b , q̄ , τ̄ ) ∈ �̄, 

¯ := 

{
ξ̄ ∈ R 

3 × {−1 , 1 } × {−1 , 0 , 1 } × [0 , 2 δ] : 

q̄ ̄v ≥ 0 , ̄b ̄q ̄σ ≥ 0 , σ̄ φ̄ ≥ k p 
k i 
σ̄ 2 , ̄b ̄q ̄φ ≥ 0 

}
. 

(44a)

ote that, just as in the previous automaton (23), the sign of the

ew state variable q̄ is never opposite to the sign of v̄ , due to the

onstraints in �̄. Moreover, the timer τ̄ is constrained to evolve

n the compact set [0, 2 δ]. The hybrid dynamics of the extended

ybrid model H δ are 

 δ : 

{
˙ ξ̄ = F̄ ( ̄ξ ) , ξ̄ ∈ C slip ∪ C stick (44b)

ξ̄+ ∈ Ḡ ( ̄ξ ) , ξ̄ ∈ 

⋃ 

p∈{ σ, v , 0 , 1 , −1 } D p . (44c)

The flow and jump maps F and G of H δ are defined as 

¯
 ( ̄ξ ) := 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

−k i ̄v 
σ̄ − k p ̄v 

−k d ̄v + | ̄q | ̄φ − q̄ (F s − | ψ( ̄v ) | ) 
0 

0 

1 − dz 1 ( ̄τ/δ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, (44d)

Ḡ ( ̄ξ ) := 

⋃ 

p∈{ σ, v , 0 , 1 , −1 } : ̄ξ∈D p 

{ g p ( ̄ξ ) } , (44e)

g σ ( ̄ξ ) := 

[
σ̄ −φ̄ v̄ −b̄ q̄ τ̄

]
 
, 

g v ( ̄ξ ) := 

[ 
σ̄ k p 

k i 
σ̄ v̄ −b̄ q̄ τ̄

] 
 
, 

g 0 ( ̄ξ ) := 

[
σ̄ φ̄ v̄ b̄ 0 τ̄

]
 
, 

g 1 ( ̄ξ ) := 

[
σ̄ φ̄ v̄ b̄ 1 0 

]
 
, 

 −1 ( ̄ξ ) := 

[
σ̄ φ̄ v̄ b̄ −1 0 

]
 
. 

he flow and jump sets of H δ are defined as 

C slip := { ̄ξ ∈ �̄ : | ̄q | = 1 } , 
 stick := { ̄ξ ∈ �̄ : v̄ = 0 , | ̄φ| ≤ F s , q̄ = 0 } , 
D σ := { ̄ξ ∈ �̄ : σ̄ = 0 , ̄b = 1 , | ̄q | = 1 } , 
D v := { ̄ξ ∈ �̄ : v̄ = 0 , ̄b = −1 , q̄ = 0 } , (44f)

D 0 := { ̄ξ ∈ �̄ : v̄ = 0 , | ̄q | = 1 } , 
(t,k ) ∈ domξ
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Fig. 22. “Projections” on the ( ̄σ , φ̄, ̄v ) space of the flow and jump sets in (44f) , 

showing the sector condition σ̄ φ̄ ≥ k p 
k i 

σ̄ 2 . 

Fig. 23. Hybrid-automaton illustration of (44). 
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D 1 := { ̄ξ ∈ �̄ : v̄ = 0 , φ̄ ≥ F s , ̄b = 1 , q̄ = 0 , τ̄ ∈ [ δ, 2 δ] } , 
D −1 := { ̄ξ ∈ �̄ : v̄ = 0 , φ̄ ≤ −F s , ̄b = 1 , q̄ = 0 , τ̄ ∈ [ δ, 2 δ] } , 
inally, based on (44f) , we define 

¯
 := C slip ∪ C stick , D̄ := D σ ∪ D v ∪ D 0 ∪ D 1 ∪ D −1 . (44g)

The different jum p and flow sets are visualized in Fig. 22 in

erms of the physical state variables ( ̄σ , φ̄, ̄v ) for each value of the

ogical variable q̄ . Instead, Fig. 23 shows the hybrid automaton rep-

esentation of all the transitions enabled by the flow-jump mech-

nism of the hybrid dynamics. It is emphasized that the evolution

f this Stribeck solution is significantly more complex than the one

eported in Fig. 9 for the Coulomb case. 

Paralleling the result of Lemma 3 , we use the dwell time re-

ult of Lemma 6 to prove that H δ in (44) represents semiglobally

he solutions to the reset-endowed hybrid closed-loop (39). This

esult, reported below, is taken from (Beerens et al., January 2020,

rop. 6) and enables carrying over the stability properties from

44) to (39). As in the previous results, we slightly abuse notation

nd use a unified symbol j ( · ) to characterize j (t) := min 

(t,k ) ∈ domψ 

k,

ven though this function depends on the domain of the solution

nder consideration (which is always clear from the context). 

emma 7. Under Assumption 2 , for each compact set K and the cor-

esponding δ(K) > 0 characterized in Lemma 6 , for each solution ξ =
(σ, φ, v , b) to (39) with ξ (0 , 0) = ξ0 ∈ K, there exist q̄ 0 , τ̄0 and a so-

ution ξ̄ = ( ̄σ , φ̄, ̄v , ̄b , q̄ , τ̄ ) to (44) starting at ξ̄ (0 , 0) = (ξ0 , q̄ 0 , τ̄0 ) ,

uch that 

(t, j (t)) = σ̄ (t, j (t)) , φ(t, j (t)) = φ̄(t, j (t)) , 

v (t, j (t)) = v̄ (t, j (t)) , b(t, j (t)) = b̄ (t, j (t)) , 
(45) 

or all t ≥ 0 such that ξ (t, j (t)) �∈ A e . 

For the proof of Theorem 1 , the use of the semiglobal hy-

rid representation (23) and the ensuing smooth Lyapunov func-

ion (27) was optional, due to the alternative proof technique of

isoffi et al. (2018a) , which relies on the discontinuous Lyapunov-

ike function (25). Instead, for the proof of Theorem 3 , exploit-

ng the hybrid extended model (44) appears to be the only viable

oute. In particular, we illustrate in the next section a new Lips-

hitz hybrid Lyapunov function that generalizes the smooth func-
ion V̄ given in (27) and enjoys the necessary decrease proper-

ies for proving convergence of the solutions to (44). The proof of

heorem 3 then uses the representation result of Lemma 7 . 

.5. Lyapunov function for proving Theorem3 

To the end of proving Theorem 3 by exploiting the properties

f the hybrid extended model (44) and Lemma 7 , a first step is

o represent the attractor A e in (40) lifted in the new directions

ssociated with the extended state ξ̄ . More precisely, 

¯
 e := { ̄ξ ∈ �̄ : σ̄ = v̄ = 0 , φ̄ ∈ F s Sign ( ̄b ̄q ) } , (46)

here the extra variables q̄ and τ̄ can be selected arbitrarily within

he set �̄, where the consistency property b̄ ̄q ̄φ ≥ 0 is satisfied. 

Focusing on the lifted attractor Ā e , we may then introduce the

ocally Lipschitz Lyapunov function 

¯
 e ( ̄ξ ) := 

[
σ̄
v̄ 

]
 [ k d 
k i 

−1 

−1 k p 

][
σ̄
v̄ 

]
+ | ̄q | ( ̄φ − b̄ ̄q F s ) 

2 

+(1 − | ̄q | ) dz 
2 
F s 
( ̄φ) + 2 

k p 

k i 
F s 
(
b̄ ̄q ̄σ + (1 − | ̄q | ) | ̄σ | ). (47) 

unction V̄ e is an extension of the smooth Lyapunov function V̄ 

n (27) , where we added the last term inducing a desirable non-

ncrease property along the solutions with Stribeck friction. This

roperty was not enjoyed by V̄ as partially illustrated by the top

lot of the simulations in Fig. 19 . 

The additional last term in V̄ e is nonsmooth (but Lipschitz) be-

ause it involves the nonsmooth factor | ̄σ | . This factor can be ad-

ressed in a Lyapunov decrease condition using the Clarke general-

zed gradient ∂ ̄V e (y ) of V̄ e at y as discussed in (Clarke, 1990, Ch. 2) .

The next proposition establishes the typical properties required

f a hybrid Lyapunov function, namely: positive definiteness with

espect to Ā e and radial unboundedness, non-increase along the

ow in C, and non-increase across the jumps from D. This propo-

ition parallels the previous results in Propositions 2 and 3 , and

stablishes the key ingredient for the proof of the main result of

eerens et al. (January 2020 ), summarized in Theorem 3 . 

roposition 4. Under Assumption 2 , the Lyapunov function V̄ e in

47) enjoys the following properties. 

i) V̄ e is positive definite with respect to Ā e in C̄ ∪ D̄ and radially un-

bounded relative to C̄ ∪ D̄ ; 

ii) with c := 2(k p k d − k i ) > 0 as in Proposition 1 , the Clarke direc-

tional derivative of V̄ e along the flow dynamics of (44) satisfies 

V̄ 

◦
e ( ̄ξ ) := max 

ν∈ ∂ ̄V e ( ̄ξ ) 
〈 ν, F̄ ( ̄ξ ) 〉 ≤ −c ̄v 2 ≤ 0 , ∀ ̄ξ ∈ C̄ ;

ii) for each p ∈ { σ, v , 1 , −1 , 0 } , V̄ e and the jump dynamics of (44)

yield 

V̄ e (g p ( ̄ξ )) − V̄ e ( ̄ξ ) ≤ 0 , ∀ ̄ξ ∈ D p . 

Fig. 24 provides an illustration of the Lyapunov decrease estab-

ished in Proposition 4 by comparing the evolution of the smooth

yapunov function x̄ �→ V̄ ( ̄x ) in (27) (where we recall that x̄ is a

ubcomponent of state ξ̄ ) to the evolution of the Lipschitz Lya-

unov function V̄ e in (47) along the solutions already represented

n Fig. 21 . We observe from the top plot of Fig. 24 that function
¯
 exhibits some increase during the time intervals just preceding

 stick-to-slip transition. Instead, function V̄ e is always decreasing,

hus confirming the result of Proposition 4 . Note also that the log-

rithmic scale shows that the decrease of V̄ e is not exponential,

hereby opening the question for more advanced future solutions

nducing exponential convergence, rather than asymptotic conver-

ence. 
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Fig. 24. Evolution of the two functions V̄ and V̄ e in (27) and (47) , respectively, along 

the Stribeck solutions with reset compensation represented in Fig. 21 . 

Fig. 25. Experimental setup of a nano-positioning motion stage Beerens et al. 

(2019) . 
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Fig. 26. (Beerens et al., 2019, Fig. 4) Position error (blue) and control force scaled 

by 4 ̄k i (red). The desired accuracy band is indicated by the black, dashed lines and 

is reached at 56.7, 25.8, and 8.4 s for α equal to 0.3, 0.8, and 1, respectively, as 

indicated by the gray patches. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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7. Experimental validation 

In this section, we provide an experimental confirmation of

the effectiveness of the proposed reset PID control solutions on

an industrial high-precision motion stage. The stage represents

a sample manipulation platform of an electron microscope (see

Thermo Fisher Scientific ), and is depicted in Fig. 25 . The setup

consists of a Maxon RE25 DC servo motor 1 © connected to a

spindle 2 © via a coupling 3 © that is stiff in the rotational direc-

tion while being flexible in the translational direction. The spindle

drives a nut 4 ©, transforming the rotary motion of the spindle to

a translational motion of the attached carriage 5 ©, with a ratio of

7 . 96 · 10 −5 m/rad. The position of the carriage is measured by a

linear Renishaw encoder 6 © with a resolution of 1 nm (and a peak

noise level of 4 nm). The desired position accuracy to be achieved

is 10 nm, as specified by the manufacturer. For frequencies up to

200 Hz, the system dynamics can be well described by (4) , where

s represents the position of the carriage. The mass m = 172 . 6 kg

consists of the transformed inertia of the motor and the spindle

(with an equivalent mass of 171 kg), and of the mass of the car-

riage (1.6 kg). 

The friction force for �̄ in (2) is mainly induced by the bear-

ings supporting the motor axis and the spindle (see 7 © and 8 © in

Fig. 25 ), and by the contact between the spindle and the nut. The

latter contact induces a significant Stribeck effect when lubricated

and, if the spindle-nut contact is not lubricated, the setup shows

dominantly static and viscous friction. In this way, the setup is an

experimental platform for both the Coulomb and Stribeck cases (cf.
ssumptions 1 and 2 ) addressed in this paper, depending on lubri-

ation conditions and carriage position. 

emark 14. The friction characteristic in Fig. 2 is experimentally

btained over the full stroke of the stage. We care to stress that

he characteristic of Fig. 2 only serves as a qualitative shape, as

he friction is observed to be highly position-dependent, and de-

endent on the lubrication conditions of the spindle-nut contact. 

For all the experiments (both with classical and reset PID con-

rollers) the gains are selected as k̄ p = 10 7 N/m, k̄ d = 2 · 10 3 (Ns)/m,

nd k̄ i = 10 8 N/(ms). This selection is obtained by employing well-

nown loop-shaping design techniques often applied in the indus-

ry, and satisfies the assumption on the gains in Assumptions 1 and

 . For all the experiments, a fourth-order reference trajectory is

pplied to the stage so that it moves by one millimeter in one

econd (according to standard operation of the nano-positioning

tage). The goal is to control the system towards a specified error

ccuracy of 10 nm, specified by the manufacturer. 

.1. Coulomb friction case 

For the Coulomb friction case, we experimentally compare the

lassical PID controller and the reset PID controller of Section 5 on

ransient performance, as reported in Beerens et al. (2019) . A mo-

ion system subject to Coulomb friction controlled by the classical

ID controller suffers from poor transient performance and long

ettling times. The reset controller discussed in Section 5 is de-

igned to significantly reduce the settling times by circumventing

 large part of the depleting and refilling process of the integral

uffer. 

Despite the fact that the time regularization proposed in

ection 5.2 avoids Zeno behavior, it is expected that, when the so-
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o  
ution is close to the setpoint, ineffective controller resets occur

ue to measurement noise. We therefore disable the resets when

he position error is within the desired accuracy band of 10 nm,

.e., if | σ◦| ≤ k̄ i · 10 −8 m = 1 N/s where σ ◦ was defined in (31a) . 

Consider Fig. 26 , which depicts the position error and the cor-

esponding scaled control force u PID / (4 ̄k i ) for the classical PID con-

roller and the reset PID controller, with different values for α. It

an be observed that the reset controller results in shorter peri-

ds of stick and hence decreased settling times, as compared to

he classical PID controller in the top plot. The results illustrate

hat, the larger the value for α, the shorter the settling times. For

= 1 , the system settles within the desired accuracy band 84%

aster, as compared to the classical PID case. Due to the low po-

ition error levels in the operating regime of the setup, micro-

copic frictional effects are non-negligible and affect the responses.

n particular, frictional creep (see, e.g., (Armstrong-Hélouvry, 1992,

h. 2) ), and some discontinuities are present in the position er-

or response at controller reset instants due to frictional stiffness

ffects (see, e.g., (Armstrong-Hélouvry et al., 1994, Sec. 2.1) ). These

ffects are analyzed and discussed in more detail in (Beerens et al.,

019, Sec. 5) and are well dealt with by the intrinsic robustness

Goebel et al., 2012, Ch. 7) of our KL stability results. 

.2. Stribeck friction case 

By lubricating the spindle-nut connection, and choosing a

ifferent carriage position, the setup suffers from a significant

tribeck effect. We now demonstrate experimentally the limita-

ions of classical PID control, and the effectiveness of the reset PID

ontroller of Section 6 , as reported in Beerens et al. (January 2020 ).

Consider the top plot in Fig. 27 , which depicts the position re-

ponse and the control force scaled by 4 ̄k i for an experiment with

he classical PID controller. Persistent oscillations are clearly vis-

ble, which prevent the system from settling within the desired

ccuracy band of 10 nm. We now apply the reset controller pre-

ented in Section 6 , where we use the reset conditions in (41) -

42) to robustly detect the zero crossings of the position error and

he velocity. To avoid ineffective resets triggered by measurement

oise (see also (Beerens et al., January 2020, Remarks 1, 2) ), we

isable the resets as soon as the position error is within the de-

ired accuracy band of 10 nm, after a reset from D 

r 
v . After this reset,

he integral control force is typically low so that the static friction
ields robustness to other force disturbances. The resulting posi-

ion error response and scaled control force are visualized in the

ower plot of Fig. 27 . For comparative purposes, the resets are en-

bled as soon as the PI control force and the position error have

he same sign, after a zero crossing of the position error (indicated

y the vertical dashed line). We observe that the system settles

ithin the desired accuracy band after only two resets, in contrast

o the response with the classical PID controller, thereby signifi-

antly improving the positioning accuracy. Due to the presence of

icroscopic frictional effects, overshoot is suppressed. A detailed

nalysis of the response at the nanometer scale can be found in

Beerens et al., January 2020, Sec. IV) , as well as an analysis on the

eset conditions. 

.3. Clegg reset solution for Stribeck friction 

We illustrate here some additional results reported in (Beerens,

020, § 3.8) , corresponding to the discussion given in Remark 12 .

n particular, we show experimentally that using a Clegg integrator

olution resetting x c to zero at the zero crossing of s − r may result

n a stabilizing action in the presence of Stribeck friction. 

More specifically, we implement the following PID-based con-

roller with the linear integrator action of (5) replaced by the

legg integrator Clegg (1958) augmented with a dwell-time reg-

larization, see (Zaccarian, Neši ́c, & Teel, 2005, Eq. (8)-(10)) ,

.e. 

˙ x c 
˙ τ

]
= 

[
s − r 

1 − dz 1 (τ /δ) 

]
, with (s − r) x c ≥ 0 or τ ∈ [0 , δ] 

x + c 

τ+ 

]
= 

[
0 

0 

]
, with (s − r) x c ≤ 0 and τ ∈ [ δ, 2 δ] 

 PID = −k̄ p (s − r) − k̄ d v − k̄ i x c , (48) 

here τ ∈ [0, 2 δ] is a timer variable. The integrator in (48) acts

ike a linear integrator whenever its input (i.e., the position er-

or s − r) and state (i.e., x c ) have the same sign, and resets its

tate x c to zero otherwise. A controller reset hence occurs only

t a zero-crossing of s − r. The temporal regularization eliminates

eno behavior, and, in practice, avoids a chattering control signal

y imposing that after any controller reset, at least a time in-

erval of length δ > 0 has to elapse before a subsequent reset is

llowed. 

The key mechanism for breaching persistent friction-induced

scillations by way of (48) is to prevent friction overcompensation
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Table 2 

PID gains and corresponding eigenvalues of A in (17) . 

k p k i k d Position Eigenvalues 

(a) 3 4 6.4 −6 . 01 , −0 . 19 ± i 0 . 79 

(b) 5.94 2.16 4.5 −2 . 4 , −1 . 5 , −0 . 6 

(c) 11.4 5.4 4.6 −2 ± i 2 . 24 , −0 . 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 29. Responses of the reset PID closed loop (30) with Coulomb friction and the 

PID gains as in case (b) of Table 2 . 
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in the slip phase (subsequent to a stick phase). To this end, the

control force acting on the system should decrease more than the

friction force decrease caused by the velocity-weakening effect. For

the specific experimental results reported here, we see experimen-

tally that a sufficient decrease in control force is indeed obtained

by the Clegg integrator (48) . Although we leave as future work the

investigation of sufficient conditions for proving rigorously the set-

point stability when using (48) , we illustrate here the advantages

of this solution. Among other things, the Clegg integrator is easier

to implement as compared to the reset controller of Section 6 be-

cause it does not require a velocity measurement to detect the re-

set conditions. 

Fig. 28 reports on the experiments when the Clegg reset con-

troller (48) is applied on our experimental setup. The gray curves

show the persistent oscillations emerging when using the clas-

sical PID controller, as already demonstrated in Fig. 27 . Two ex-

periments with the Clegg integral controller have been performed

and are visualized in blue and red color in the figure. In both

cases, a classical integrator is active in the interval [0,10] and

the Clegg solution is enabled after 10 s. Using the Clegg re-

set controller, the system consistently achieves a setpoint accu-

racy close to the noise level of the position measurements, and

well within the specified accuracy band of 10 nm, after two re-

sets. The bottom plot in Fig. 28 shows the control force. The

effect of resetting the integrator to zero upon a zero-crossing

of s − r is evident. Moreover, the dwell-time parameter τ avoids

persistent controller resets when the setpoint has been reached

within the measurement accuracy, thereby avoiding a chatter-

ing control signal (see the insets in Fig. 28 ). As the experimen-

tal results indicate, employing the Clegg integrator on a system

with Stribeck friction may result in a high setpoint accuracy, in

contrast to the classical PID controller. The essential insight is

that a Clegg integrator realizes a sufficient reduction of the con-

trol force that counteracts the decrease in friction force caused

by the Stribeck effect. Overcom pensation of friction is thereby

avoided. 

8. Results with different tuning of the PID gains 

Throughout this paper we have considered the selection of PID

gains reported in Table 1 , which are also reported as case (a) of

Table 2 . The motivation for this selection lies in the position of the

eigenvalues of A illustrated in Table 2 . In particular, typical indus-

trial/experimental scenarios require fast rising time and, therefore,

the rule of thumb for the PID gains tuning is to have one dominant

pair of complex conjugate eigenvalues and a faster real eigenvalue.

This configuration produces some overshoot and a fast rising time

for the closed loop. 
The goal of this section is to illustrate by simulations the fact

hat Assumptions 1 and 2 , under which the reported results of

heorems 1 –3 are valid, allow for more general selections of the

ID gains. In particular, all that is required in our standing as-

umptions is that the PID gains lead to a Hurwitz matrix A in

17) (namely, all the eigenvalues of A have negative real part). This

mmediately suggests that two other relevant configurations may

ccur, one corresponding to three real eigenvalues (reported as

ase (b) in Table 2 ) and another one corresponding to a dominant

eal eigenvalue plus two faster eigenvalues that are complex con-

ugate (case (c) in Table 2 ). 

For each one of those cases, we illustrate here a few simulation

esults providing a qualitative understanding of the responses to be

xpected with and without resets. The simulations that we show

re to be compared against those reported in Figs. 13 and 21 (see

lso Fig. 16 ), and report the evolution of the three states x =
(σ, φ, v ) , together with the distance to the attractor (in logarith-

ic scale). A general conclusion from all the simulations carried

ut is that the action of our resetting laws enables re-establishing

esponses that are not too far from what one would expect based

n the linear guidelines for PID tuning with linear plants. This con-

rms that, also with resets, the PID gain selections of cases (b) and

c) in Table 2 do not lead to any evident advantage in terms of

ransient and steady-state responses. 
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Fig. 30. Responses of the reset PID closed loop (39) with Stribeck friction and the 

PID gains as in case (b) of Table 2 . 
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Fig. 31. Responses of the reset PID closed loop (30) with Coulomb friction and the 

PID gains as in case (c) of Table 2 . 
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.1. Case (b): Three real eigenvalues 

For the case of three real eigenvalues, we select the PID gains

s reported in case (b) of Table 2 . We expect in this case to see

 non-overshooting response and therefore the solutions are ex-

ected to rarely enter a stick phase and slowly approach (linearly)

he setpoint with a long settling time, this being the main reason

hy this configuration is undesired. The simulation results with

oulomb friction, represented in Fig. 29 , confirm this fact: only

hree of the considered solutions experience a jump (that is, en-

er a stick phase and trigger the reset action of our controller),

nd each one of those cases never resets again after that event.

nspecting the bottom plot of Fig. 29 , we see that the solutions not

erforming jumps actually converge faster (and exponentially) to

he attractor. The 3D plot also shows that the solutions converge

o the two extremes of the attractor A , which is reasonable when

nalyzing the evolution using the coordinate transformation pro-

osed in Section 5.3 . 

The case with Stribeck friction is different and is reported in

ig. 30 . In this case, Theorem 3 establishes asymptotic stability

f the attractor A e , therefore solutions are expected to converge

symptotically. By running simulations without reset actions, it is

ossible to inspect persistent oscillations, therefore instability of

he attractor. As a consequence, to ensure convergence, it is nec-

ssary that the solutions to the reset closed loop (39) keep jump-
ng indefinitely. This is indeed the case when inspecting the curves

f Fig. 30 . On the other hand, the bottom plot of Fig. 30 , showing

 ξ | 2 A e = | x | 2 A in logarithmic scale, clearly indicates the fact that the

onvergence is not exponential because there is no linear upper

ound on the logarithm of | x | 2 A (this fact becomes even more evi-

ent when running longer simulations). 

.2. Case (c): One real dominant eigenvalue 

For the case of one real dominant eigenvalue and two faster

omplex conjugate ones, we select the PID gains as reported in

ase (c) of Table 2 . This is a fairly unusual situation because lin-

ar solutions are expected to slowly converge to the setpoint while

erforming higher frequency oscillations. As a consequence we ex-

ect the solutions to enter stick phases without overshooting. This

s indeed the case when looking at the Coulomb case reported in

ig. 31 . The figure reveals that some resets are triggered by our

aw during the transient, but that once again none of the consid-

red solutions jumps more than once, and the tail of the responses

s purely linear and converges to one of the extremes of segment

 . Once again, the bottom plot of Fig. 31 shows that the conver-

ence to A is exponential due to the clear linear upper bound in

ogarithmic scale. 

When considering the Stribeck scenario, the simulations with-

ut resets would again exhibit persistent oscillations around the
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Fig. 32. Responses of the reset PID closed loop (39) with Stribeck friction and the 

PID gains as in case (c) of Table 2 . 
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setpoint. Fig. 32 shows similar results to the previous case where

resets are necessary to ensure convergence. Once again, the con-

vergence to the attractor is not exponential, as illustrated by the

bottom plot of Fig. 32 . 

9. Conclusions and future work 

This review paper summarized a number of recent works pro-

viding reset control techniques for positioning systems subject to

Coulomb and Stribeck frictional effects. The proposed solutions do

not require knowledge of the friction model and consist of a base-

line PID control scheme augmented with resetting laws address-

ing and solving different drawbacks emerging with the nonlinear

friction phenomena. The survey illustrated the importance of using

Lyapunov theory and suitable closed-loop representations based on

hybrid automata, logical variables and timers, exploiting certain

intrinsic semiglobal dwell-time properties of the proposed closed

loops. In the Coulomb case, we illustrated the improved transient

responses in addition to showing exponential decay of a certain set

of solutions. In the Stribeck case, the proposed solution resolves

the well known instability (hunting phenomenon) associated with

classical PID feedbacks. Simulation results have been used through-

out the paper to well explain the rationale and the effect of the

proposed reset laws. Moreover, experimental results on an indus-
rial nano-positioning system have been reported to confirm the

xperimental relevance of the proposed solutions. 

Future work includes providing a more rigorous proof of the ex-

onential decay established in the conjecture reported in Section 5 ,

n addition to providing revised and improved reset laws for the

tribeck case capable of inducing exponential convergence to zero

f the error. Moreover, industrially relevant challenges comprise

ddressing the common case where the friction characteristic is

ot symmetric. As a matter of fact, while standard PID can cope

ith that problem, due to the internal model action embedded in

he integral action, this is not the case for the proposed reset laws

hat require, so far, a symmetric friction model. Finally, specific as-

umptions will be investigated on the PID gains to obtain closed-

oop guarantees with the simplified Clegg solution experimentally

llustrated in Section 7.3 . 
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