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Abstract

In this paper we present output-feedback controllers solving the global output regulation problem for a class of nonlinear systems. The
proposed controllers are based on the notion of convergent systems. The presented solution extends well-established results on the linear output
regulation problem and the local nonlinear output regulation problem to the global case. For Lur’e systems, which are not necessarily in the
output-feedback form, the proposed controllers can be found by solving the regulator equations and certain linear matrix inequalities. For
systems in the output-feedback form with uncertain parameters and uncertain nonlinearities we provide a robust regulator that does not rely on
the minimum phaseness assumption on the system, which is crucial in the previous regulator designs for output-feedback systems. The results
are illustrated by examples.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper we address the output regulation problem (ORP)
that includes the problems of tracking reference signals and
rejecting disturbances generated by an exosystem. For nonlin-
ear systems this problem has received significant attention in
the control community, see e.g. the monographs (Byrnes, Delli
Priscoli, & Isidori, 1997; Huang, 2004; Isidori, Marconi, &
Serrani, 2003; Pavlov, van de Wouw, & Nijmeijer, 2005b) and
references therein. Most of existing results correspond to the
local and semiglobal variants of the ORP. Only a few global
results exist and these are mostly limited to lower-triangular
systems (Huang & Chen, 2004; Marconi & Serrani, 2002) and
minimum phase systems in the output-feedback form, see e.g.
Serrani and Isidori (2000), Ding (2001) and Lin and Dong
(2003). A method of converting the global ORP into a global
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robust stabilization problem has been proposed in Huang and
Chen (2005).

In this paper, we give a solution to the global ORP for a
class of nonlinear systems. This solution is based on the no-
tion of convergent systems, see e.g. Pavlov, Pogromsky, van
de Wouw, and Nijmeijer (2004), Pavlov, van de Wouw, and
Nijmeijer (2005a), Demidovich (1967). Roughly speaking, a
system is called convergent if for any bounded input it has a
bounded globally asymptotically stable steady-state solution.
Similar notions are incremental stability, incremental input-to-
state stability, contraction analysis. A Lyapunov approach to
incremental stability and incremental input-to-state stability
has been presented in Angeli (2002). Incremental stability for
systems given in an operator form has been studied in Fromion,
Scorletti, and Ferreres (1999). Contraction analysis with appli-
cations has been considered in Lohmiller and Slotine (1998)
and Jouffroy and Slotine (2004). These notions, along with the
notion of convergent systems, prove to be very convenient for
non-equilibrium stability analysis of non-autonomous nonlin-
ear systems. At the moment there is a good share of overlap
between these notions and one can say that this area of systems
theory is still far from a “steady state”. For our analysis we
choose the notion of convergent systems since it is coordinate
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independent, it is less restrictive and more appropriate for our
purposes than the other notions mentioned above.

For the nonlinear ORP, the notion of convergent systems al-
lows one to develop a solvability theory that in a natural way
extends the solvability theory of the local nonlinear ORP to
the global case (Pavlov et al., 2005b). With a result from this
solvability theory and the machinery of convergent systems as
a starting point, we design output-feedback controllers solving
the global ORP for a class of nonlinear systems. This solution
extends the well-known solutions of the linear and local nonlin-
ear ORP to the global case. When applied to the class of Lur’e
systems, this result allows one to obtain solutions to the global
ORP that have not been reported before. In particular, for Lur’e
systems that are not necessarily in the output-feedback form we
obtain relatively simple design criteria given in terms of solv-
ability of certain linear matrix inequalities (LMI). Moreover, for
Lur’e systems in the output-feedback form with parametric as
well as functional uncertainties, we provide a robust regulator
design that does not rely on the minimum phaseness assump-
tion on the system. Notice that previous results for Lur’e sys-
tems deal with minimum phase systems in the output-feedback
form (Ding, 2001; Lin & Dong, 2003; Serrani & Isidori, 2000).
Moreover, the global ORP for systems with functional uncer-
tainties has not been considered before. This paper is an ex-
tended version of the conference paper (Pavlov, van de Wouw,
& Nijmeijer, 2004).

The paper is organized as follows. In Section 2 the global
ORP is formulated and preliminaries are provided. A solution
to this problem is presented in Section 3 and illustrated with
examples in Section 4. Section 5 contains conclusions.

2. Problem statement and preliminaries

Consider a system modeled by

ẋ = f (x, u, w), e = h(x, w), (1)

with state x ∈ Rn, input u ∈ Rp and output e ∈ Rl . The
exogenous signal w(t) is generated by the exosystem

ẇ = s(w), w(0) ∈ W, (2)

where W ⊂ Rm is a given set of initial conditions. It is as-
sumed that the set W is compact and positively invariant with
respect to the exosystem dynamics. The vectorfields/functions
f (x, u, w), h(x, w) and s(w) are assumed to be continuously
differentiable.

The global ORP is formulated in the following way: find, if
possible, a feedback of the form

�̇ = �(�, e), u = �(�, e), � ∈ Rq , (3)

for some q �0, such that for all initial conditions (x(0), �(0),

w(0)) ∈ Rn+q ×W all solutions of the closed-loop system (1),
(3) and exosystem (2) are bounded for t �0 and satisfy e(t) →
0 as t → ∞.

In this paper we will seek solutions to the global ORP based
on the notion of convergent systems. Below we give rele-

vant definitions of convergent systems, see Pavlov et al. (2004,
2005a, 2005b). Consider the system

ż = F(z, w), (4)

with state z ∈ Rd , input w ∈ Rm and continuous vectorfield
F(z, w). The input w(t) is assumed to belong to the class PCm

of piecewise continuous functions w(t) : R → Rm that are
bounded on R.

Definition 1. System (4) is said to be uniformly convergent
for inputs w ∈ PCm if for any w ∈ PCm there exists a unique
solution z̄w(t) defined and bounded on R and this solution is
uniformly globally asymptotically stable.1 The solution z̄w(t)

is called a steady-state solution.

Definition 2. System (4) is said to be input-to-state convergent
if it is uniformly convergent for inputs w ∈ PCm and for every
w ∈ PCm the system

˙̃z = F(z̄w(t) + z̃, w(t) + w̃) − F(z̄w(t), w(t))

with w̃ as input is input-to-state stable (ISS).

The notions of convergent systems and input-to-state conver-
gent systems are closely related to incrementally stable systems
(Angeli, 2002; Fromion et al., 1999), incrementally ISS sys-
tems (Angeli, 2002) and to contraction analysis (Lohmiller &
Slotine, 1998). Convergence is a less restrictive property since
it requires asymptotic stability of only one solution correspond-
ing to an input rather than of all solutions as in incremental
stability and contraction analysis. Moreover, it is coordinate in-
dependent, which is not the case for incrementally stable and
incrementally ISS systems. For details on convergent systems
the reader is referred to Pavlov et al. (2004, 2005a, 2005b).

Further we introduce the following notations. Let w(t, w0)

denote a solution of exosystem (2) starting in w(0, w0) = w0.
By �(w0) we denote the �-limit set of the trajectory w(t, w0).
For trajectories starting in the set W ⊂ Rm, the notation �(W)

denotes �(W) := ⋃
w0∈W �(w0). The set �(W) is invariant

and, since W is compact and positively invariant, �(W) ⊂ W.
To solve the global ORP we need the following assumption:

A1. There exist continuous mappings � : Rm → Rn and c :
Rm → Rp that satisfy the regulator equations:

d

dt
�(w(t)) = f (�(w(t)), c(w(t)), w(t)), ∀t ∈ R,

0 = h(�(w(t)), w(t)), (5)

for any solution of the exosystem w(t) lying in �(W).

Notice that �(w) and c(w) must satisfy the regulator equa-
tions only in the set �(W). Outside of this set they can be ar-
bitrarily, yet continuously, extended onto Rm. Assumption A1

1 The solution z̄w(t) is called uniformly globally asymptotically stable
(UGAS) if the time-varying system ˙̃z = F(z̄w(t) + z̃, w(t)) − F(z̄w(t), w(t))

is UGAS at the origin, see Khalil (1996). Uniformity corresponds to the
initial time instant t0.
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is a less restrictive counterpart of the standard assumption on
the solvability of the regulator equations given in the form of
PDEs (Byrnes et al., 1997). It is known (Isidori & Byrnes,
2003; Pavlov et al., 2005b) that for non-local variants of the
ORP, necessary conditions for the solvability of the problem
cannot be, in general, formulated in terms of PDEs like in the
standard regulator equations.

Controller designs presented further in this paper are based
on the following result (see Pavlov et al., 2005b, Theorem 4.20,
Property 2.19).

Theorem 1. Suppose Assumption A1 is satisfied and (i) con-
troller (3) makes the corresponding closed-loop system with
w as input input-to-state convergent. Controller (3) solves the
global ORP if and only if (ii) for any solution of the exosystem
w(t) lying in �(W) there exists a solution �̄w(t) of system (3)
with e ≡ 0 such that �̄w(t) is bounded on R and the corre-
sponding output equals �(�̄w(t), 0) ≡ c(w(t)).

A controller satisfying the conditions of Theorem 1 guar-
antees that the closed-loop system is input-to-state convergent
and that for any solution of the exosystem w(t) lying in �(W)

the closed-loop system has a bounded solution (x(t), �(t)) =
(�(w(t)), �̄w(t)) along which the regulated output is identically
zero.

Based on Theorem 1, we will design controllers that sat-
isfy condition (ii) of Theorem 1 and make the corresponding
closed-loop system input-to-state convergent. The main tool
for ensuring input-to-state convergence of the closed-loop sys-
tem is the notion of quadratic stability of a matrix function.
A matrix function A(�) ∈ Rd×d , depending on some parame-
ter � ∈ X, where X is some set, is called quadratically stable
if there exist matrices P = PT > 0 and Q = QT > 0 such that
PA(�) + AT(�)P� − Q for all � ∈ X. Notice that if A(�)

is constant, then quadratic stability is equivalent to A being
Hurwitz. The next theorem links quadratic stability with the
input-to-state convergence property of a system (Pavlov et al.,
2005a, 2005b).

Theorem 2. Consider system (4) with the function F being
C1 with respect to z and continuous with respect to w. If
(�F/�z)(z, w) is quadratically stable then system (4) is input-
to-state convergent. Moreover, there exist constants 	 > 0 and
C > 0 such that any two solutions z1(t) and z2(t) of system (4)
corresponding to the same input w(t) satisfy

|z1(t) − z2(t)|�Ce−	(t−t0)|z1(t0) − z2(t0)|. (6)

3. Main results

The results in this section are formulated using the follow-
ing notations: � := (x, u, w), A(�) := �f/�x(�), B(�) :=
�f/�u(�), E(�) := �f/�w(�), C(�) := �h/�x(�), H(�) :=
�h/�w(�), S(�) := �s/�w(�).

Theorem 3. Consider system (1) and exosystem (2). Suppose
Assumption A1 holds. If there exist matrices K ∈ Rp×n and

L = (LT
x , LT

w)T ∈ R(n+m)×l such that the matrices A(�) +
B(�)K and[
A(�) E(�)

0 S(�)

]
+ L[C(�) H(�)] (7)

are quadratically stable, then the controller

u = c(ŵ) + K(x̂ − �(ŵ)), (8)
˙̂x = f (x̂, u, ŵ) + Lx(h(x̂, ŵ) − e), (9)
˙̂w = s(ŵ) + Lw(h(x̂, ŵ) − e) (10)

solves the global ORP.

Proof. First, we show that the closed-loop system with w as
input is input-to-state convergent. System (1) in closed loop
with (8) can be written as

ẋ = f (x, Kx + Kx̃ + c(w + w̃) − K�(w + w̃), w), (11)

where x̃ := x̂ − x and w̃ := ŵ − w are observer errors. The
Jacobian of the right-hand side of (11) with respect to x equals
A(�) +B(�)K , which is quadratically stable. Hence, by The-
orem 2 system (11) with x̃, w̃ and w as inputs is input-to-state
convergent.

Next, we consider the observer error dynamics. Notice that
the Jacobian of the right-hand side of (9), (10) equals the matrix
given in (7) with � = (x̂, u, ŵ), which is quadratically stable.
Therefore, by Theorem 2 any two solutions of observer (9), (10)
corresponding to the same input u, e converge exponentially
to each other, see (6). Since x(t), w(t)—a solution of system
(1) and exosystem (2)—is also a solution of the observer (9),
(10), we conclude that for any other solution (x̂(t), ŵ(t)), the
observer error z̃ := (x̃T, w̃T)T satisfies

|z̃(t)|�Ce−	(t−t0)|z̃(t0)|, (12)

for some C > 0 and 	 > 0. Therefore, the closed-loop system
can be considered as an interconnection of the input-to-state
convergent system (11) with the inputs x̃, w̃ and w, and the
observer error dynamics satisfying (12). Such an interconnected
system with w as input is input-to-state convergent, see Pavlov
et al. (2005b), Property 2.28.

Since the mappings �(w) and c(w) satisfy the regulator equa-
tions (5) and because of the structure of controller (8)–(10), one
can routinely check that condition (ii) of Theorem 1 is satisfied
with �̄w(t) := (�(w(t))T, w(t)T)T. By Theorem 1 controller
(8)–(10) solves the global ORP. �

The result of Theorem 3 can be readily extended to the case
when the measured output is different from the regulated output.
The corresponding counterpart of Theorem 1, which lies in the
foundation of the proof, can be found in Pavlov et al. (2005b),
while the proof of input-to-state convergence of the closed-loop
systems is almost the same.

Notice that for the case of linear systems, the matrices
A(�) + B(�)K and (7) are constant and the requirement of
quadratic stability is equivalent to the requirement that these
matrices are Hurwitz. Therefore, the existence of the controller
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and observer gains K and L satisfying the conditions of the the-
orem is equivalent to stabilizability and detectability conditions
on the appropriate system matrices. These conditions together
with the assumption on solvability of the regulator equations
constitute standard solvability conditions for the linear ORP.
Similar conditions arise in the local nonlinear ORP, see e.g.
Isidori and Byrnes (1990). Therefore Theorem 3 serves as a
natural extension of the standard solutions of the linear ORP
and local nonlinear ORP to the case of global output regula-
tion for nonlinear systems. When applied to particular classes
of nonlinear systems, the conditions of Theorem 3 simplify
and in some cases can be checked by solving LMI, as will be
illustrated in the next subsection for the class of Lur’e systems.

3.1. Global output regulation for Lur’e systems

Consider the system

ẋ = Ax + Bu + D
(�) + Ew,

e = Cx + Hw, � = C�x + H�w. (13)

The nonlinearity 
(�) is a scalar function of scalar argument �
satisfying the inequality∣∣∣∣�


��
(�)

∣∣∣∣ ��, � ∈ R (14)

for some � > 0. We assume that the exosystem is linear

ẇ = Sw, (15)

where S is such that all its eigenvalues are simple and lie on
the imaginary axis.

Denote Co := [C H ] and define matrices A+
c�, A−

c�, A+
o� and

A−
o� according to the formulas A±

c� := A ± �DC�,

A±
o� :=

[
A ± �DC� E ± �DH �

0 S

]
.

The following theorem provides conditions for output-feedback
controller design for Lur’e systems.

Theorem 4. Consider system (13) and exosystem (15). Under
Assumption A1, if there exist Pc = PT

c > 0, Po = PT
o > 0,

Y and Z satisfying the LMIs

A+
c�Pc + Pc(A

+
c�)

T + BY + YTBT < 0,

A−
c�Pc + Pc(A

−
c�)

T + BY + YTBT < 0, (16)

PoA
+
o� + (A+

o�)
TPo + ZCo + CT

oZ
T < 0,

PoA
−
o� + (A−

o�)
TPo + ZCo + CT

oZ
T < 0, (17)

then controller (8)–(10) with f (x, u, w), h(x, w) and s(w) cor-
responding to (13) and (15) and with the gains K = YP−1

c ,
L = [LT

x , LT
w]T = P−1

o Z solves the global ORP.

Proof. We will show that the gains K and L satisfy the
conditions of Theorem 3. For system (13), the matrix
A(�) + B(�)K defined in Theorem 3 equals J (�) :=

A + DC�(�
/��)(�) + BK . Due to condition (14), it satisfies
J (�) ∈ co{A−

c� + BK, A+
c� + BK}, where co{·} denotes the

convex hull. Therefore, J (�) is quadratically stable if there
exists P = P T > 0 such that

P(A−
c� + BK) + (A−

c� + BK)TP < 0,

P(A+
c� + BK) + (A+

c� + BK)TP < 0. (18)

Multiplying (16) from the left and from the right by P−1
c , we

conclude that (18) holds for K=YP−1
c and P=P−1

c . Therefore,
the matrix A(�)+B(�)K is quadratically stable. Quadratic sta-
bility of the matrix (7) can be shown in the same way. Applying
Theorem 3, we obtain the statement of the theorem. �

Remark 1. For Lur’e systems, instead of the observer (9), (10)
one can use other observers that guarantee exponential stabil-
ity of the observer error dynamics, e.g. Arcak and Kokotovic
(2001).

Remark 2. The result of Theorem 4 allows one to solve the
global ORP for Lur’e systems that are not necessarily in the
output-feedback form. To the best of our knowledge the global
ORP for this class of systems has not been considered in the
literature so far.

Remark 3. Although in Theorem 4 we deal with Lur’e sys-
tems with one nonlinearity, similar results can be obtained for
systems with multiple nonlinearities. In this case, the general
conditions of Theorem 3 can be reformulated in terms of solv-
ability of certain LMIs, if the corresponding Jacobian matrices
of the system and exosystem dynamics (see the beginning of
Section 3) lie in the convex hull of a finite set of matrices.

Controller (8)–(10) requires the knowledge of the exact sys-
tem model and the mappings �(w) and c(w), which are, in
general, difficult to compute (so far a systematic way of finding
these mappings exists only for some classes of lower-triangular
systems). To bypass this problem, an appropriate internal model
can be included in the controller. Although the result of The-
orem 4 cannot be directly applied in this case, the notion of
convergence can still facilitate the robust controller design, as
will be illustrated in the next subsection.

3.2. Robust global output regulation for Lur’e systems

In this subsection we consider the global ORP for exosystem
(15) and system (13) with uncertain parameters as well as with
an uncertain nonlinearity 
(�). We will tackle this more difficult
problem under the following assumptions:

B1. There exists a matrix  ∈ R1×l such that � = e. The
output e and control u are of the same dimension, i.e. l = p.
The nonlinearity 
(�) belongs to the class F� of nonlinearities
satisfying (14) and 
(0) = 0.

B2. The nominal system matrices A◦, B◦, C◦ and D◦ are such
that the pair (A◦, B◦) is stabilizable, the pair (A◦, C◦) is de-
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tectable and for every � being an eigenvalue of the matrix S the
following matrix has full rank:(

A◦ − �I B◦
C◦ 0

)
.

The design of a robust regulator closely follows the design
of a regulator for the linear robust ORP (see e.g. Byrnes et al.,
1997). Let Smin be an r × r matrix whose characteristic poly-
nomial coincides with the minimal polynomial of S. Construct
a block-diagonal lr × lr matrix � which has l blocks Smin on
its diagonal, where l is the number of outputs. First, choose
an lr × l matrix � and an l × lr matrix N such that (�, �) is
controllable and (�, N) is observable. Consider the augmented
system

ẋ = A◦x + B◦��1 + B◦v + D◦
,

�̇1 = ��1 + NC◦x, (19)

with the output � = C◦x. Secondly, find a controller

�̇2 = ��2 + LC◦x, v = M�2 + RC◦x, (20)

such that system (19) in closed loop with this controller is
asymptotically stable for 
=0 and the transfer function W ◦

�
(s)

from input 
 to output � satisfies ‖W ◦
�
‖∞ < 1/�. The existence

of such a controller is a standard problem in H∞ optimization,
which can be numerically solved with efficient solvers avail-
able, for example, in MATLAB. We proceed with the construc-
tion of the overall regulator given by

�̇1 = ��1 + Ne, �̇2 = ��2 + Le,

u = ��1 + M�2 + Re. (21)

The next theorem provides properties of this controller.

Theorem 5. Under Assumptions B1 and B2, controller (21)
constructed above solves the global ORP for system (13) and
exosystem (15) for all matrices E ∈ Rn×m, H ∈ Rl×m, for all
nonlinearities 
 ∈ F�, and for all matrices A, B, C and D from
some neighborhood of the nominal matrices A◦, B◦, C◦, D◦.

Proof. Let us first consider system (13) without nonlinearity

(�) (or, equivalently, with 
 = 0). This is a linear system. It
is known (Byrnes et al., 1997) that under Assumption B2 for
any A, B and C being close enough to the nominal ones and for
arbitrary E and H, the regulator equations for system (13) with

 = 0 are solvable with �(w) = �w and c(w) = Υ w for some
matrices � and Υ . Moreover, controller (21) with e = 0 has a
bounded solution �̄w(t) with the corresponding control u being
equal to c(w(t)). Since 
(�)=
(e)=0 for e=0, we conclude
that the same �(w) and c(w) satisfy the regulator equations for
system (13) with the nonlinearity 
(�) and controller (21) with
e = 0 generates the corresponding steady-state control c(w(t))

along the bounded solution �̄w(t). Therefore, condition (ii) of
Theorem 1 is satisfied for all A, B and C being close enough to
the nominal ones, for arbitrary E and H and for any nonlinearity

 ∈ F�.

It remains to show that the closed-loop system is input-to-
state convergent. System (13) in closed loop with (21) is a Lur’e
system of the form

ż = Ãz + D̃
(�) + f1(w), � = C̃z + f2(w) (22)

with z := (xT, �T
1 , �T

2 )T, f2(w) = Hw, f1(w) := ((Ew +
BRHw)T, (NHw)T, (LHw)T)T,

Ã :=
[

A + BRC B� BM

NC � 0
LC 0 �

]
, D̃ :=

[
D

0
0

]
(23)

and C̃ = [C 0 0]. Notice, that the transfer function
W ◦

�
(s) defined at the stage of controller design equals

W ◦
�
(s)= C̃◦(sI − Ã◦)−1D̃◦, where Ã◦, C̃◦ and D̃◦ equal Ã, C̃

and D̃ defined for the nominal system parameters. Moreover,
by construction of the controller (21), the matrix Ã◦ is Hur-
witz. Since sup�∈R|C̃◦(i�I − Ã◦)−1D̃◦| = ‖W ◦

�
‖∞ < 1/�, by
continuity we obtain

sup
�∈R

|C̃(i�I − Ã)−1D̃| < 1/�, (24)

for all Ã, D̃ and C̃ from some neighborhood of the nominal
Ã◦, D̃◦ and C̃◦. Since the nonlinearity 
(�) satisfies (14), the
Jacobian of the right-hand side of (22) satisfies

Ã + D̃C̃
�


��
(�) ∈ co{Ã − �D̃C̃, Ã + �D̃C̃}, ∀� ∈ R. (25)

At the same time, since Ã is Hurwitz (because it is close enough
to the Hurwitz matrix Ã◦), condition (24) guarantees (see e.g.
Yakubovich, 1964) that there exists a matrix P = P T > 0 sat-
isfying the LMI P(Ã − �D̃C̃) + (Ã − �D̃C̃)TP < 0, P(Ã +
�D̃C̃) + (Ã + �D̃C̃)TP < 0. This fact, together with (25) im-
plies that Ã + D̃C̃(�
/��)(�)—the Jacobian of the right-hand
side of the closed-loop system (22)—is quadratically stable.
By Theorem 2 we conclude that system (22) is input-to-state
convergent for all 
 ∈ F�, for all matrices E and H and for
all Ã, D̃ and C̃ close enough to Ã◦, D̃◦ and C̃◦, which is so
if the original system matrices A, B, C and D are close enough
to their nominal values. Finally, the application of Theorem 1
proves the statement of the theorem. �

Remark 1. Systems in the output-feedback form, like the one
considered in this section, have been studied in multiple pub-
lications on the global ORP (Ding, 2001; Lin & Dong, 2003;
Serrani & Isidori, 2000). At the same time, these works rely
on the crucial assumption that the system is minimum phase.
This assumption is, in general, not necessary for the controller
design presented above, as will be illustrated with an example
in the next section.

Remark 2. Theorem 5 deals with the case of systems with
functional uncertainties. It is more challenging than the case of
only parametric uncertainties, which is mostly considered in the
literature. One may argue that the assumption that the uncer-
tain nonlinearity 
 vanishes for e=0 is too strong. Below, with
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an example regarding a specific system, we demonstrate the
idea that this condition can be necessary for the solvability of
the ORP for systems with uncertainties from an infinite dimen-
sional set. Consider the scalar system ẋ=
(x)+u, e=x−�w,
where � is some constant matrix, w(t) is a solution of the ex-
osystem (15) and 
 ∈ F� is an uncertain nonlinearity. Here
we see that the nonlinearities do not vanish for e = 0. Suppose
controller (3) solves the global ORP for this system for any 
 ∈
F�. According to the internal model principle, see e.g. Pavlov
et al. (2005b), Isidori and Byrnes (2003), Byrnes et al. (1997),
for any solution of the exosystem w(t) and for any 
 ∈ F� this
controller (3) with e=0 must have a solution along which u(t)

equals the steady-state control c(w(t)) = �Sw(t) − 
(�w(t)),
which is obtained from the corresponding regulator equations.
Choose some w(t) such that �w(t) is not constant. From the
expression for c(w(t)) one can verify that the set of all steady-
state controls corresponding to this w(t) and various 
 ∈ F�
cannot be characterized by any finite dimensional set, since F�
is an infinite dimensional set. At the same time, all possible out-
puts of controller (3) with e=0 are parameterized by the initial
conditions �(0) ∈ Rq , which constitute a finite dimensional set.
Thus we come to a contradiction. Although here this reason-
ing is performed only for a particular system, it motivates the
necessity of strong assumptions on the functional uncertainties
for the solvability of the ORP.

4. Examples

Consider the mass-spring system with friction

ẋ1 = x2, ẋ2 = −kx1 − �(x2) + u, (26)

where x1 is the position of the unit mass, u is a control force
and k = 400 is a spring stiffness. The nonlinear term �(x2) is
due to dry friction and viscous damping acting on the mass. In
this example we consider a smooth friction model �(x2) given
by the formula

�(x2) = 	x2e−x2
2/� + �(1 − e−x2

2/�) sign(x2) + �x2,

with the parameters 	=200, �=7 and �=3. The graph of this
�(x2) is shown in Fig. 1. This smooth friction model differs
from conventional friction models often found in the literature.
However, since for this friction model d�/dx2 is bounded, we
can apply the theory developed in Section 3.1. The regulated
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Fig. 1. Graph of the nonlinearity �(x2).
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Fig. 2. Regulated output e(t) for various initial conditions of the closed-loop
system and the exosystem.

output is given by e = x1 − w1, where the external signal is
generated by the linear exosystem

ẇ1 = w2, ẇ2 = −w1. (27)

System (26) is a Lur’e system and it is not in the output-
feedback form often considered in the literature on the global
ORP (Ding, 2001; Lin & Dong, 2003; Serrani & Isidori, 2000).
The derivative of the nonlinear term �(x2) lies within the
bounds [−40.3, 218.8]. In order to make these bounds sym-
metrical with respect to the origin, we decompose �(x2) into
a sum of the linear term �x2 with � = 89.3 and the remaining
nonlinearity 
(x2) := �(x2) − �x2. With such a decomposi-
tion of �(x2), system (26) is a Lur’e system of form (13) with
the nonlinearity satisfying (14) with � = 129.6. Hence, we can
apply Theorem 4 in order to solve the global ORP.

First, we find solutions to the regulator equations: �(w) =
(w1, w2)

T and c(w)=(−1+k)w1+�w2+
(w2). The mappings
�(w) and c(w) are globally defined continuous mappings, i.e.
Assumption A1 is satisfied. Secondly, we find solutions to the
LMIs (16) and (17). For the given system parameters, these
LMIs are solvable. The corresponding controller and observer
gains defined in Theorem 4 equal K=[−800, −40.75] and L=
[2050, −13 636, 2351, 3422]T. Hence, by Theorem 4 controller
(8)–(10) with f (x, u, w), h(x, w) and s(w) corresponding to
(26), (27), e = x1 − w1, and with the gains K and L specified
above solves the global ORP. Simulations for various initial
conditions of the closed-loop system and the exosystem have
been performed. The regulated output e(t) corresponding to
these simulations is shown in Fig. 2.

In order to illustrate controller design for the global robust
ORP presented in Section 3.2, we consider system (13) with
the nominal matrices A◦ = [1, −2, 0; 40, 3, 4; 1, 0, 5], B◦ =
[0, 3, 1]T, D◦ = [1, 1, 0]T and C◦ = [1, 0, 0]. The exosignal w

is generated by exosystem (27). The outputs of the system are
equal: e = � = Cx + Hw. The matrices E and H can be chosen
arbitrarily. The value � for the bound in (14) is chosen � = 0.1.
With such a choice of system matrices, Assumptions B1, B2
hold. Notice that with these matrices our system is not mini-
mum phase, since it has an unstable linear zero dynamics cor-
responding to the zero �=3.667. Therefore, the existing results
for systems in the output-feedback form (Ding, 2001; Lin &
Dong, 2003; Serrani & Isidori, 2000) are not applicable, since
they rely on the minimum phaseness assumption. Following the
design procedure given in Section 3.2, we set �=[0, 1; −1, 0],
N=[1, 0]T, �=[1, 0]. Next, we search for a controller (20) that
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Fig. 3. Simulation results for various initial conditions and for various matrices
E and H.

would satisfy the inequality ‖W ◦
�
‖ < 1/�. Such a controller

is found using the MATLAB routine hinflmi. The obtained
controller is validated by means of simulations. In the simula-
tions the matrices A, B, C and D are taken equal to their nom-
inal values and the nonlinearity is chosen 
(�) = � sin(�). Re-
sults of several simulations with randomly chosen matrices E
and H and random initial conditions for the closed-loop system
and exosystem are given in Fig. 3.

5. Conclusions

We have presented output-feedback controllers solving the
global ORP for a class of nonlinear systems. The presented
solution is based on the notion of convergent systems. The ob-
tained regulators can be found by solving the regulator equa-
tions and finding linear gains for the controller and observer,
which constitute the regulator, that make the closed-loop sys-
tem input-to-state convergent. The existence of the above men-
tioned controller and observer gains can in some cases be
checked by solving certain LMIs, as has been illustrated for the
case of Lur’e systems. The obtained result allows one to solve
the global ORP for Lur’e systems that are not in the output-
feedback form. To the best of our knowledge there are no publi-
cations on the global ORP for this class of systems. In the case
when parameters of a Lur’e system are not known exactly and
the nonlinearity can be arbitrary from a given class, it has been
shown that the robust global ORP can be reduced to certain
linear H∞ optimization problem, which can be solved numeri-
cally. Global ORP for systems with functional uncertainties has
not been addressed in the literature so far. The obtained results
extend in a natural way the well-known solutions of the linear
ORP and the local nonlinear ORP to the case of global ORP
for nonlinear systems.
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