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Abstract Torsional stick-slip vibrations decrease the performance, reliability and
fail-safety of drilling systems used for the exploration and harvesting of oil, gas, min-
erals and geo-thermal energy. Current industrial controllers regularly fail to eliminate
stick-slip vibrations, especially whenmultiple torsional flexibility modes in the drill-
string dynamics play a role in the onset of stick-slip vibrations. This chapter presents
the experimental validation of novel robust output-feedback controllers designed
to eliminate stick-slip vibrations in the presence of multiple dominant torsional
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flexibility modes. For this purpose, a representative experimental test setup is
designed, using a model of a real-life drilling rig as a basis. The model of the
dynamics of the experimental setup can be cast in Lur’e-type form with set-valued
nonlinearities representing an (uncertain) model for the complex bit-rock interaction
and the interaction between the drill-string and the borehole. The proposed controller
design strategy is based on skewed-μ-DK-iteration and aims at optimizing the robust-
ness with respect to uncertainty in the non-smooth bit-rock interaction. Moreover,
a closed-loop stability analysis for the non-smooth drill-string model is provided.
Experimental results confirm that stick-slip vibrations are indeed eliminated using
the designed controller in realistic drilling scenarios in which state-of-practice con-
trollers have failed to achieve the same.

1 Introduction

Efficiency, reliability and safety are important aspects in the drilling of deep wells for
the exploration and production of oil, gas, mineral resources and geo-thermal energy.
Drill-strings several kilometers in length are used to transmit the axial force and
torque necessary to drill the rock formations. These drill-string systems are known to
exhibit different types of self-excited vibration,which decrease the drilling efficiency,
accelerate bit wear, may cause sudden failure of expensive Measure-While-Drilling
(MWD) tools, and may cause drill-string failure due to fatigue. This chapter focuses
on the controlled mitigation of torsional stick-slip vibrations.

Modelling of the torsional dynamics of the drill-string is an important step towards
the control of torsional vibrations.Most controller designs presented in literature rely
on one- or two degree-of-freedom (DOF) models for the torsional dynamics only,
see e.g., [4, 14, 31, 35]. The resisting torque-on-bit (TOB) is typically modelled as
a frictional contact with a velocity weakening effect. Although experiments using
single cutters to identify the bit-rock interaction law, see [5], do not reveal such a
velocity weakening effect, analysis of models that take the coupled axial and tor-
sional dynamics into account shows that such coupling effectively leads to a velocity
weakening effect in the TOB [30]. This motivates a modelling-for-control approach
that only involves the torsional dynamics and a set-valued, velocity weakening bit-
rock interaction law. In contrast to other studies, however, we use a multi-modal
model of the torsional dynamics, as field observations have revealed that multiple
torsional resonance modes play a role in the onset of stick-slip oscillations.

Controllers for drilling systems aim to achieve drill-string rotation at a constant
velocity and the mitigation of stick-slip vibrations. Moreover, the following con-
trol specifications are important. First, only surface measurements can be used for
feedback. Second, the controller should be able to cope with dynamics related to
multiple torsional flexibility modes. Third, robustness with respect to uncertainty in
the non-smooth bit-rock interaction has to be guaranteed and, fourth control per-
formance specifications, related to, e.g., measurement noise sensitivity and actuator
constraints, need to be taken into account in the controller design.
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A well-known control method, which aims at damping the first torsional mode, is
the Soft Torque Rotary system, see [12]. The same objective is set in [14], which uses
a PI-controller based on the top drive velocity. Other control methods have been
developed, including torsional rectification [35], observer-based output-feedback
[4, 6, 39], impedance matching [8], adaptive output-feedback for infinite dimen-
sional drill-string models [1], weight-on-bit control [2] and robust control [15, 31].
Although important steps forward have been take in these works, an approach that
satisfies all mentioned requirements has not yet been developed. A robust control
approach, as proposed in [15, 31], is particularly suitable for this problem, since both
robustness with respect to uncertainty of the system dynamics and control perfor-
mance specifications can be taken into account in the control design. In [31], anH∞
controller synthesis method is applied to a 2-DOF drill-string model and the twist
in the drill-string is used as measurement, i.e., knowledge of the angular position
of the bit is assumed. [15] uses the μ-synthesis technique through the DK-iteration
procedure for the purpose of obtaining less conservative bounds on the uncertainty to
obtain robustness with respect to the nonlinear bit-rock interaction. The model used
is a similar 2-DOF model, and down-hole measurements (for assessing the twist of
the drill-string) are also used in this case. Moreover, the employed 2-DOF models
only take the first flexibility mode into account. In this chapter, we present exper-
imental results of a robust control approach for the control of torsional drill-string
vibrations, of which preliminary model-based results have been presented in [38]
and which can cope with multiple torsional resonance modes.

Because of the high costs involved in testing on a real drilling rig, experimental
lab-scale setups representing the drilling dynamics used for multiple purposes can
be found in the literature, some examples of which are mentioned here (see [25]
for a more comprehensive overview). In [22], an experimental 2-DOF drill-string
system is used for the analysis of friction-induced stick-slip limit cycles. The same
setup is used in [4] for experimental validation of an observer-based output-feedback
controller. In [17], an experimental setup is developed that can emulate various
excitationmechanisms of the drill-string, including stick-slip, well-borehole contact,
and drilling fluid interaction. The aforementioned test setups both use brake systems
to implement bit-rock interaction laws. A different approach is taken in [18], inwhich
an experimental setup for exploring stick-slip phenomena is used that involves real
cutting using a bit. In [36], an experimental setup is used to investigate whirling
effects in drilling systems, involving both torsional and lateral dynamics. Another
example of the experimental validation of a controller design approach to torsional
vibrations in drilling systems can be found in [20]. Also for the testing of down-hole
tools, experimental setups are used as a stepping stone towards implementation of the
technique. For example, experimental results ofResonanceEnhancedDrilling (RED)
technology are presented in [40], and in [29], an experimental setup for investigating
the Anti Stick-slip Tool (AST) is shown.

The need for a new experimental setup design stems from the fact that the
controllers proposed in this thesis focus on the robustness with respect to multi-
ple dominant torsional flexibility modes in the drill-string dynamics. To investigate
this robustness, it is important that the experimental setup represents such a drilling
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system with multiple dominant flexibility modes (in contrast to, e.g., [22, 36], in
which setups with a single flexibility mode are considered).

The main contributions of this chapter are, firstly, the model-based design of a
representative (lab-scale) experimental drill-string setup, secondly, the design of a
robust output-feedback controller methodology for eliminating stick-slip vibrations
and, thirdly, experimental results showing themerit of the proposed control approach.

In Sect. 2, the design of the experimental setup is motivated and detailed. This
design is based on a non-smooth model of a real drilling rig. Section 3 deals with
the controller design strategy aiming to eliminate the torsional vibrations. In Sect. 4,
the proposed control strategy is validated experimentally. The chapter closes with
concluding remarks in Sect. 5.

2 Design of the Experimental Drill-String Setup

2.1 Model-Based Design of the Experimental Setup

Consider a drilling system, as schematically shown in Fig. 1. The investigated system
is a realistic drill-string model of an offshore jack-up drilling rig, and the reservoir
sections of thewells are drilledwith a 6” PDCbit to reach depths ofmore than 6000m
along-hole and with an inclination angle up to 60◦, resulting in significant resistive
torques along the drill-string due to frictional borehole drill-string interaction. The
rig is equipped with an AC top drive and fitted with a modern SoftTorque system [14,
19]. However, for this depth and hole size, stick-slip vibrations have been observed in

Fig. 1 Schematic drilling
system, not to scale (adapted
from [27])

Top drive
Rig

Bottom hole
assembly

Bit

Drill pipe
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Fig. 2 Field data of the drilling rig under investigation, indicating severe stick-slip oscillations,
see [11] (desired angular velocity is approximately 50 rpm). Top plot: top drive angular velocity in
RPM; bottom plot: top drive torque

Fig. 3 Step-wise
development of a model to be
used as a basis for the design
of the experimental setup

18-DOF FEM
drill-string model

Dynamical model of
the experimental
setup (structure)

Reduced-order
drill-string model

Parameterized model
with structure of the

setup

Model of the
experimental setup

Parameter
identification

Model reduction

Scaling

the field for this rig (see [11]), as shown in Fig. 2. In this figure, measurement data of
the real rig is shown. The top drive angular velocity (RPM) and top drive torque (TQ)
show severe oscillations, indicating stick-slip oscillations at the bit. The fact that a
control strategy, which only damps the first flexibility mode of the torsional drill-
string dynamics, fails to eliminate stick-slip vibrations shows that multiple resonance
modes play a role and motivates construction of multi-modal drill-string models and
development of a controller based on these models.

A finite-element method (FEM) model of this real-life drilling system is used as
a basis for the design of the experimental drill-string setup. A detailed description of
the FEMmodel is given in Sect. 2.1.1. Here, the focus is on the steps that are taken to
develop a model of the experimental setup based on this 18-DOF FEMmodel. These
steps are summarized in Fig. 3 and are discussed in more detail in the following
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sections. In Sect. 2.1.2, the model reduction strategy that is used for obtaining a
reduced-order drill-string model is discussed. Next, the model of the experimental
setup is explained in more detail in Sect. 2.1.3 and the identification approach for
obtaining the parameters for this model based on the reduced-order model is given in
Sect. 2.1.4. Since it is impossible to scale down an oil-field drill-string to a lab-scale
setup that still exhibits the main (torsional) dynamics we aim to study, we propose
a model with four rotating discs, coupled with (steel) strings, as shown in Fig. 4.
It is important to mention that the proposed model of the experimental setup has a
specific structure, due to the mechanical elements (i.e., inertias and springs) that are
used in the setup resulting in a lumped-parameter model, while on the other hand,
the reduced-order drill-string model does not have such a specific structure. The
identified parameters of the obtained model are still of the same order of magnitude
as the original drill-string model (e.g., inertia and stiffness properties of the system
as a whole are still of the same order of magnitude, and are hence not (yet) scaled).
As a consequence, the representative torsional velocity and torque levels of the setup
match those of a real drill-string system. Therefore, scaling is used to obtain suitable
torque levels and velocities for a lab-scale drill-string setup, but also to obtain feasible
inertias and stiffnesses for the lab-scale experimental system design. This scaling
procedure is discussed in Sect. 2.1.5.

2.1.1 Finite-Element Model

Afinite-element model of this drilling system, which represents a drill-string 6249m
in length, has been developed, and the simulation results of this model have been
validated with field data for a range of operational conditions (such as weight-on-bit
(WOB) and angular velocity). The 18-DOF finite-element model is obtained by rep-
resenting the drill-string with a number of equivalent pipe sections in order to accu-
rately describe the torsional dynamics relevant to stick-slip vibrations. The model
is validated by comparing the simulations of the non-smooth model (i.e., including
bit-rock and borehole-drillstring interaction torques) with field measurements of the
drill-string system. Figures 5 and 6 show two cases of this validation study, i.e., the
simulation results of the finite-element model are compared with the field data under
two different operating conditions; in both cases, the drill-string system exhibited
stick-slip vibrations at the bit. As can be seen from these figures, the simulation
results match the field data, both in terms of the amplitude and the frequency of
the oscillations. The latter observations further motivate the usage of the developed
model as a basis for controller design in this thesis.
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Fig. 4 Schematic
representation of a model
with four discs

Inertia J̄4

θ̄s,4

Inertia J̄3

Inertia J̄2

θ̄s,2

Inertia J̄1

θ̄s,1

Steel string

Steel string

Steel string

Drive part

Tbit

θ̄s,3

The finite-element method (FEM) representation of the drill-string is a model
with 18 elements. The element at the top is a rotational inertia to model the top
drive inertia, and the subsequent elements are equivalent pipe sections based on the
dimensions and material properties of the drill-string (see [37] for more details).
The resulting model can be written as a second-order differential equation of the
following form:

M θ̈ + Dθ̇ + Ktθd = SwTw(θ̇) + SbTbit (θ̇1) + St Ttd (1)

with the rotational displacement coordinates θ ∈ R
m with m = 18, the top drive

motor torque input Ttd ∈ R being the control input, the bit-rock interaction torque
Tbit ∈ R and the interaction torques Tw ∈ R

m−1 between the borehole and the drill-
string acting on the nodes of the FEM model. The coordinates θ = [

θ1 · · · θm
]�

represent the angular displacements of the nodes of the finite-element representa-
tion. Next, we define the difference in angular position between adjacent nodes as
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Fig. 5 Comparison between a simulation result of the FEM model and actual field data from the
rig (top plot: top drive torque; bottom plot: top drive velocity); the desired angular velocity is
approximately 50 rpm [11]

Fig. 6 Comparison between a simulation result of the FEM model and actual field data from the
rig (top plot: top drive torque; bottom plot: top drive velocity); the desired angular velocity is
approximately 140 rpm, [11]

follows: θd := [
θ1 − θ2 θ2 − θ3 · · · θm−1 − θm

]�
. In (1), themass, damping and stiff-

ness matrices are, respectively, given by M ∈ R
m×m , D ∈ R

m×m and Kt ∈ R
m×m−1,

and the matrices Sw ∈ R
m×m−1, Sb ∈ R

m×1 and St ∈ R
m×1 represent the general-

ized force directions of the interaction torques, the bit torque and the input torque,
respectively. The coordinates θ are chosen such that the first element (θ1) describes
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Fig. 7 Schematic
representation of the 18-DOF
finite-element model

Ttd

Tbit

θ1

θ2

θ17

θ18

the rotation of the bit and the last element (θ18) the rotation of the top drive at the sur-
face, as illustrated in Fig. 7. The interaction between the borehole and the drill-string
is modelled as (set-valued) Coulomb friction, that is,

Tw,i ∈ Ti Sign
(
θ̇i

)
, for i = 2, . . . ,m, (2)

with Ti representing the amount of friction at each element and the set-valued sign
function defined as

Sign (y) :=
⎧
⎨

⎩

−1, y < 0
[−1, 1] , y = 0
1, y > 0.

(3)

Note that possible viscous effects between the drill-string and the borehole are
captured in the damping matrix D, which motivates only Coulomb effects being
taken into account in the interaction torques Tw. The set-valued bit-rock interaction
model is given by

Tbit (θ̇1) ∈ Sign
(
θ̇1

) (
Td + (Ts − Td) e

−vd |θ̇1|) , (4)

where Ts is the static torque, Td the dynamic torque and vd := 30
Ndπ

s/rad indicates the
decrease from static to dynamic torque. A schematic representation of the bit-rock
interaction is shown in Fig. 8. For typical parameter settings, the ratio between Ts and
Td is within the range 2–5, i.e., the static torque is 2 to 5 times higher than the dynamic
torque. Moreover, typical parameter settings for Nd are such that the decrease from
static to dynamic torque ismainly between 0 and 20–30 rpm,which results in a severe
velocity-weakening effect in the bit-rock interaction for low angular velocities.

2.1.2 Reduced-Order Model

The FEM model presented above has 18 degrees of freedom. For the design of the
setup, we rely on a reduced-order model. The purpose of this reduced-order model is
to approximate the higher-order FEM model with a reduced number of states, while
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Fig. 8 Schematic
representation of the bit-rock
interaction Tbit in (4);
ωbit := θ̇1

Td

−Td

Ts

−Ts

ωbit

Tbit

still preserving the key dynamic systemproperties.Asmentioned before,modelswith
multiple flexibility modes are considered, because field observations have revealed
that higher flexibility modes of the drill-string also play a role in the onset of stick-
slip vibrations (see [23]). As mentioned in [37], the first three resonance modes, with
resonance frequencies at f1 ≈ 0.15, f2 ≈ 0.38 and f3 ≈ 0.53 Hz, are dominant in
the drill-string dynamics (see Figs. 9, 10 and 11). Therefore, a drill-stringmodel with
at least four degrees of freedom is considered capable of enabling the accurate capture
of those first three flexibility modes and the rigid body mode by the reduced-order
model.

For the design of the experimental setup, we aim to accurately approximate the
torsional flexibility modes of the drill-string system associated with the lowest res-
onance frequencies. Therefore, an eigenmode-based reduction strategy is used, also
known as the mode displacement method [10]. Now, let us consider the undamped
(and unforced) drill-string system and, in addition, the stiffness matrix K related
to the absolute angular positions θ = [

θ1 · · · θm
]�
, instead of the stiffness matrix

Kt , related to the difference in angular position θd as in (1), hence M θ̈ + K θ = 0.
Then, the mode displacement method is based on the free vibration modes of
these structural dynamics. This leads to the following generalized eigenvalue prob-
lem:

[
K − λ2

i M
]
vi = 0, where vi is the mode shape vector corresponding to the

eigenfrequency λi , with i ∈ [1, . . . ,m]. The resulting eigenfrequencies are grouped
in ascending order, i.e., λ1 ≤ λ2 ≤ · · · ≤ λm , and the corresponding eigenmodes
v1, v2, . . . , vm are collected in the square (m × m) modal matrix V = [

v1 v2 · · · vm
]
.

Using this matrix, we employ the following coordinate transformation to modal
coordinates η:

θ = Vη. (5)
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The general idea of the reduction approach is to keep the first mr < m eigenvec-
tors, which correspond to the lowest eigenfrequencies in the reduced-order model.
Hereto, consider the following transformationmatrix T = [

v1 v2 · · · vmr

]
. Using this

transformation matrix, (5) can be rewritten as

θ = [
T U

] [
θr
η2

]
= T θr +Uη2, (6)

whereU contains the truncated eigenmodes, that is, the eigencolumns mr + 1 to m,

and η2 contains the states that correspond to these modes; the coordinates preserved
in the reduced-order model are denoted by θr . Using (1) and (6) and projecting
the resulting equations of motion on the expansion basis T results in the following
reduced-order dynamics:

Mr θ̈r + Dr θ̇r + Krθr = T�SwTw(
˙̌
θ) + T�SbTbit ( ˙̌

θ1) + T�StTtd (7)

withMr = T�MT ∈ R
mr×mr , Dr = T�DT ∈ R

mr×mr , Kr = T�KT ∈ R
mr×mr and

θ̌ := T θr ∈ R
m being the estimated (full-order) angular displacements based on the

reduced-order estimates.
In this work, the case in which mr = 4 is considered, that is, we take the rigid

bodymode and three torsional flexibility modes into account. The relevant frequency
response functions of the (linear) drill-string dynamics are shown in Figs. 9, 10
and 11. These frequency response functions describe the (linear) drill-string dynam-
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Fig. 9 Frequency response function of the 18-DOF model, the reduced-order model and the setup
model with the identified parameters from input torque Ttd to bit velocity ωbit
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Fig. 10 Frequency response function of the 18-DOF, the reduced-order model and the setup model
with the identified parameters from input torque Ttd to top drive velocity ωtd
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Fig. 11 Frequency response function of the 18-DOF, the reduced-order model and the setup model
with the identified parameters from bit torque Tbit to bit velocity ωbit , i.e., bit-mobility
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ics from the relevant inputs (top drive torque and bit-rock interaction torque) to the
angular velocity outputs at the top drive and bit, i.e., respectively, ωtd := θ̇18 and
ωbit := θ̇1. As can be observed, the first three eigenmodes are indeed accurately
matched by the reduced-order model.

2.1.3 Dynamical Model of the Experimental Setup

In this section, the model that is used for the design of the experimental setup, as
shown in Fig. 4, is discussed in more detail. For the model, we will not restrict our-
selves to connections between adjacent discs, but will also take potential connections
between all the discs into account. The coordinates θ̄s = [

θ̄s,1 · · · θ̄s,4
]�

represent
the angular displacements of the discs. The equations of motion of the system are
given by:

M̄s
¨̄θs + D̄s

˙̄θs + K̄s θ̄s = SwsTws(
˙̄θs) + SbsTbit (

˙̄θs,1) + StsTtd , (8)

with

M̄s =

⎡

⎢⎢
⎣

J̄1 0 0 0
0 J̄2 0 0
0 0 J̄3 0
0 0 0 J̄4

⎤

⎥⎥
⎦ (9)

D̄s =

⎡

⎢⎢
⎣

d̄12 + d̄13 + d̄14 −d̄12 −d̄13 −d̄14
−d̄12 d̄12 + d̄23 + d̄24 −d̄23 −d̄24
−d̄13 −d̄23 d̄13 + d̄23 + d̄34 −d̄34
−d̄14 −d̄24 −d̄34 d̄14 + d̄24 + d̄34

⎤

⎥⎥
⎦, (10)

K̄s =

⎡

⎢
⎢
⎣

k̄12 + k̄13 + k̄14 −k̄12 −k̄13 −k̄14
−k̄12 k̄12 + k̄23 + k̄24 −k̄23 −k̄24
−k̄13 −k̄23 k̄13 + k̄23 + k̄34 −k̄34
−k̄14 −k̄24 −k̄34 k̄14 + k̄24 + k̄34

⎤

⎥
⎥
⎦, (11)

Sws =

⎡

⎢⎢
⎣

0 0 0
1 0 0
0 1 0
0 0 1

⎤

⎥⎥
⎦ , Sbs =

⎡

⎢⎢
⎣

1
0
0
0

⎤

⎥⎥
⎦ , Sts =

⎡

⎢⎢
⎣

0
0
0
1

⎤

⎥⎥
⎦ , (12)

and the resistive torques at discs 2, 3 and 4 for modeling the borehole drill-string
interaction are given by Tws . Recall that Ttd denotes the top drive motor torque and
Tbit denotes the bit-rock interaction torque.
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2.1.4 Parameter Identification for the Setup Model

The next step is to determine the parameters of the 4-DOFmodel of the experimental
setup based on the reduced-order model presented in Sect. 2.1.2. First, the inertias of
the four discs are determined. The total inertia of the 4-disc setup is chosen to be equal
to the total inertia of the original 18-DOFmodel. In addition, we require the inertia of
the upper disc ( J̄4) to be equal to the inertia of the top drive, such that the upper disc
actually represents the top drive. Doing so, the torque in the drill-string below disc
4 comes to represent the pipe torque that is used as measurement in the linear robust
controller approach (presented in Sect. 3). The inertia of the bottom disc ( J̄1) is deter-
mined based on the “high”-frequency behavior (i.e., above the eigenfrequencies) of
the reduced-order model. The remaining part of the total inertia is equally distributed
over the two remaining discs. The remaining damping and stiffness parameters, are
determined using an optimization-based identification approach. The objective of the
optimization procedure is to find the model parameters such that the difference in the
complex plane between the frequency response function of the reduced-order model
and the model of the setup is minimized over all frequencies within the frequency
range of interest. Hence, we seek to solve the following optimization problem:

min
p∈

[
p, p

] J (p), (13)

where p := [
k̄12 k̄23 k̄34 k̄13 k̄14 k̄24 d̄12 d̄23 d̄34 d̄13 d̄14 d̄24

]
are the parameters of

the setup to be determined, p and p, represent a lower and upper bound for the
parameters and the objective function J (p) is given by

J (p) =
∑

ωl

w( jω)
(∣∣W ( jω)HTtdωbit

r ( jω) − W ( jω)HTtdωbit
s ( jω)

∣∣2
)

(14)

with HTtdωbit
r and HTtdωbit

s the frequency response functions from top drive torque input
to bit velocity output of the reduced-order model and the setup model, respectively.
The frequency response function from top drive torque input to bit velocity output
is chosen for the parameter identification because it captures the relevant dynamics
of the drilling system that should be represented in the setup. Note that HTtdωbit

s
depends on the parameters p. The frequency grid ωl is a discrete grid of frequencies
between 0.05 and 6 Hz, because that is the relevant frequency range of the reduced-
order drill-string dynamics (see Fig. 9). The frequency-dependent weighting filter
W ( jω) is chosen to beW ( jω) = Jtot jω, to compensate for the negative slope of the
frequency response function from top drive torque input to bit velocity output. The
(scalar) multiplication factorw( jω) in (14) is used to give extra weighting in specific
frequency ranges. This multiplication factor is equal to 1.5 for 0.14 < f < 0.165
(i.e., around thefirst resonance frequency), equal to 2 for 0.5 < f < 0.57 (i.e., around
the third resonance frequency) and equal to 1 for all other frequencies.
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The results of the fitting procedure are shown in Figs. 9, 10 and 11. Note that
the identified parameters are still of the same order of magnitude as for the original
drill-string model. For example, the inertia of the upper disc is equal to the inertia
of a real top drive (approximately 1800 kgm2) and a driving torque at the top drive
is typically on the order of 40 kNm. These settings are infeasible for a lab-scale
setup. Therefore, scaling of the parameters in order to obtain feasible dimensions
for the lab-scale setup is discussed in Sect. 2.1.5. It turned out that it is not possible
to fit the reduced-order model of the original drill-string and the model of the setup.
This is mainly caused by the fact that in the finite-element model (and therefore
also in the reduced-order model), the drill-string’s properties are distributed along
it, whereas the model of the setup is based on a lumped mass approach (multiple
discs representing discrete inertias). This is particularly visible in Fig. 9: due to the
lumped inertias of the setup model, the slope of the magnitude of the FRF decreases
by 2 (on a loglog-scale) after each resonance peak and the phase decreases by 180
degrees (due to the 2 poles associated with the resonance). However, the FRFs of
the 18-DOF and reduced-order model do not show this behavior; this is caused by
zeros of these models that are in the right-half-plane of the complex plane (i.e., non-
minimum phase). Nevertheless, a satisfactory match of the dominant resonances
is achieved and, moreover, simulation results of the non-smooth setup model (see
Fig. 12) confirm that the response of the setup model is in good correspondence
with the response of the reduced-order model and the original 18-DOF FEMmodel.
In Fig. 12, the response of the 18-DOF drill-string model is compared with the
response of the 4-DOF setup model. In both simulations, the system is controlled
with a SoftTorque controller (see (37) in Sect. 4.2) and the parameters ct = 1829
and kt = 1177), and the desired angular velocity is equal to 50 rpm. Clearly, the
response of the setup model is similar to the response of the original FEM model.
This illustrates that the dominant dynamics of the original 18-DOFmodel is captured
by the 4-DOF setup model, also in the scope of the non-smooth dynamics leading to
stick-slip oscillations.

2.1.5 Scaling of the Drill-String Model

An identified set of parameters for the experimental setup has been obtained in the
previous section. However, these parameters are based on a full-scale drilling rig and,
asmentionedbefore, suchparameter values are infeasible for a lab-scale experimental
setup. To obtain feasible parameter values for the experimental setup, a scaling of
the variables and parameters is in order, while retaining the resonance frequencies
of the drill-string system. Therefore, two scaling factors are introduced: c1 is used to
scale the torque level and c2 to scale the states of the system. The states are scaled
according to θs = 1

c2
θ̄s and the equations of motion are pre-multiplied with a factor

1
c1
to scale the torque level. This results in the (scaled) equations of motion given by

Ms θ̈s + Ds θ̇s + Ksθs = Sws T̂ws(θ̇s) + Sbs T̂bit (θ̇s,1) + Sts T̂td (15)
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Fig. 12 Simulation result of the 18-DOF drill-string model (left-hand side) compared with a sim-
ulation result of the 4-DOF model of the experimental setup (right-hand side)

withMs := c2
c1
M̄s , Ds := c2

c1
D̄s , Ks := c2

c1
K̄s , T̂ws := 1

c1
Tws , T̂bi t := 1

c1
Tbit and T̂td :=

1
c1
Ttd . The scaled bit-rock interaction torque T̂bi t is given by the following scaled law:

T̂bi t (θ̇s,1) ∈ Sign
(
θ̇s,1

) (
T̂d +

(
T̂s − T̂d

)
e

(−30
∣
∣θ̇s,1

∣
∣)/

(
N̂dπ

) )
(16)

with T̂d = 1
c1
Td , T̂s = 1

c1
Ts and N̂d = 1

c2
Nd , and the scaled drill-string borehole inter-

action torques can be written as

T̂ws,i ∈ T̂s,i Sign
(
θ̇s,i

)
, for i = 2, . . . ,m, (17)

where T̂s,i = 1
c1
Ts,i . The scaling factors are determined to be c1 = 6250 and c2 = 10.

This scaling is chosen first, to obtain feasible torque levels for typical motors that
can be used in lab-scale systems (mainly influenced by c1) and, second, to achieve
angular position differences between adjacent discs that are sufficiently small so
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as to avoid plastic deformation of the steel strings between those discs. The latter
aspect, of course, also depends on the length and diameter of the strings, which need
to have feasible dimensions. The scaled parameters are summarized in Table 1, the
scaled parameters regarding the interaction torques are given in Table 2. The top
drive torque is on the order of 40 kNm for the full scale system, whereas this is
scaled to approximately 6.4 Nm for the setup, and since the states are scaled with a
factor 10, a desired angular velocity of 50 rpm in practice is equal to a desired angular
velocity of 5 rpm in the setup. Note that no time-scaling applied, which implies that
the resonance frequencies of the system have not been changed.

By applying the described scaling, themodel of the experimental drill-string setup
is scaled to feasible dimensions for designing a lab-scale setup. With the method
described in this section, a set of prescribed model parameters is obtained for the
design of the setup. The setup design is discussed in more detail in the next section.

2.2 The Experimental Drill-String Setup

The experimental setup is designed to be adjustable and modular. In particular, it is
designed such that it should be possible to change the inertia of the discs and the
stiffness of the strings, and, by using a hardware-in-the-loop approach, other parame-
ters such as damping can also be adjusted. With this hardware-in-the-loop approach,
additional dynamics is emulated in software and implemented using motors driving
all the individual discs. In addition, the setup is designed such that it is possible to

Table 1 Parameters of the setup model

Symbol Value (kgm2) Symbol Value
(Nms/rad)

Symbol Value
(Nm/rad)

J1 0.064 k12 0.630 d12 0

J2 0.708 k23 1.799 d23 0.0018

J3 0.708 k34 1.097 d34 0.0024

J4 2.845 k13 0 d13 0

k14 0 d14 0.0005

k24 0 d24 0

Table 2 Parameters of the scaled bit-rock interaction model and drill-string borehole interaction
torques

Symbol Value Symbol Value (Nm)

T̂s 1.232 Nm T̂s,2 2.297

T̂d 0.272 Nm T̂s,3 3.038

N̂d 0.5 rad/s T̂s,4 0.662
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Fig. 13 Schematic representation of the experimental drill-string setup. a is an overview of the
setup, b is a top view on one of the disc platforms, c is a bottom view of one of the disc platforms.
Different parts are numbered as follows: 1- (steel) strings between the different discs; 2- disc
(representing inertia); 3- additional masses to change the inertia of the disc; 4- upward connection
for the string; 5- flat hollow shaft torque motor (embedded in the frame); 6- torque sensors; 7-
downward connection for the string

investigate a system with additional flexibility modes by adding an extra disc to the
setup. A schematic overview of the setup is shown in Fig. 13.

Let us now discuss the design of the setup in more detail. The total setup is 5 m
tall and has a footprint of 1 × 1 m. As can be seen in Fig. 13a, the setup has 4 disc
platforms to support the 4 discs of the model (see Fig. 13b, c; note that the bottom
disc platform is slightly different, which is explained in more detail later). These
discs are interconnected by steel strings to represent the torsional stiffness of the
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drill-string system and each disc is equipped with a motor. For the top disc, this
motor is used to drive the system and to apply the desired control action. At the
bottom disc, the motor is used to emulate the desired bit-rock interaction, and at
the intermediate discs, the drill-string borehole interaction torques are implemented
using these motors. In addition, these motors are used to emulate the hardware-in-
the-loop components, such as damping torque associated with the damping constant
d14, and to compensate for undesired effects, such as friction and cogging in the
motors. Each of the motors is equipped with an encoder, and the setup contains three
torque sensors for measuring the torques in the interconnecting strings. Furthermore,
a DS1103 controller board from dSPACE [7] is used as a real-time control and data
acquisition platform. A photo of the lab-scale drill-string system is shown in Fig. 14.

The three upper disc platforms are identical and equipped with Georgii Kobold
KTY-F torque motors ([9]). These are flat direct-drive brushless DC motors with a
maximum torque of 26 Nm and a maximum angular velocity of 250 rpm. To actuate
and control these motors, Siep & Meyer SD2S motor amplifiers ([33]) are used, and
to measure the angular position of the discs, built-in 19-bit Heidenhain ECI 119
inductive encoders ([13]) are used. The 19-bit encoder signal is converted, in the
motor amplifiers, into a 15-bit quadrature signal that is used by the dSPACE system
to determine the angular position of the discs. The angular velocities of the discs
are determined by numerical differentiation of the angular positions measured by
the encoders. The discs have an inertia of approximately 0.350 kgm2, including the
inertia of the motor. By adding additional masses at a certain radius on the discs, the
inertia of the discs can be adjusted (in steps of approximately 0.05 kgm2) to obtain
the desired inertia, as specified in Table 1.

The bottom disc platform is shown in Fig. 15 and is different from the other
platforms. This difference has two main reasons: first, the specified inertia of the
bottom disc is much lower compared to the inertias of the other discs and, second,
in order to accurately implement the desired bit-rock interaction law, it is important
that this disc has a low static friction. To realize these two aspects, a disc with a
smaller diameter and a different type of motor is used. The installed motor is a
brushed DC motor from Printed Motor Works (type: GN16RE), see [28], with a
maximum torque of 2.55 Nm and a maximum angular velocity of 3000 rpm. The
static friction in this motor is approximately 0.05 Nm, which is sufficiently lower
than the dynamic torque level T̂d to be implemented (see Table 2). In addition, a 16-
bit Sick DFS60A incremental encoder ([32]) is used together with a Copley Controls
Xenus Plus motor amplifier (type: XTL-230-40), see [3]. The bottom disc has an
inertia of approximately 0.03 kgm2 and can be adjusted in steps of approximately
0.01 kgm2 to achieve the prescribed inertia.

To represent the torsional stiffness of the drill-string model, steel strings with a
specific length and diameter are used. The length and diameter are chosen such that
the prescribed stiffnesses (see Table 1) are achieved. The specified damping factors
are obtained by implementing the damping using the motors (i.e., in a hardware-in-
the-loop fashion) based on the measured difference in angular velocity of the discs,
while compensating for the material damping that is already present in the strings.
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Fig. 14 The experimental
drill-string setup

The setup is also equipped with three PCMTQ-RT2A-25NM torque sensors [26].
These sensors can measure up to 25 Nm with an accuracy of ±0.2%. The torque
sensors are placed below the upper two discs and just above the bottom disc, as
indicated in Figure 13a with 6a-c. The torque sensor below the top drive disc will be
used for the pipe torque measurement, to be used in the scope of feedback control.

The foregoing description of the experimental setup shows that the setup is
equipped with multiple sensors: encoders in all the discs to measure the angular
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1

2

3

4

Fig. 15 Bottom disc platform, with 1: the disc with additional weights; 2: themotor; 3: the encoder;
4: the torque sensor

position (and determine the angular velocity) and three torque sensors to measure the
torques in the steel strings between the discs. However, the control design strategies
to be presented in later sections will only require surface (top-side) measurements.
The extra sensors, which are not required for the proposed control strategies, are used
for parameter identification and validation of the setup dynamics and for analyses of
the obtained experimental results.

2.3 Summary

In this section, the design of the experimental setup is discussed. First, a model of
the experimental setup, based on the 18-DOF FEM drill-string model, is presented.
The 4-DOF setup model is designed such that it represents the dominant dynamics
of the dynamics of an oil-field drill-string system that exhibits torsional vibrations.
The non-smooth model of the experimental drill-string setup is scaled to feasible
dimensions in support of the design of the lab-scale setup. Finally, the mechanical
and electrical design of the designed setup is presented in detail.

3 Output-Feedback Controller Design

In this section, a design approach for torsional controllers, aiming to eliminate tor-
sional stick-slip oscillations, is described. In Sect. 3.1, a model reformulation is pre-
sented rendering the model suitable in the scope of controller synthesis. Section3.2
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details the control problem formulation in system-theoretic terms. Next, Sect. 3.3
describes the proposed output-feedack control strategy inducing robustness with
respect to uncertainties in the bit-rock interaction torque.

3.1 Non-smooth Modelling for Control

The dynamic model of the setup in second -order form, as given in (15)–(17), can be
cast into a first-order Lur’e-type system form as follows:

ẋ = Ax + Gv + G2v2 + But
q = Hx
q2 = H2x
y = Cx
v ∈ −ϕ(q)

v2 ∈ −φ(q2).

(18)

Herein, x = [
θs,1 − θs,2, θ̇s,1, θ̇s,2, θs,2 − θs,3, θ̇s,3, θs,3 − θs,4, θ̇s,4

]� ∈ R
7 is the

state, where θs,i , i = 1, 2, 3, 4, describes the rotational displacement of the iner-
tias of the setup, and the bit velocity is defined as q := θ̇s,1. Furthermore, q2 :=
[
θ̇s,2 θ̇s,3 θ̇s,4

]�
. Note that only relative angular positions are taken into account,

such that the 4-DOF system is described with only 7 state variables. Moreover, the
bit-rock interaction torque T̂bi t is denoted by v ∈ R and the drill-string-borehole
interaction torques T̂ws are denoted by v2 ∈ R

3. As a consequence, the nonlinearities
ϕ(·) and φ(·) are defined by the set-valued nonlinearities in the right-hand sides of
(16) and (17), respectively. In addition, ut := T̂td ∈ R is the (top drive torque) con-
trol input and y := [

ωtd Tpipe
]� ∈ R

2 is the measured output, where ωtd := θ̇s,4 is
the top drive angular velocity. The so-called pipe torque Tpipe is the torque in the
drill-string directly below the top drive (sometimes also referred to as the saver sub
torque). In the experimental setup, this torque is measured using a torque sensor
directly below the top-most inertia.

3.2 Control Problem Formulation

The desired operation of the drill-string system is a constant angular velocity ωeq

for all four inertias. So, the objective is to regulate this set-point of the non-smooth
drill-string system by means of an output-feedback controller. The available output
measurements for the controller are the top drive angular velocity ωtd and the pipe
torque Tpipe. The system can be controlled by the top drive torque ut . The controller
should:
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1. locally stabilize the desired velocity of the drill-string, therewith eliminating
torsional (stick-slip) vibrations;

2. ensure robustness with respect to uncertainty in the non-smooth bit-rock interac-
tion ϕ;

3. guarantee the satisfaction of closed-loopperformance specifications, in particular,
on measurement noise sensitivity, i.e., limitation of the amplification of measure-
ment noise, and limitation of the control action such that top drive limitations can
be satisfied;

4. guarantee robust stability and performance in the presence of multiple flexibility
modes dominating the torsional dynamics.

To facilitate controller synthesis, the drill-string dynamics (18) are reformulated.
The desired constant angular velocity ωeq for all discs can be associated with a
desired equilibrium xeq for the state of the system. To ensure that xeq is an equilib-
rium of the closed-loop system, the control input ut = uc + ũ is decomposed in a
constant feedforward torque uc (inducing xeq ) and the feedback torque ũ. For the
feedforward design, we assume that θ̇s,i > 0, for i = 2, 3, 4, hence φ is constant and
can be compensated for by constant uc, and we determine xeq and uc using the equi-
librium equation of system (18), i.e., Axeq − Gϕ(Hxeq) − G2φ(H2xeq) + Buc � 0.
Next, we define ξ := x − xeq and apply a linear loop transformation such that the
slope of a transformed nonlinearity ϕ̃(q) (associated with ϕ(q) through the loop
transformation) is equal to zero at the equilibrium velocity, i.e., ∂ϕ̃/∂q|q=ωeq

= 0.
This results in a state-space representation of the transformed drill-string dynamics
in perturbation coordinates:

ξ̇ = Atξ + Bũ + Gṽ (19a)

ỹ = Cξ (19b)

q̃ = Hξ (19c)

ṽ ∈ −ϕ̃ (q̃) (19d)

with At := A + δGH , δ = − ∂ϕ/∂q|q=ωeq
> 0, ỹ := y − Cxeq , q̃ := q − Hxeq ,

ϕ̃ (q̃) := ϕ
(
q̃ + Hxeq

) − ϕ
(
Hxeq

) + δq̃ and ṽ := v − veq − δq̃ . The dynamics in
(19) represents aLur’e-type system,with the linear dynamics (19a)–(19c),with trans-
fer function Gol , and having inputs ũ and ṽ and outputs ỹ and q̃ , and the nonlinearity
ϕ̃ in the feedback loop. The open-loop transfer function Gol(s) is defined as

[
q̃(s)
ỹ(s)

]
:= Gol(s)

[
ṽ(s)
ũ(s)

]
=

[
g11(s) g12(s)
g21(s) g22(s)

] [
ṽ(s)
ũ(s)

]
. (20)

In the context of the second controller objective above, we model the nonlinearity
ϕ̃ (Fig. 16a) by an uncertainty Δ (Fig. 16b). This model formulation is used in the
controller design approach developed in Sect. 3.3. Note that ϕ̃ describes a nonlin-
ear (set-valued) mapping from q̃ to ṽ, while the uncertainty Δ is assumed to be a
(complex) LTI uncertainty (with output v̌). This means that, for example, stability of
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Fig. 16 Block diagram of
the system dynamics (19) in
Lur’e type form (a) and the
linear dynamics Gol with
(complex) model uncertainty
Δ (b)

Gol

ϕ̃ (·)
q̃ṽ

−

ũ ỹ

(a)

Δ

Gol

ũ ỹ

q̃v̌

(b)

the closed-loop system with uncertainty Δ does not directly imply stability for the
closed-loop system with nonlinearity ϕ̃. Nevertheless, the model in Fig. 16b is used
as a basis for controller synthesis in the next section. Subsequently, the stability of
the nonlinear (non-smooth) closed-loop system is analyzed in detail in Sect. 3.3.3.

3.3 Design of a Robust Output-Feedback Controller

In this section, we present a robust control design approach based on skewed-μ
DK-iteration ([38]).

First, we formulate the general control configuration that is used in such a robust
control context. Next, in Sect. 3.3.1, we analyze nominal performance of the (linear)
system, i.e., without uncertainty. This is extended to robust performance for the
(linear) system with uncertainty taken into account in Sect. 3.3.2. The stability of the
closed-loop nonlinear system is investigated in Sect. 3.3.3.

This robust control technique combines several concepts from robust control the-
ory to design a controller that achieves robust stability and performance of a system
with model uncertainties [34].

Robust controlmethods focus on the design of controllers,while systemuncertain-
ties are explicitly taken into account in the design. The general control configuration
for a (LTI) plant P with an uncertainty Δ and (LTI) controller K is shown in Fig. 17,
where e is the error in the measured output, u the control output and w and z rep-
resent the (weighted) exogenous inputs and outputs. This structure is similar to the
block diagram in Fig. 16b with v̄ and q̄ as weighted representations of v̌ and q̃ (see
Sect. 3.3.2) and, in addition, includes the controller K . The system P , in Fig. 17, is
described by

Fig. 17 General control
configuration with
uncertainty block Δ

P

K

z

eu

w

N

Δ
q̄v̄
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⎡

⎣
q̄
z
e

⎤

⎦ =
⎡

⎣
P11 P12 P13
P21 P22 P23
P31 P32 P33

⎤

⎦

⎡

⎣
v̄
w
u

⎤

⎦ . (21)

The system N := Fl (P, K ) is defined as the lower linear fractional transformation
(LFT) of the plant P with the controller K , that is:

N =
[
P11 P12
P21 P22

]
+

[
P13
P23

]
K (I − P33K )−1

[
P31 P32

]
.

With the introduction of the controller K , we can also introduce the closed-loop
bit-mobility function. The closed-loop bit-mobility transfer function Gcl from the
input ṽ to the output q̃ , of system (19) with controller K , is defined by

Gcl := g11 − g12K (I + g22K )−1g21. (22)

This bit-mobility plays an important role in the stability of the closed-loop system
(see Sect. 3.3.3 for the role of Gcl in the scope of a nonlinear stability analysis), and
is therefore important in the controller design methodology.

3.3.1 Nominal Stability and Nominal Performance

Asmentioned above, the controller design aims at stability, performance, and robust-
ness for the uncertainty Δ. In this section, the focus is on the first two aspects.
Robustness is considered in the next section. Based on the system representation in
Fig. 16b, the closed-loop system of the linear drill-string dynamics Gol in feedback
with the linear, dynamic controller K to be designed is shown in Fig. 18. In this
representation, additional inputs n and d are introduced, representing measurement
noise and actuator noise, respectively.

Consider the system without uncertainty given by

[
z
e

]
:= P

[
w
u

]
=

[
P22 P23
P32 P33

] [
w
u

]
(23)

with w and z weighted versions of w := [
n d

]�
and z := [

e u
]�
, respectively. The

weighted inputs and outputs are discussed in more detail in Sect. 3.3.2. Moreover,

Fig. 18 Linear drill-string
dynamics Gol in closed loop
with the controller K and
including model uncertainty
Δ with disturbances d and n

Gol

Δ

ỹ

q̃v̌
d n

u
K

e

−
ũ

+

+

+

+
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define the lower LFT of P with the controller K , that is, N22 := Fl
(
P, K

)
. Next,

the concept of nominal performance is defined as follows: for a system without
uncertainty Δ, the closed-loop system N22 = Fl(P, K ) is internally stable and the
H∞-norm of this system (from w to z) is smaller than 1, that is,

‖N22‖∞ = sup
ω

σ̄
(
Fl(P, K )

)
< 1, (24)

where we used the definition of the H∞-norm ‖H(s)‖∞ := ess supω∈R σ̄ (H ( jω))

and σ̄ indicates the maximum singular value. This means that nominal performance
can be achieved by solving the “standard” H∞ optimal control problem, in which
the aim is to find the internally stabilizing controller K that minimizes ‖Fl(P, K )‖∞
(see [34] for details). Internal stability of the closed-loop can be guaranteed by a
proper choice of the inputsw and outputs z. As proved in [41, Sect. 5.3], by choosing
w and z as defined earlier, the H∞ controller synthesis guarantees internal stability
of the closed-loop system. Specification of the weighting filters is treated in more
detail in Sect. 3.3.2. Moreover, the system with uncertainty is addressed in the next
section, leading to the concept of (alternative) robust performance.

3.3.2 Alternative Robust Performance

Robust performance means that the stability and performance objective, addressed
in Sect. 3.3.1, is achieved for all possible models in the uncertainty set D [34], i.e.,
for all Δ ∈ D. Standard robust performance techniques typically aim at optimizing
the performance for all possible plants induced by the uncertainty set. In contrast, we
aim to optimize the robustness with respect to the uncertainty while still guaranteeing
internal stability and satisfactionof givenperformanceobjectives. This iswhatwecall
alternative robust performance. In the drilling context, this means that, for example,
a (fixed) bound on the control action should be satisfied (see controller objective 3
in Sect. 3.2), while the robustness with respect to the nonlinear bit-rock interaction
is optimized (as specified in the second controller objective).

Consider the system P in Fig. 17, including the uncertainty block, Δ. The input-
output pair v̄, q̄ is related to this uncertainty block and the (weighted) closed-loop
transfer function N (s) = Fl (P, K ) is given by

[
q̄
w

]
= N

[
v̄
z

]
= Fl (P, K )

[
v̄
z

]
. (25)

Robust stability is obtained by designing a controller K such that the system
N is internally stable and the upper LFT, F := Fu(N ,Δ), is stable for all Δ ∈
D. Herein, the uncertainty set D is a norm-bounded subset of H∞,1 i.e., D =

1H∞ is a (closed) Banach space of matrix-valued functions that are analytic in the open right-half
plane and bounded on the imaginary axis. The real rational subspace of H∞ is denoted by RH∞,
which consists of all proper and real rational stable transfer matrices [41, Sect. 4.3].
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{Δ ∈ RH∞|‖Δ‖∞ < 1}. The aim is to find a stabilizing controller that also meets
certain performance specifications. Therefore, we use a similar approach as in [34,
Sect. 8.10] and consider the fictitious ‘uncertainty’ ΔP . The uncertainty ΔP is a
complex unstructured uncertainty blockwhich represents theH∞ performance spec-
ifications. Moreover, note that ΔP ∈ DP , with DP = {ΔP ∈ RH∞ |‖ΔP‖∞ ≤ 1 }.
The result given in [41, Theorem 11.8] states that a robust performance problem is
equivalent to a robust stability problem with the augmented uncertainty

Δ̂ =
⎡

⎣
Δ 0 0
0
0

ΔP

⎤

⎦ (26)

with Δ̂ a block-diagonal matrix. In other words, both the performance specifications
and uncertainty are taken into account in a similar fashion. Moreover, D̂ is the uncer-
tainty set with a structure as given in (26) and any Δ ∈ D and ΔP ∈ DP . The robust
performance condition can now be formulated as follows:

μD̂ (N ( jω)) ≤ 1, ∀ω, (27)

where μD̂ is the structured singular value with respect to D̂. The structured singular
value is defined as the real non-negative function

μD̂(N )= 1

k̄m
, k̄m =min

{
km

∣∣∣det
(
I − kmNΔ̂

)
=0

}
(28)

with complex matrix N and block-diagonal uncertainty Δ̂.
To optimize the robustness with respect to the uncertainty Δ (i.e., part of Δ̂ in

(26)), the skewed structured singular value μs can be used. The skewed structured
singular value is used if some uncertainty blocks in Δ̂ are kept fixed (ΔP in this case)
to investigate how large another source of uncertainty (Δ in this case) can be, before
robust stability/performance can no longer be guaranteed. In this case, we aim to
optimize the robustness of the closed-loop system with respect to uncertainty Δ in
the bit-rock interaction. Thus, we aim to obtain the largest uncertainty set Δ, given a
fixed ΔP (i.e., fixed performance specifications). Therefore, we introduce the matrix
Ks

m := diag
(
ksm, I

)
, and the skewed structured singular value μs

Δ̂
(N ) is defined as

μs
D̂
(N )= 1

k̄sm
, k̄sm =min

{
ksm

∣∣
∣det

(
I − Ks

mNΔ̂
)
=0

}
. (29)

Thus, the robust performance condition (27), with additional scaling (through Ks
m)

in terms of the skewed structured singular value, is written as the alternative robust
performance condition

μs
D̂

(N ( jω)) ≤ 1, ∀ω. (30)
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Fig. 19 Closed-loop system
with weighting filters and
scaling matrices
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ū d̄

d n

n̄

ỹ
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To support controller design satisfying particular performance specifications,
weighting filters and scaling matrices are introduced in the loop in Fig. 18, as shown
in Fig. 19. Those frequency-domain weighting filters allow us to specify the (inverse)
maximum allowed magnitudes of the closed-loop transfer functions. Moreover, the
scaling matrices are introduced to improve the numerical conditioning of the prob-
lem and to tune the desired bandwidth. The (weighted) generalized plant P with
input weighting filters Vi (s) and output weighting filters Wi (s), with i ∈ {1, 2, 3},
and scaling matrices Wsc and Vsc, is specified by

⎡

⎢⎢
⎣

q̄
ē
ū
e

⎤

⎥⎥
⎦=

⎡

⎢⎢
⎣

W1 0 0 0
0 W2Wsc 0 0
0 0 W3 0
0 0 0 I2

⎤

⎥⎥
⎦P̄

⎡

⎢⎢
⎣

V1 0 0 0
0 VscV2 0 0
0 0 V3 0
0 0 0 1

⎤

⎥⎥
⎦

︸ ︷︷ ︸
P

⎡

⎢⎢
⎣

v̄
n̄
d̄
u

⎤

⎥⎥
⎦ .

Herein, P̄(s) is the MIMO transfer function of the unweighted system P̄ with inputs[
ṽ n d u

]�
and outputs

[
q̃ e u e

]�
with its state-space realization given by

P̄
s=

⎡

⎢⎢⎢⎢
⎣

At G 0 B B
H 0 0 0 0

−C 0 −I 0 0
0 0 0 0 I

−C 0 −I 0 0

⎤

⎥⎥⎥⎥
⎦

. (31)

In this section, we have introduced an alternative robust performance framework.
To design a controller that minimizes the skewed structured singular value μs

D̂
, for

the purpose of obtaining robust performance, a procedure for synthesizing such a
controller, known as the DK-iteration procedure [34, Sect. 8.12], is treated concisely
below.

The first step in such a DK-iteration procedure is the introduction of D-scaling
matrices. This scaling uses the fact that Δ̂ is structured, hence, the inputs and out-
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Fig. 20 Block diagram of
the implementation for the
skewed-μ DK-iteration
procedure

D−1D

D

Δ̂=
[
Δ 0
0 Δp

]

D−1 N(K) Ks
m

puts to Δ̂ and N are scaled by inserting the matrices D and D−1, as shown in
Fig. 20. Using such scaling generally enables one to find potentially tighter robust
stability/performance conditions. For further details on the procedure, the reader is
referred to [24, 34].

The skewed-μ DK-iteration procedure aims at designing a controller that mini-
mizes the peak value over frequency of the upper bound on the skewed structured
singular value, i.e., a controller K should be designed by solving the following opti-
mization problem:

min
K

(
min
D

‖DKs
mN (K )D−1‖∞

)
. (32)

Here, the original scaling matrix D(ω) is replaced by a stable minimum-phase trans-
fer function fit D(s) of D(ω). The dependency of the closed-loop transfer function
N on the controller K is indicated by N (K ). In DK-iterations, a μ-analysis (D-step)
andH∞-optimization (K -step) are solved alternately (see [24]). In other words, the
skewed-μ DK-iteration procedure alternates between minimizing (32) with respect
to either K or D (while holding the other fixed) and recursively updating ksm (which
characterizes Ks

m) during the D-step.

3.3.3 Closed-Loop Stability Analysis

The main purpose of the controller is to stabilize the equilibrium ξ = 0 of the non-
linear system (19). Let us that assume that a controller K has been designed that
meets the performance specifications and is robust with respect to the uncertaintyΔ.
Hence, the designed controller guarantees stability for the linear closed-loop system
N (s) and achieves robustness with respect to the uncertainty Δ. In this section, the
stability of the nonlinear closed-loop system is considered. Therefore, we define a
symmetric sector condition on the nonlinearity ϕ̃ such that, for any (locally Lips-
chitz) nonlinearity which (locally) satisfies this sector condition, (local) asymptotic
stability of the origin of the closed-loop system can be guaranteed.

We use the circle criterion [16, Theorem 7.1] to determine a (symmetric) sector
on the nonlinearity ϕ̃ for which robust stability can be guaranteed. Consider the
closed-loop bit-mobility (22) and a symmetric sector condition on the nonlinearity
which is satisfied for all q̃ ∈ S with S := {q̃ ∈ R|q̃l < q̃ < q̃u} and q̃l < 0 < q̃u ,
i.e. ϕ̃(q̃) ∈ [−γ, γ

] ∀ q̃ ∈ S and γ > 0. We note that, although ϕ̃ is a set-valued
nonlinearity, we have that, for ωeq > 0 (i.e., for a nominal velocity away from the
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discontuinity in the bit-rock interaction at zero velocity), there indeed exist q̃l and q̃u
such that the latter symmetric sector condition is satisfied. The nonlinear system is
locally absolutely stable (i.e., ξ = 0 is locally asymptotically stable for any ϕ̃(q̃) ∈[−γ, γ

]
with q̃ ∈ S ) if

H(s) = (1 + γGcl(s)) (1 − γGcl(s))
−1, (33)

is strictly positive real. Applying Lemma 6.1 in [16], a scalar transfer function H(s)
is strictly positive real if the following conditions are satisfied:

1. H(s) is Hurwitz;

2. Re [H( jω)] = Re
[
1+γGcl ( jω)

1−γGcl ( jω)

]
> 0, ∀ω ∈ R;

3. H(∞) > 0.

For the symmetric sector, the condition on H(s) being Hurwitz is equivalent to
Gcl(s) being Hurwitz. The closed-loop transfer function Gcl(s) of the feedback
interconnection is Hurwitz by the design of the stabilizing controller K . Moreover,
Gcl is strictly proper, and therefore H(∞) = 1, such that the third condition is
satisfied. The second condition is equivalent to the condition:

‖Gcl( jω)‖∞ <
1

γ
. (34)

Hence, the H∞-norm of the closed-loop bit-mobility Gcl gives an upper bound on
the sector that the nonlinearity ϕ̃ should comply with, for the system to be abso-
lutely stable. With the DK-iteration procedure, presented above, a controller K can
be designed such that ‖Gcl‖∞ is indeed minimized. In other words, the robustness
with respect to uncertainty in the bit-rock interaction is optimized. This shows the
benefit of employing the alternative robust performance technique (see Sect. 3.3.2)
in terms of optimizing the robustness of the closed-loop drill-string dynamics with
respect to the uncertainty in the bit-rock interaction, also in the nonlinear context.

In the following section, design guidelines for the tuning of the weighting filters
tailored to the drilling context are given, and the designed controller is presented and
validated through experiments.

4 Experimental Controller Validation

In this section, the implementation and experimental results obtained with the con-
troller design strategy of the previous section are presented. First, a startup scenario
for the experiments on the drill-string setup is discussed inSect. 4.1.Next, in Sect. 4.2,
the implementation of the SoftTorque controller, being the industrial standard, is dis-
cussed, and an experimental result of this industrial controller having been applied to
the setup is shown. Finally, in Sect. 4.3, the implementation and experimental results
are discussed for the linear robust output-feedback controller, as presented in Sect. 3.
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Fig. 21 Open-loop bit-mobility of the setup, i.e., the frequency response function from bit torque
Tbit to bit velocity ωbit

Before going into detail about the implementation of the controllers and the exper-
imental results, let us consider the (open-loop) bit-mobility of the experimental drill-
string setup. As advocated earlier, the bit-mobility plays an important role in the
onset of stick-slip vibrations and the proposed control strategy aims to minimize
its H∞-norm. The measured open-loop bit-mobility of the setup is shown in Fig.
21. In the same figure, the bit-mobility of the setup model based on experimentally
identified parameters is shown. For details on the performed parametric model iden-
tification, we refer to [37]. Clearly, the third resonance mode is well captured by the
model and the second flexibility mode is more damped in the model compared to the
actual bit-mobility of the setup. Moreover, the first resonance mode exhibits some
discrepancy between the model and the experiments. Here, we opt for an identified
model that aims to capture, in particular, the third resonance mode accurately, as it is
precisely this dominant mode (in the bit-mobility) that is responsible for the occur-
rence of stick-slip oscillations. Moreover, it is well-known that it is relatively easy
to design a controller that robustly damps the first mode despite such uncertainties
(already guaranteed by a Soft-Torque controller).

4.1 Experimental Startup Scenario Description

For the experiments, we introduce a so-called startup scenario, which is based on
practical startup procedures for drilling rigs.Herein, the drill-string is first accelerated
to a low constant rotational velocitywith the bit above the formation (off bottom) and,
subsequently, the angular velocity and weight-on-bit (WOB) are gradually increased
to the desired operating conditions. The increase in WOB is modelled as a scaling
of the bit-rock interaction torque (TOB).

The startup scenario for the experiments is visualized in Fig. 22. The reference
angular velocity of the upper discs is shown in the upper plot and the scaling of the
TOB, indicated by α, is shown in the bottom plot. The timing of the transitions in
the startup scenario can be summarized as follows:
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Fig. 22 Reference velocity and TOB scaling of the startup scenario for the experimental setup

1. Start with zero initial velocities and linearly increase the reference angular veloc-
ity from zero to 3.5 rpm2 in the period between t = 0 and t = 30 s. At the same
time, increase the feedforward torque (uc) to its nominal value;

2. Between t = 50 and t = 90 s, adapt the drill-string borehole interaction torques
Tw to obtain the desired values, based on the torque sensor readings, in order to
compensate for possibly changed friction characteristics (in the bearings support-
ing the discs);

3. Gradually increase the reference angular velocity until the desired operating
velocity (ωeq being 5.5 rpm) is reached (in the time window 110 ≤ t < 170 s).
At the same time, gradually change the TOB to emulate that the bit bites the
formation, and finally, obtain the nominal operating condition in both the angular
velocity and the TOB. Adapting the torque on bit is done as follows. The bit-rock
interaction model is scaled by using the scaling factor α(t) according to:

T̂bi t (t) = Sign(ωbit )
(
Tini + α(t)

(
T̂d − Tini +

(
T̂s − T̂d

)
e
− 30

N̂dπ
|ωbit |))

, (35)

where Tini is the amount of resisting torque that is still present at the bit-rock
interface, evenwhen the bit is off bottom (e.g., due to drillingmud and interactions
with the borehole). For WOB = 0 (off bottom; characterized by α = 0), there is
no velocity-weakening in the TOB. The scaling factor α(t) in (35) is given by

2Note that due to scaling, this corresponds to 35 rpm on a real drilling rig.
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α(t) =
⎧
⎨

⎩

0, t0 ≤ t ≤ t1
t−t1
t2−t1

, t1 < t < t2
1, t ≥ t2

(36)

with t1 = 110 and t2 = 170 in this case.

4.2 SoftTorque Controller

The SoftTorque controller ([14]) is a controller for drill-string systems, widely used
in industry. This controller aims at damping of the first torsional flexibility mode of
the drill-string system only. This active damping system is a PI-controller, based only
on the velocity error ey between the measured top drive velocity y = ωtd and the
reference angular velocity ωtd,re f , i.e., ey := ωtd,re f − ωtd . The controller is given
by the transfer function

T f b(s) =
(
ct + kt

s

)
ey(s), s ∈ C, (37)

with ct = 2.93 and kt = 1.87 tuned such that damping of the first torsional flexibility
mode of the setup is obtained (note that these controller parameter settings corre-
sponds to unscaled system parameters, as mentioned in Sect. 2.1.4). In Fig. 23, the
measured closed-loop bit-mobility of the drill-string setup with the SoftTorque con-
troller is shown. It is clearly visible that the first torsional mode is damped using the
SoftTorque controller, but the amplitude of the second and third modes are similar in
the open-loop and closed-loop cases, illustrating a key deficiency of the SoftTorque
controller.

An experimental result of the closed-loop drill-string system with SoftTorque
controller (with the same constant feedforward active as for the controller proposed
in Sect. 3) is shown in Fig. 24. In the response of the bit angular velocity, stick-slip
oscillations can be observed. The onset of these oscillations starts when the reference
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Fig. 23 Bit-mobility of the setup with SoftTorque controller
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angular velocity and scaling factor α (for emulating an increase of the WOB) start
to increase at t = 110 s. This experimentally shows that the SoftTorque controller is
indeed unable to avoid stick-slip oscillations for the setup.

In Fig. 24, the filtered and unfiltered responses of the system are shown. The
filtered response of the system is compared with a simulation result of the model
of the setup with the identified parameters. The results are shown side-by-side in
Fig. 25. To allow for a clear comparison, a shift of the time axis has been applied for
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Fig. 24 Experimental result of the drill-string setup with the SoftTorque controller in the startup
scenario
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the experimental results. As can be seen from this figure, the closed-loop response
of the experimental setup is very similar to the response of the simulation results.
The only difference is the somewhat shorter sticking period in the simulation results
between two successive groups of two slipping periods (i.e., the long sticking period).
This result further illustrates that the setup is capable of accurately emulating the
non-smooth drill-string dynamics to be investigated, also in closed-loop operation.

4.3 H∞-Based Output-Feedback Controller

The linear robust output-feedback controller design methodology, presented in
Sect. 3.3, is also used to design a controller for the experimental drill-string setup.
The results of the drill-string setup in closed loop with theH∞-based controller are
presented in this section.
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Fig. 25 Comparison between the experimental result and simulation result of the drill-string model
with the SoftTorque controller
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Weighting filter design is key to satisfying the performance specifications related
to, e.g., measurement noise sensitivity and actuator limitations. Moreover, achieving
specific design targets such as the inclusion of integral action and high-frequency roll-
off can be achieved by absorbing these filters into the loop see [21]. High-frequency
roll-off reduces measurement noise amplification. Also, integral action is desired
from a practical point of view, e.g., in case of a mismatch between the (model-based)
feedforward torque uc and the actual required feedforward torque due to uncertainty
in the respective models for the bit-rock interaction and the drill-string borehole
interaction. In that case, integral action will compensate for this mismatch so as to
obtain convergence to the desired setpoint.

For the design of a controller for the drill-string model (18), the following objec-
tives are set:

• Integral action for low-frequencies;
• Second-order roll-off for high freqencies
• Cross-over frequency of the open-loop transfer function KGol (at the plant input)
at 0.6 Hz, i.e., just above the third eigenfrequency of the drill-string system (see
Fig. 11);

• Plant output scaling, i.e., scale the plant output y = [
ωtd Tpipe

]�
such that the

components of the weighted plant output are of the same order of magnitude.

These objectives are obtained through specific choices for several settings of the
weighting filters, as displayed in Fig. 19.

First, we apply plant scaling by using the scaling matrices Wsc and Vsc. This
scaling is applied to compensate for the different order of magnitude of the two plant
outputsωtd and Tpipe. This is important for a systemwith multiple outputs in a norm-
based controller synthesis method such as skewed-μ DK-iteration. When the plant
outputs are not scaled and the outputs differ in order of magnitude, one off-diagonal
term in the closed-loop sensitivity function will be large and the other small. In the
synthesis, it is then possible that the emphasis is on reducing the large off-diagonal
element at the expense of other elements. The plant scaling matricesWsc and Vsc are
tuned to compensate for this effect. The matrices are given by

Wsc =
[
wsc1 0
0 wsc2

]
, Vsc =

[
1 0
0 1

]
.

The filters Vi (s) and Wi (s), i = 1, 2, 3, are so-called performance filters and are
used to tune the performance-related properties of the closed-loop system. The filters
V1(s) and W1(s) can be used to tune the closed-loop bit-mobility (Gcl). Ideally, the
bit-mobility should be damped as much as possible (as follows from the stability
analysis in Sect. 3.3.3). However, this typically results in high control action. To
deal with this trade-off, the weighting filter V1(s) has a notch filter and is defined as
follows:

V1 = v1Vnotch

= v1
1

(2π f1)
2 s

2+ 2b1
2π f1

s+1

1

(2π f2)
2 s

2+ 2b2
2π f2

s+1
,

(38)
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where f j ( j = 1, 2) is the frequencies of the notch filter Vnotch(s) and b1 and b2 the
parameters for tuning the depth of the notch filter. The output weighting filter W1(s)
is set to a constant w1.

The remaining weighting filters are the filters for tuning the closed-loop perfor-
mance transfer functions. Let us first focus on the input weighting filters V2(s) and
V3(s). The filter V2(s) is given by

V2 =
[
v21 0
0 v22

]
, (39)

where v21 and v22 are static gains. These gains, as well as static gains in other weight-
ing filters, are used to scale those filters. Scaling is necessary to obtain a feasible
controller design with respect to the performance uncertainty ΔP(s) and changing
the gains allows for the synthesis of different controllers. The input weighting filter
V3(s) is set as

V3(s) = v3‖gco‖−1 1

wsc1
, (40)

where v3 is a static gain and gco := g22,1( j2π fco), i.e., the sub plant gain, related to
input ũ and output ỹ1 = ωtd − ωeq , at the target cross-over frequency fco. This gain
is chosen to obtain a cross-over frequency of the open-loop transfer function KGol

at 0.6 Hz, as specified. This cross-over frequency is chosen to achieve damping of
the dominant resonance modes.

The output weighting filters W2(s) and W3(s) are also used to tune the closed-
loop transfer functions, as well as to meet the first two controller objectives, i.e., to
include integral action and first-order roll-off. The controller Kt (s) to be designed
has two inputs and a single output (due to the two measured signals of the plant), i.e.,
Kt (s) = [

Kωtd (s) KTpipe(s)
]
. The controller aims at stabilizing the desired angular

velocity setpoint. Hence, an integrator should be specified in the top drive angular
velocity control loop. Note that it is not possible (and not necessary) to include an
integrator in both control loops Kωtd (s) and KTpipe(s). An integrator would force the
sensitivity function to zero for s = 0; however, this is not possible for both sensitivity
functions, due to the fact that we are dealing with a non-square plant. In other words,
there is only one control signal that can eliminate the steady-state error for one of
the two measurements. However, forcing ωtd to its equilibrium value also results
in Tpipe converging to its equilibrium. So, by only requiring integral action in the
control loop related to ωtd , the output weighting filter W2(s) is given by

W2(s) =
[
WI (s) 0
0 w22

]
=

[
PI

s+2π f I
s 0

0 w22

]
, (41)

using WI (s) to obtain an integral action in Kωtd (s) and w22 a static gain. To obtain
high-frequency roll-off, a roll-off filter is included in the output filter W3(s), hence
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W3(s) = w3wsc1‖gco‖W−1
R , (42)

where w3 is a static gain, and WR = (2π fR)2

s2+4πβ fRs+(2π fR)2
the second-order roll-off filter

with roll-off frequency fR .
The weighting filters W2(s) and W3(s) are unstable and non-proper weighting

filters, respectively. Therefore, these filters are not applicable in the H∞-controller
synthesis. To circumvent this limitation and still obtain a controller that includes
integral action and high-frequency roll-off, we add filters in the loop [21].We require
high-frequency roll-off on both input signals (top drive velocity and pipe torque) of
the controller and integral action on the top drive velocity. To acheive this, the actual
plant that is used in the controller synthesis algorithm is given by

Gt (s) = diag (1, WI (s), 1)Gol(s)diag (1,WR(s)) , (43)

whereWR(s) andWI (s) are the roll-off and integrator filters, respectively. The result-
ing controller K (s) from the DK-iteration procedure, treated in Sect. 3.3.2, for this
plantGt , has no integrator and roll-off properties. However, the actual controller (for
the plant Gol ) can be calculated as follows:

Kt (s) = WR(s)K (s)diag (WI (s), 1) , (44)

which does include the desirable integrator and roll-off properties.
Now, two different controllers will be synthesized based on the skewed-μ DK-

iteration procedure and the proposed weighting filters from the previous section.
Of course, it is possible to change all weighting filters so as to obtain a different
controller; however, the weighting filters have been chosen such that the controller
objectives can be met, and tuning of the parameters already allows us to synthesize
different controllers. The two controllers mainly differ in the allowed control action
and will be referred to as a high-gain (hg) controller and a low-gain (lg) controller.
The extra allowed control action for the high-gain controller is used for even greater
suppression of the bit-mobility compared to the low-gain controller. In Table 3, the
parameters of the weighting filters are given for both controllers. The notch filter in
V1(s) is used to allow for a higher bit-mobility within specific frequency ranges.

Performing theDK-iteration procedure for the drill-string systemwith theweight-
ing filters as specified above, results in the controller Kt (s) = [

Kωtd (s), KTpipe(s)
]
,

as shown in Fig. 26 for both the high-gain and the low-gain controller. These con-
trollers only use the measured top drive angular velocity ωtd and the pipe torque
measurement Tpipe. In the experimental setup, the pipe torque measurement is based
on the torque sensor reading just below the upper disc, compensated for the additional
damping term between disc 1 and 4. From this figure, the integral action in the con-
troller, Kωtd (s), which uses the top drive angular velocity, can be clearly recognized.
This feature is also present (single-input-single-output) in the SoftTorque controller,
also depicted in Fig. 26. This figure shows that both the high-gain and the low-gain
controller have a second-order roll-off filter. It can also be observed that the designed
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Table 3 Parameter settings for the performance weighting filters for the designed high-gain and
low-gain controller

Filter/setting Parameters

Low-gain controller High-gain controller

Wsc wsc1 = 1, wsc2 = 10 wsc1 = 1, wsc2 = 10

V1 v1 = 0.1 v1 = 0.7

f1 = f2 = 0.517Hz f1 = f2 = 0.518 Hz

b1 = 0.125 b1 = 0.033

b2 = 0.91 b2 = 0.8

W1 w1 = 1.2 w1 = 1

V2 v21 = 4, v22 = 0.125 v21 = 5, v22 = 0.167

V3 v3 = 1.286 v3 = 1.135

W2 PI = 0.1 PI = 0.01

f I = 0.134 f I = 1

w22 = 0.5 w22 = 0.01

W3 w3 = 0.243 w3 = 0.0044

fR = 0.469 fR = 1

β = 0.1 β = 0.1

controllers have distinct frequency-dependent characteristics within the frequency
range of the torsional resonance modes of the drill-string system (see Fig. 21), which
is not the case for the SoftTorque controller. This industrial controller, which only
uses top drive velocitymeasurements, is a properly tuned active damping system (i.e.,
PI-control of the angular velocity), which aims at damping only the first torsional
mode of the drill-string dynamics.

The resulting measured bit-mobilities are shown in Fig. 27. It can be seen that
the designed controllers suppress the first and second flexibility mode in the bit-
mobility. However, the third mode is only slightly damped using these controllers.
Clearly, the high-gain controller (H∞ (hg)) achieves more damping of the third
mode than the low-gain controller (H∞ (lg)). The limited amount of damping of
this mode is caused by the fact that it is difficult to synthesize a controller that
suppresses the third flexibility mode and at the same time satisfies the performance
specifications regarding measurement noise sensitivity. The sensitivity with respect
to measurement noise plays an important role in the design of controllers for the
experimental setup, because the level of noise (especially on the top drive angular
velocity) is relatively high. In addition, the third mode is almost unobservable in,
e.g., the frequency response function from top-drive torque to top-drive velocity, see
Fig. 10. Therefore, it is difficult to suppress the third torsional flexibility mode.

Remark 1 We conjecture that (e.g., torque) sensors in the drill-string can signifi-
cantly improve the observability properties of such essential flexibility modes, and
can hence potentially be used in a feedback strategy to improve the damping of such
modes that are poorly observable in surface measurements.
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Fig. 26 Designed linear dynamic controllers (andSoft-Torque controller) for the experimental drill-
string setup. Left plot is the controller that uses the top drive angular velocity, while the controller
in the right plot is based on the pipe torque measurement
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Fig. 27 Bit-mobility of the setup with two different H∞-controllers

Themeasured response is shown in Fig. 28. First, the low-gainH∞-controller is used,
and after approximately 210 s,we switch to the high-gain controller. This switch is not
necessary, and the desired setpoint can also be stabilized using the low-gain controller
only. However, the high-gain controller has improved robustness properties (due to
the improved damping of the third mode), which can be beneficial. By only using the
high-gain controller in the startup scenario, it is not possible to stabilize the desired
setpoint. A closer look at the experimental resultswith theH∞-controllers shows that
the low-gain controller is able to stabilize the desired setpoint of 5.5 rpmwith limited
control action (i.e., at least the controller acts less aggressively compared to the high-
gain H∞-controller). The oscillations in the bit angular velocity are still relatively
large in amplitude; however, the oscillations are sufficiently damped to mitigate
stick-slip vibrations. In addition, it has to be noted that, due to the presence of the
roll-off filters in the controller, high-frequency (measurement) noise is not amplified
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Fig. 28 Experimental result of the drill-string setupwith the designedH∞-controllers in the startup
scenario, after approximately 210 s, the controller is switched to a high-gain H∞-controller

by the controller, such that possible oscillations caused by such disturbances are
avoided. The high-gain controller clearly usesmore control action, which also results
inmore oscillations in the top drive angular velocity. The high-gain controller induces
slightly larger oscillations in the bit angular velocity than those induced by the low-
gain controller. The latter effect is related to the (measurement) noise sensitivity of
these controllers. Still, the high-gain controller ensures a higher robustness against
uncertainties in the bit-rock-interaction, as evidenced by an improved attenuation of
the (third) resonance in the bit mobility, see Fig. 27.
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Summarizing, with the designed H∞-controllers, it is possible to stabilize a
desired angular velocity of 5.5 rpm and to avoid stick-slip oscillations in a realistic
scenario in which the SoftTorque controller could not avoid such oscillations.

5 Concluding Remarks

In this chapter, we have presented the design of an experimental, lab-scale drill-string
setup based on a non-smooth model of a real-life drilling rig. The setup was designed
to reflect multiple dominant torsional flexibility modes of the system dynamics, as
field tests have shown that multiple modes can be associated with the occurrence of
stick-slip oscillations. Next, we have proposed a robust control design strategy that
can be used to design controllers that (1) stabilize a constant velocity setpoint, and
hence avoid such stick-slip limit cycling, (2) guarantee robust stability in the presence
of uncertainties in the bit-rock interaction, (3) take into account practically relevant
performance specifications, and (4) guarantee robust stability and performance in
the presence of multi-modal torsional drill-string dynamics. Finally, such controllers
have been implemented and tested on the experimental setup, and it has been shown
that these can eliminate stick-slip oscillations in realistic startup scenarios in which
an industrial SoftTorque controller fails to do so.
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