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Abstract
In this paper, a strongly nonlinear beam-impact system under both

broad-banded and small-banded, Gaussian noise excitations is investi-
gated. The response of this system is investigated both numerically,
through a multi-degree-of-freedom (MDOF) model, and experimentally
focusing on frequency-domain characteristics such as stochastic equiv-
alents of harmonic and subharmonic solutions. Improved understanding
of these stochastic response characteristics is obtained by comparing
them to nonlinear periodic response features of the system. It will be
shown that in modeling such a continuous linear system with a local
nonlinearity, the linear part can be effectively reduced to a description
based on several modes. Combining this reduced linear part with the
local nonlinearity in a reduced nonlinear model is shown to result in an
analysis model, which can be used to accurately predict the stochastic
response characteristics of the original, continuous, nonlinear system.
It is shown that the inclusion of more modes in the model will result
in a response, which differs significantly from that of a SDOF (single-
degree-of-freedom) model, giving a better correspondence with experi-
mental results, also in the frequency range of the first mode.

1 Introduction
Nonlinear, dynamic systems forced by random excitations

are often encountered in practice. The source of randomness can
vary from surface randomness in vehicle motion, environmental
changes, such as earthquakes and wind exciting high rise build-
ings or wave motions at sea exciting offshore structures or ships,
to electric or acoustic noise exciting mechanical structures. Of-
ten these stochastic excitations exhibit a colored frequency spec-
trum. Moreover, many practical, nonlinear systems comprise a

continuous linear part and a local nonlinearity.
In this paper, a system, representative for the class of sys-

tems mentioned above, namely, a base-excited beam system with
a nonlinear elastic stop is investigated. Systems with elastic stops
are typical examples of systems with local nonlinearities and rep-
resent a wide range of practical nonlinear dynamic systems. Ex-
amples are gear rattle, ships colliding against fenders, suspension
bridges and snubbers in solar panels on satellites. Although the
nonlinearity is local, the dynamic behavior of the entire system
is influenced by it. Nonlinear periodic response phenomena of
these kind of systems have been studied extensively [1; 2; 3; 4].
Moreover, a study of the stochastic response characteristics of a
SDOF model of this system can be found in [5].

When stochastic excitations are applied to the nonlinear
beam system, it features many interesting, stochastic, nonlinear
response phenomena. These phenomena are of specific interest
because they shed light on the common characteristics of peri-
odic and stochastic dynamic behavior. As a consequence, the
behavior of the system can be understood more thoroughly. The
stochastic nonlinear response phenomena will be studied numer-
ically as well as experimentally. For the numerical investigations
a model is used, in which the linear, continuous part of the sys-
tem (the elastic beam) is reduced to a multiple-mode descrip-
tion. It will be shown that the model obtained by the reduction
of the linear, continuous part of the system (the elastic beam)
based on a limited number of elastic modes can accurately de-
scribe the stochastic response of the experimental system. The
comparison of numerical and experimental results will display
the added value of the MDOF model when compared with a
SDOF model [5]. Herein, the applied, stochastic excitations are
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Gaussian and have a band-limited power spectral density. Still,
these excitations can be realizations of broad-banded or narrow-
banded processes. It should be noted that particularly the nonlin-
ear phenomena in the power spectral density of the response will
be investigated extensively.

In the next section, we introduce the nonlinear dynamic sys-
tem and its 2DOF model. In section 3, a brief survey of simulated
periodic response characteristics will be given. In section 4, the
simulation approach for stochastic excitations will be treated and
the related simulation results will be discussed in section 5. In
section 6, we present the experimental set-up. Furthermore, in
section 7, the simulation results are compared to the experimen-
tal results. Finally, in section 8, we present some conclusions.

2 The nonlinear beam system

2.1 System description

The nonlinear, dynamic system comprises a linear elastic
beam, which is clamped onto a rigid frame, and an elastic stop,
see figure 1. The elastic stop consists of two ptfe (teflon) half
spheres. The system is excited by a prescribed, stochastic dis-
placement y(t) (with respect to a fixed reference position of the
frame) of the rigid frame. The response x(z,t) is the vertical
displacement (with respect to a fixed reference position of the
frame) of the beam at the horizontal coordinate z. Firstly, in sec-
tion 2.2, the approach in building a MDOF model for the elastic
beam will be illuminated. Next, in section 2.3, a model for the
elastic stop will be presented. The estimation of the parameters,
describing the nonlinearity, is based on experiments and will be
elucidated in that section. Finally, in section 2.4, a nonlinear,
two-degree-of-freedom (2DOF) model of the beam-impact sys-
tem will be discussed.

x(z,t)

y(t) prescribed

z
l

le

Rigid frame

Beam (ρ, A, E , I)

Half sphere

Accelerometer

Figure 1. The nonlinear, base-excited beam system with Young’s mod-

ulus E = 1.9 1011 N/mm2, density ρ = 8000 kg/m3 , cross-section A =
58.3 mm2, second moment of area of the cross-section I = 18.5 mm4,

length l = 259.9 mm (le = 229 mm), mass of a half sphere ms =
12.4 10−3 kg and mass of the accelerometer ma = 13.0 10−3 kg.

2.2 Modeling the elastic beam
For the elastic beam shear effects and rotational inertia will

be neglected (Euler beam). In a first step, spatially discretized
models for such a continuous system can be derived using the
Rayleigh-Ritz method [6]. This method was applied to obtain a
4DOF model of the elastic beam, where the half sphere and the
accelerometer have been modeled as rigid parts at z = l+le

2 . Ad-
ditional evaluations showed that a reduction of the 4DOF model
to a model incorporating only the two modes corresponding the
lowest two eigenfrequencies is very acceptable with respect to
our research goal. Moreover, these eigenfrequencies match their
experimental equivalents quite well, see table 1. Therefore, the
4DOF model was reduced to a 2DOF model using only these
first two eigenmodes of the 4DOF model [7]. In figure 2, the
modes corresponding to these eigenfrequencies are displayed.
Moreover, corresponding dimensionless damping parameters are
given, which were estimated by experimental means.

Eigenfrequencies [rad/s]

Experimental Model

101.5 109.1

781.6 790.7

Table 1. Lowest two eigenfrequencies of the 4DOF model vs. experi-

mental eigenfrequencies.

x(z)− y

z

l
2

l
2

l+le
2

l+le
2

Modal damping 1.5 %

Modal damping 0.5 %

Figure 2. Modes shapes and modal damping parameters corresponding

to the lowest two eigenfrequencies.

2.3 Modeling the elastic stop
The elastic stop is modeled using a Hertzian contact model

[8; 9]. Using the Hertzian model, the following relationship
holds between the contact force F and the relative displacement
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of the two colliding spheres δ = y− x(z = l+le
2 ):

F =
2
3

Er
√

Rr δ1.5 = KHertz δ1.5 for δ ≥ 0. (1)

In (1), the reduced Young’s modulus Er reflects the material
properties of both colliding bodies. Furthermore, the reduced
radius of curvature Rr reflects the geometric properties of the
colliding bodies. These parameters are defined by Er = E

1−ν2 ,
Rr = R/2, where E , ν, and R are the Young’s modulus, the
Poisson’s ratio, and the principal radius of curvature of the half
spheres (identical half spheres assumed).

The contact model (1) can be refined by adding a hysteretic
damping term, see [10], accounting for energy loss during colli-
sion. The inclusion of hysteretic damping alters (1) to:

F = KHertz δ1.5
(

1 +
µ

KHertz
δ̇
)

= KHertz δ1.5

[
1 +

3(1− e2)
4

δ̇
δ̇−

]
for δ ≥ 0,

(2)

in which e is the coefficient of restitution, a geometry and ma-
terial dependent measure for energy dissipation. Moreover, δ̇−
represents the velocity difference of the two colliding bodies at
the beginning of the collision.

The parameters KHertz and e were determined experimentally
(KHertz = 2.1 108 N/m1.5, e = 0.5). Both KHertz and e are obtained
as least-squares estimates in which the information from several
collisions is accounted for. The underlying experiment resulted
in information regarding the indentation δ, the indentation ve-
locity δ̇, and the contact force F . The dependency of the contact
force F between the colliding half spheres on the indentation δ is
visualized in figure 3. The parameter KHertz can be estimated by
comparing the contact force F and the indentation δ at maximum
indentation (δ̇ = 0), assuming that the static contact force is pro-
portional to δ1.5, see equation (1). The coefficient of restitution
e can be estimated by considering the amount of energy loss ∆T
during a collision. ∆T is equal to the surface within the hystere-
sis loop: ∆T =

H
µ δ1.5 δ̇ dδ. Therefore, µ can be estimated from

µ = ∆TH
δ1.5 δ̇ dδ

. The coefficient of restitution can now be obtained

from:

e =

√
1−

4
3 µδ̇−

KHertz
. (3)

2.4 The nonlinear dynamical model
In the previous two sections, the two components of the

beam-impact system, namely, the beam and the elastic stop, were

experiments
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Figure 3. Measurement of several collisions to estimate KHertz and e.

discussed. The assembled, nonlinear model can be described by
the following set of equations of motion:

M n̈+C ṅ+ K n+ KHε(δ)δ1.5

(
1+

3(1− e2) δ̇
4 δ̇−

)
= m0ÿ,

with ε(δ) =
{

1 for δ > 0
0 for δ ≤ 0

.

(4)

Herein, n is a column matrix (of length two) of natural coor-
dinates, which represent the contribution of the two modes to
the total response, whereas M and K are the mass matrix and
stiffness matrix, respectively, following from the Rayleigh-Ritz
procedure. C represents the damping matrix which takes into
account the measured modal damping (see figure 2). Moreover,
KH is a coefficient matrix of the nonlinearity while the term, in
which m0 is involved, expresses the fact that the excitation is a
prescribed displacement. Additionally, δ is the first component

of δ = [δ, δm]T :=
[
y− x(z = l+le

2 ), y− x(z = l
2 )
]T

, representing

the relative displacement of the beam with respect to the rigid
frame at the point of contact of the two half spheres. Note that
δ can be written as a linear combination of the components of
n. Moreover, in (4) δ̇ represents the relative velocity at the same
point.

This model will now be used to simulate (through numerical
time integration) the nonlinear response δ for different excitation
forms y = y(t).

3 Survey of simulated response to periodic excitation
In order to enlarge the ability to interpret the stochastic

response phenomena, to be discussed later on in this paper,
we present some periodic response phenomena of the nonlin-
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Figure 4. Maximum, absolute displacements | δ |max of periodic solu-

tions of the 2DOF beam-impact system.
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Figure 5. Maximum, absolute displacements | δ |max of periodic solu-

tions of the SDOF beam-impact system.

ear beam system. In figure 4, the maximum, absolute displace-
ments | δ |max (of the periodic solutions) are plotted against the
angular frequency ωe of the periodic (harmonic) base-excitation
y = y(t). These data were obtained using a periodic solver and
a path-following procedure [1; 3]. Some important nonlinear
response characteristics can be extracted from figure 4. Firstly,
besides the harmonic resonance, corresponding to the first linear
eigenmode of the elastic beam, related subharmonic resonances
appear. Secondly, a remarkable feature can be found in the fact
that the maximum absolute values of the subharmonic solutions
are higher than those of the harmonic solutions. Finally, a strik-
ing characteristic is expressed by the fact that both the harmonic

and subharmonic resonance peaks exhibit large dents near their
resonance frequencies. In figure 5, it is shown that this effect
is absent in the periodic response of a SDOF model [7] of the
beam-impact system that it is, therefore, most likely caused by
the presence of the second mode in the model. Note in this re-
spect that the second harmonic resonance frequency (780 rad/s)
lies at four times the frequency at which the first harmonic res-
onance shows a dent (195 rad/s). This typically nonlinear char-
acteristic was also observed in experiments [11]. Clearly, the
inclusion of extra ’modes’ in the model not only affects the res-
ponse in the neighborhood of the resonance frequency of this
’mode’, but also influences the response characteristics at lower
frequencies dramatically.

4 Simulation approach for Gaussian excitation
4.1 Generation excitation signals

As mentioned before, the excitation form applied to the non-
linear beam system is Gaussian, band-limited noise. Now, we
would like to be able to generate realizations of such a Gaus-
sian excitation process, which exhibits the desired power spec-
tral density Syy(ω). The energy of a band-limited, random pro-
cess is concentrated in the frequency band ωband = [ωmin, ωmax]
(for both positive and negative frequencies). For any shape of
the power spectral density of the Gaussian process, within that
frequency band, one can simulate realizations of such a process
using a method developed in [12] and [13]. The idea behind the
method is that a one-dimensional Gaussian, random process y(t)
with zero mean and a one-sided power spectral density So

yy(ω),
with

So
yy(ω) =




2 Syy(ω) for ω > 0
Syy(ω) for ω = 0
0 for ω < 0

, (5)

can be approximated by a finite sum of cosine functions with a
uniformly distributed random phase Φ. A realization ȳ(t) of y(t)
can be simulated by ȳ(t) =

√
∆ω Re{F(t)}, in which Re{F(t)}

is the real part of F(t) and

F(t) =
N

∑
k=1

{√
2 S0

yy(ωk) eiφk

}
eiωkt (6)

is the finite complex Fourier transform of
√

2 So
yy(ω) eiφ, in

which φ is a realization for Φ, and ∆ω = ωk −ωk−1.
Next, we can obtain a realization of the response process

using classical numerical integration techniques.
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4.2 Numerical time integration
Numerical time integration is used to compute time series of

the response δ(t). The computed realizations of the response can
be used to estimate the invariant measures of the stationary so-
lutions, such as statistical moments, probability density function
and power spectral density.

The accuracy of the estimates of the stochastic invariants de-
pends on the length of the time series used (corresponding to a
statistical error on the estimate of the stochastic invariant) and
the integration accuracy underlying the time series. Therefore,
the efficiency of the integration technique is an important issue.
Variable step size schemes, in which stability checks and accu-
racy checks are performed at each integration step, are rather in-
efficient for our purpose. Therefore, a constant step-size Runge-
Kutta scheme is used. Since explicit integration schemes are only
conditionally stable, a minimum step size (that ensures stability)
can be determined. Due to the major difference in stiffness be-
tween contact and non-contact situations, the minimal step sizes
for these situations differ enormously. It would be very ineffi-
cient to choose one single constant step size based on contact
situations. Therefore, two different stable step sizes are used.
Consequently, the time of impact has to be determined accu-
rately (and in a computationally efficient manner) to avoid enter-
ing contact with the large integration time step. For this purpose
the Hénon method [7; 14] is implemented within the integration
routine.

5 Simulation results for Gaussian excitation
Here, the simulation results will be discussed. The exci-

tations y(t), applied to the model, are realizations of Gaussian,
band-limited stochastic processes. The target spectrum1 of the
excitation is taken uniformly distributed within a limited fre-
quency band ωband = [ωmin ωmax] and its level is chosen to rep-
resent a physically sensible prescribed displacement of the rigid
frame (order of maginitude 1 mm). First, a band excitation with
ωband = [0.0 1226.6] rad/s is applied to the system. This exci-
tation is broad-banded relatively to the response characteristics
depicted in figure 4. It should be noted that the excitation is
Gaussian by nature of its generation.

In figure 6, the power spectral densities of the response vari-
ables δ and δm are shown. The contribution of the first eigen-
mode is clearly present near ω = 195 rad/s. The contribution of
the second mode of the linear beam to δ is now apparent around
ω = 780 rad/s. Note that the first nonlinear resonance frequency
is almost twice the lowest linear eigenfrequency of the beam.
In [15] it is stated that in a piece-wise linear system the nonlinear
resonance frequency approaches twice the linear eigenfrequency
(of the system without nonlinearity) for a very high nonlinear-

1It should be noted that for the remainder of this paper one-sided power spec-
tral densities will be considered
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Figure 6. Power spectral densities of δ and δm for ωband =[0.0 1226.6]

rad/s.

ity. Since the impact phenomenon plays a less important role in
the nonlinear response related to the second mode, the second
resonance frequency is much lower than twice the second linear
eigenfrequency of the beam. The contribution of the second de-
gree of freedom becomes more evident when one observes the
power spectral density of the response variable δm for the same
excitation, see figure 6. The contribution of the second mode
to the response of the system appears in a more dominant way in
the mid-beam displacement (see figure 6), since the second mode
has its maximum displacement near the middle of the beam, see
figure 2. Note that, besides the resonances near 195 rad/s and 780
rad/s, extra resonance peaks occur, which represent higher har-
monics of the resonance near 195 rad/s (related to the first linear
eigenmode of the elastic beam). Furthermore, the response sig-
nal contains a large amount of energy at low frequencies (ω < 50
rad/s). It is well-known that when the excitation, and there-
fore the response, contains two frequencies ω1 and ω2, the res-
ponse can also contain the ’difference’-frequency ω2 −ω1 when
the system exhibits an asymmetric stiffness nonlinearity. Note
that broad-banded excitation contains a large number of nearby
frequencies. Hence, a lot of interaction can be expected in this
case. When those excitation frequencies lie in a resonance peak
of the system, these ’difference’-frequencies will contain a sig-
nificant amount of energy. Both phenomena were also observed
in the response of the SDOF model of the beam-impact system
[5] and other nonlinear systems with asymmetric stiffness non-
linearities [7].

In figure 7 , estimates for the probability density functions
of the relative end-displacement δ and the relative mid-beam dis-
placement δm are shown. Clearly, δm tends towards a Gaussian
distribution. From a physical point of view, it is clear that δm
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Figure 7. Probability density functions of δ and δm for ωband =[0.0

1226.6] rad/s.

should not exhibit such an extreme asymmetry as δ, since the
beam does not encounter a contact at the horizontal position
z = l/2. From a more general point of view, it is known [16],
that the output of a linear system, in case of a non-Gaussian in-
put, will be closer to Gaussian than the input. In this perspective,
we can view upon δm as an output of a linear system (the beam)
with a non-Gaussian input δ. This tendency towards a Gaussian
distribution becomes stronger for weakly damped systems.

Next, three different narrow-band excitations were applied:

1. a band-limited excitation, with ωband = [144.5 270.2] rad/s,
that covers the major part of the harmonic resonance peak,
see figure 4;

2. a band-limited excitation, between ωband = [351.9 477.5]
rad/s, that covers the major part of the 1/2 subharmonic res-
onance peak, see figure 4.

3. a band-limited excitation, between ωband = [559.2 684.9]
rad/s, that covers the major part of the 1/3 subharmonic res-
onance peak, see figure 4.

It should be noted that all three excitation signals are realizations
of Gaussian stochastic processes, which exhibit the same vari-
ance and have uniformly distributed energy within their specified
frequency bands.

The power spectral densities of the responses to these ex-
citations are displayed in the figures 8, 9 and 10. Note that
a ’harmonic’ solution of the nonlinear, 2DOF model to a har-
monic excitation with frequency ωe exists, see figure 4, and
has a specific period time 2π

ωe
but comprises multiple frequen-

cies ωe,2 ωe,3 ωe, . . . . Clearly, this is also the case for stochas-
tic excitations, see figure 8. Moreover, remarkable, stochas-
tic, nonlinear response phenomena are displayed in the figures 9
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Figure 8. Power spectral density of δ for ωband =[144.5 270.2] rad/s.

0 200 400 600 800 1000 1200 1400 1600 1800
10

−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

ω [rad/s]

Po
w

er
sp

ec
tr

al
de

ns
it

y
S δ

δ(
ω

)
[m

2 s]

Figure 9. Power spectral density of δ for ωband =[351.9 477.5] rad/s.

and 10. Namely, figure 9 shows a ’stochastic 1/2 subharmonic’
solution and figure 10 shows a ’stochastic 1/3 subharmonic’ so-
lution. Note that in the same frequency range subharmonic solu-
tions exist when the system is excited periodically, see figure 4.
To be more specific, a 1/n subharmonic effect is responsible for
the fact that the excitation frequency band [ωmin ωmax] also re-
sults in an important response in the frequency range [ωmin

n
ωmax

n ],
see figure 9 and 10.

We can distinguish another, interesting, common character-
istic of the periodic and stochastic response of the beam-impact
system by comparing the figures 8, 9 and 10. Namely, the
’stochastic 1/3 subharmonic’ solution contains significantly more
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Figure 10. Power spectral density of δ for ωband =[559.2 684.9] rad/s.

energy than the ’stochastic 1/2 subharmonic’ solution, whereas
the ’stochastic 1/2 subharmonic’ solution contains significantly
more energy than the ’stochastic harmonic’ solution. Note that a
comparable phenomenon was observed in the periodic response
of the MDOF model of the beam-impact system, see figure 4.

6 Experimental set-up
In the next section, simulation results will be validated by

comparison to experimental results. The experimental set-up is
presented schematically in figure 11. A uniformly distributed,
Gaussian, band-limited excitation signal is generated numeri-
cally using Shinozuka’s method [12]. This signal is sent to a
controller, which controls a servovalve using feedback informa-
tion from an internal displacement transducer. The servovalve
provides the input for the hydraulic actuator by controlling the
oil flow of the hydraulic power supply. A hydraulic service
manifold connects the hydraulic power supply and the servo-

3. Servovalve
4. Hydraulic 
5. Hydraulic service
6. Hydraulic actuator

2. Controller

MTS
Controller

1. PC-486/Labview

7. Beam-impact system

3

54

7

82

8. DIFA measurement system

    power supply
manifold

1

6

����������
�����
�����
�����
�����MTS

Figure 11. The experimental set-up of the beam-impact system.

D. Laser interferometer

RIGID

D

B

C

A

A. LVDT displacement
      transducer
B. Accelerometer
C. Force transducer

Figure 12. The measurement equipment.

valve. This service manifold reduces fluctuations and snapping
in the hydraulic lines during dynamic programs. All measure-
ments are monitored using the data acquisition software package
DIFA [17].

Figure 12 shows the measurement equipment mounted on
the beam-impact system. A Linear Variable Differential Trans-
former (LVDT) measures the displacement of the rigid frame.
The displacement and velocity of the beam, at the point of con-
tact, are measured by a laser interferometer. Furthermore, the
acceleration of the beam is measured by an accelerometer and a
force transducer is used to measure the force acting on the rigid
frame, where the force transducer is positioned at the center of
mass of the rigid frame and rotations of the rigid frame are as-
sumed to be small. The rigid frame displacement measurements
are used as input for the simulations described in the next section.

7 Experimental results
In section 5, several interesting, stochastic, nonlinear res-

ponse characteristics were observed in the simulation results.
Comparable phenomena are encountered in the experiments as
well and will be discussed here. Moreover, the validity of the
2DOF model will be assessed by comparing the experimental re-
sults with the simulation results. Herewith, also the added value
of the 2DOF model with regard to the SDOF model, as presented
in [5], can be assessed.

A [0.0 1226.6] rad/s band excitation was applied. The real-
ized excitation spectrum is depicted in figure 13. In contrast with
the signal offered to the controller, the power spectral density of
the actual rigid frame displacement is clearly not uniformly dis-
tributed within the specified frequency range. This is due to the
fact that the hydraulic actuator behaves like a first-order low-pass
filter. Both the simulated and measured power spectral densities
of the response δ(t) are shown in figure 14. The most impor-
tant response phenomena like higher harmonics, related to the
resonance near 195 rad/s, and the presence of a large amount
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Figure 14. Comparison of the power spectral densities of δ for the ex-

periment and the 2DOF model with ωband = [0.0 1226.6] rad/s.

of low-frequency energy are clearly visible in both experimental
and simulation results. However, the non-uniformity of Pyy( f )
obstructs the observation of the second characteristic. Figure 14
shows that the experimental and numerical results agree to a large
extent. Clearly, the response of the 2DOF model exhibits the sec-
ond harmonic resonance at ω = 780 rad/s, which coincides with
the experimental data. This represents an important modeling
improvement in comparison to the SDOF model [5], since, obvi-
ously, the second mode is absent in the SDOF model.

In figure 16, the power spectral densities of the responses
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Figure 15. Power spectral density of the excitation for ωband = [144.5

270.2] rad/s.
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Figure 16. Sδδ(ω) for the SDOF model and the 2DOF model for

ωband =[144.5 270.2] rad/s.

of the SDOF model an the 2DOF model for an ’experimental’
[144.5 270.2] rad/s excitation (see figure 15) are compared.
This figure shows that the addition of the extra degree of free-
dom has a significant effect on the stochastic response of the
system: this effect not only expresses itself through the second
(stochastic) harmonic resonance peak near 780 rad/s, but also af-
fects the response characteristics in lower frequency ranges. Fig-
ure 17 shows that particularly this effect of the second degree of
freedom makes the simulation results of the 2DOF model fit the
experimental results better than the results of the SDOF model
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Figure 17. Sδδ(ω) for the experiment and the 2DOF model for

ωband =[144.5 270.2] rad/s.

(observe, hereto, figure 16 and 17 simultaneously). The fact that
the extension towards a 2DOF model also affects the response
at lower frequencies corresponds to tendencies seen in the peri-
odic response of the 2DOF model, see figure 4. However, for
stochastic excitations the effect of the addition of the second de-
gree of freedom does not seem to have such a dramatic effect
on the response (at lower frequencies) as for periodic excitation.
Apparently, local effects (in terms of frequency) are somehow
averaged for stochastic excitations. Note, moreover, that the ex-
perimental data in figure 17 express the fact that a ’stochastic
harmonic’ response also appears in the experiment.

Figure 19 displays an experimental ’stochastic 1/2 subhar-
monic’ solution, which occurs when the applied, Gaussian exci-
tation exhibits a power spectral density as depicted in figure 18.
Furthermore, figure 19 confirms once more that the 2DOF model
describes all the important dynamic phenomena of the stochastic
response of the experimental system very well.

Moreover, by comparing the figures 17 and 19 we can de-
tect that the energy of both experimental stochastic solutions are
of a comparable level. Note, however, that the power spectral
density of the excitation in figure 18 is significantly lower than
that in figure 15. So, this effect corresponds to an effect, which
was also observed for the periodic and stochastic simulations,
see sections 3 and 5, respectively. There, the 1/2 subharmonic
solution proved to be of a higher energy level than the harmonic
solution (for identical input levels).

8 Conclusions
We have investigated the stochastic response phenomena of

a beam-impact system under band-limited, stochastic excitation
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Figure 18. Power spectral density of the excitation for ωband = [351.9

477.5] rad/s.
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Figure 19. Sδδ(ω) for the experiment and the 2DOF model for ωband =
[351.9 477.5] rad/s.

both experimentally and numerically. Clearly, the simultaneous
observation of the periodic and stochastic behavior of the system
proved to be very fruitful in gaining understanding with respect
to the stochastic response phenomena. For a number of peri-
odic response phenomena stochastic equivalents were presented,
such as ’stochastic harmonic’ and ’stochastic subharmonic’ so-
lutions. Hereto, it was important to observe the response from a
frequency-domain perspective.

Moreover, it was shown that the 2DOF model can predict
the stochastic behavior of the experimental system very accu-
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rately. Related, hereto, it is important to note that the addition of
the second mode (near 780 rad/s) does not only result in a mod-
eling improvement near this second resonance, but also accom-
plishes a significant improvement for lower frequencies, when
compared to the SDOF model [5]. So, even for excitation spec-
tra up to 500 rad/s, the 2DOF model should be preferred over the
SDOF model. Moreover, an extension towards a 3DOF model
will most probably not yield a significantly better approxima-
tion of the experimental response characteristics, since, firstly,
the 2DOF description is already very accurate for the frequency
range observed in this paper. Moreover, the third mode (eigenfre-
quency is approximately 2300 rad/s) will become more important
when one is interested in response characteristic in this ’higher’
frequency range and when the excitation exhibits a significant
amount of energy in this frequency range. Furthermore, an exten-
sion towards a model with more degrees of freedom will directly
result in a decrease in computational efficiency, which is crucial
in the numerical approximation of stochastic response character-
istics. It can, therefore, be concluded that the modeling approach,
in which the continuous, linear part of the beam-impact system
(the elastic beam) is reduced to a two-mode description before
merging it with a model for the local nonlinearity, is a valid and
successful one for both periodic (see [1]) and stochastic excita-
tions.
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