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Abstract

This paper investigates the effects of undercompensation and overcompensation of friction in PD controlled 1DOF mechanical systems. The
friction force that is acting on the mechanical system and the friction compensation term in the feedback loop are described by a class of
discontinuous friction models consisting of static, Coulomb and viscous friction, and including the Stribeck effect. Lyapunov’s stability theorem
and LaSalle’s invariance principle are applied to prove that undercompensation of friction leads to steady-state errors and the properties of
the �-limit set of trajectories of a two-dimensional autonomous differential inclusion are used to show that overcompensation of friction may
induce limit cycling. Furthermore, the analysis also indicates that the limit cycling effect can be eliminated by tuning the PD controller gains.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Friction compensation; Equilibrium set; Limit cycles; Friction problems in mechanics; Discontinuous systems

1. Introduction

Friction occurs in many positioning systems and it can de-
teriorate performance of those controlled systems in terms of
large steady-state errors and limit cycling, see for example
(Armstrong-Hélouvry, Dupont, & Canudas de Wit, 1994). Fric-
tion compensation is, therefore, needed in order to improve the
system performance. Satisfactory friction compensation can be
obtained if a good friction model is available. However, fric-
tion is a highly nonlinear phenomenon, which is difficult to
be described by a simple model (Armstrong-Hélouvry et al.,
1994; Olsson, Åström, Canudas de Wit, Gäfvert, & Lischinsky,
1998). Because of such modeling errors and parameter estima-
tion errors, inexact friction compensation is inevitable.

The limit cycling effect that is induced by the overcompensa-
tion of friction in PD and PID controlled one-degree-of-freedom

� This paper was not presented at any IFAC meeting. This paper was
recommended for publication in revised form by Associate Editor Bernard
Brogliato under the direction of Editor Hassan Khalil. This work was carried
out when the first author was affiliated with the Eindhoven University of
Technology.

∗ Corresponding author.
E-mail addresses: d.putra@lskk.ee.itb.ac.id (D. Putra), h.nijmeijer@tue.nl

(H. Nijmeijer), n.v.d.wouw@tue.nl (Nathan van de Wouw).

0005-1098/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2007.01.021

(1DOF) systems has been analyzed in Canudas de Wit (1993)
by means of the describing function method. Papadopoulos and
Chasparis (2002) validate the predicted limit cycle on an exper-
imental setup but, at the same time, they also show that the pre-
diction of the describing function is not always accurate. The
effects of undercompensation and overcompensation of friction
in an observer-based controlled 1DOF robot has been investi-
gated in Mallon, van de Wouw, Putra, and Nijmeijer (2006) us-
ing a scaling rule. The numerical and the experimental results
of Mallon et al. (2006) also indicate that overcompensation of
friction induces limit cycling and that undercompensation of
friction leads to steady-state errors.

This manuscript is intended to provide a rigorous mathe-
matical analysis of the observations reported in Mallon et al.
(2006) for a class of discontinuous friction models and for more
general cases of undercompensation and overcompensation of
friction. The analysis is based on LaSalle’s invariance princi-
ple (Adly & Goeleven, 2004; Alvarez, Orlov, & Acho, 2000;
van de Wouw & Leine, 2004) and the properties of the �-limit
set of trajectories of a two-dimensional differential inclusion
(Filippov, 1988).

In this study, we focus on friction compensation in PD
controlled 1DOF systems with state-feedback. We omit the
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inclusion of an observer, commonly used to reconstruct velo-
city from position measurements, in order to study the effect
of undercompensation and overcompensation of friction on the
control performance in an isolated fashion. Note in this respect
that the use of an observer may itself induce limit cycling and
steady-state errors even for the case of exact friction compen-
sation (Putra & Nijmeijer, 2004). However, note that in Mallon
et al. (2006) and Putra, Moreau, and Nijmeijer (2004) observer-
based friction compensation schemes have been successfully
applied both in simulations and experiments.

This paper is organized as follows. Section 2 explains the
model of the controlled system with friction compensation. The
effects of undercompensation and overcompensation of friction
on the performance of the controlled system are studied in
Sections 3 and 4, respectively. Section 5 provides numerical
demonstrations of the analytical results. Finally, conclusions
are drawn in Section 6.

2. Controlled 1DOF frictional systems

We consider 1DOF frictional mechanical systems that can
be described by

ẋ = y, (1a)

ẏ = −Fv

J
y − 1

J
F(y, u) + 1

J
u, (1b)

where x, y and J are the position, the velocity and the inertia
of the mechanical system, respectively, Fv > 0 is the linear
viscous friction damping, u is the input force and F(y, u) is the
nonlinear friction force given by (Hensen, Van de Molengraft,
& Steinbuch, 2003; Olsson et al., 1998)

F(y, u) =
{

g(y) sign(y) if y �= 0,

min{|u|, Fs} sign(u) if y = 0,
(2)

with Fs > 0 the static friction level and g(y) a continuous
Stribeck function, which represents the continuous decay1 of
the friction curve from Fs to a Coulomb friction level Fc > 0.
Note that in the friction law (2) knowledge on the dynamics in
which it is embedded is used by realizing that in the stiction
mode, i.e. y = 0 and |u|�Fs, the friction force and the input
force counteract each other exactly. This formulation is use-
ful for the 1DOF case but is not suitable for MDOF systems
with multiple frictional contacts. Alternatively, the dependency
of static friction on the input force can be removed by using a
set-valued friction law, e.g. see (Glocker, 2001; van de Wouw
& Leine, 2004). Note that similar results as in the present pa-
per can be obtained by using the set-valued friction models but
for this specific case of a single frictional element it results in
more complex representation of the closed-loop system (Putra,
2004, Chapter 7).

Model (1), (2) describes a controlled inertia subject to
viscous plus Coulomb friction if g(y) = Fs = Fc. Other
commonly used Stribeck functions in the control literature

1 The continuous decay implies g(0) = Fs, limy↓0 F(y, u) = Fs and
limy↑0 F(y, u) = −Fs.

(Armstrong-Hélouvry et al., 1994; Olsson et al., 1998) are of
the forms

g(y) = Fc + (Fs − Fc) e−(|y|/vs)
�

(3)

and

g(y) = Fc + (Fs − Fc)
1

1 + (|y|/vs)
�

, (4)

where vs > 0 is called the Stribeck velocity and � > 0 is the
shaping parameter of the Stribeck curve. The combination of a
linear viscous friction and the nonlinear friction F as considered
in (1b) is able to represent a rather general class of static friction
models (Armstrong-Hélouvry et al., 1994; Olsson et al., 1998).
However, the nonlinear friction model (2) excludes the friction
model with a discontinuous drop of the friction curve from Fs
to Fc, which is shown in Armstrong-Hélouvry and Amin (1996)
to be inadequate for describing the possible disappearance of
the friction-induced stick-slip phenomenon.

Here we opted for a static friction model since we focus on
the effect of friction on the global dynamics; however, when
the behavior for very small velocities is particularly important
one could opt for a dynamic friction model, see e.g. (Bliman &
Sorine, 1995; Canudas de Wit, Olsson, Aström, & Lischinsky,
1995).

In order to regulate the frictional mechanical system (1) to-
wards a setpoint xs, we consider a PD controller with friction
compensation of the form

u = Kp(xs − x) + Kd(0 − y) + F̃ (y, ū), (5)

where Kp > 0 is the proportional gain, Kd > 0 is the derivative
gain, and F̃ (y, ū) is a friction compensation term given by

F̃ (y, ū) =
{

g̃(y) sign(y) if y �= 0,

F̃s sign(ū) if y = 0,
(6)

where ū = Kp(xs − x).
Without loss of generality, we assume that the setpoint is the

origin, i.e. xs = 0, such that the input u becomes

u = −Kpx − Kdy + F̃ (y, −Kpx). (7)

Substitution of the feedback (7) into the system (1) results in
the closed-loop system

ẋ = y, (8a)

ẏ = −Kp

J
x − (Kd + Fv)

J
y + 1

J
�F(y, u0), (8b)

where �F(y, u0) = F̃ − F is the friction compensation error
given by

�F(y, u0)=

⎧⎪⎨⎪⎩
(g̃(y)−g(y)) sign(y) if y �=0,

(Fs−F̃s) sign(x) if y=0∧|u0|>Fs,

Kpx otherwise,

(9)

with u0 = −Kpx − F̃s sign(x) the input force at zero velocity.
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The closed-loop system (8) is, likewise the open-loop system
(1), a system of ordinary differential equations with discontin-
uous right-hand side. Here, we adopt the solution concept of
Filippov to define solutions of the discontinuous system, see
e.g. (Filippov, 1988; Leine & Nijmeijer, 2004). In Filippov’s
solution concept, the discontinuous system is interpreted as a
differential inclusion that is obtained through convexification
of the discontinuous right-hand side. Existence of solutions in
the sense of Filippov is guaranteed but uniqueness of solutions
is not automatically ensured.

In our case, the convexification of the right-hand side of the
closed-loop system (8) yields the differential inclusion

ẋ = y, (10a)

ẏ ∈ −Kp

J
x − (Kd + Fv)

J
y + 1

J
�F(y), (10b)

where

�F(y) ∈
{ {(g̃(y) − g(y)) sign(y)} if y �= 0,

[−|F̃s − Fs|, |F̃s − Fs|] if y = 0
(11)

is the closed convex hull of �F . Following Filippov’s solution
concept, from now on, we study the dynamics of the closed-
loop system (10) instead of (8). Equilibria of the controlled
system (10) are given by the set

SE =
{

(x, y) ∈ R2 : |x|� |F̃s − Fs|
Kp

, y = 0

}
. (12)

Obviously, the equilibrium set SE contains the origin, which is
the setpoint of the controlled system (10).

Observe that in the case of exact friction compensation, i.e.
F̃s =Fs and g̃(y)=g(y), (9) yields �F(y, u0)=0. Namely, the
only possible non-zero value of �F is given by �F(y, u0) =
Kpx, which holds if y=0 and |−Kpx−Fs sign(x)|�Fs that is
true only for x = 0, thus also results in �F(y, u0) = 0. Conse-
quently, (11) gives �F ∈ {0}. Hence the controlled system (10)
becomes linear and the equilibrium set SE is reduced to a sin-
gle equilibrium point at the origin, which is globally exponen-
tially stable since J, Fv, Kp, Kd > 0. This fact agrees with the
intuition that exact friction compensation linearizes the closed-
loop system (10) and it allows to assess the effects of inexact
friction compensation.

In the following, we give definitions of undercompensation
and overcompensation of friction in a controlled system. The
friction force F is said to be undercompensated if both the static
friction level and the level of the Stribeck curve of the friction
compensation term F̃ is smaller than those of the friction force
F, i.e.

F̃s − Fs < 0 and g̃(y) − g(y) < 0, ∀y �= 0, (13)

and the friction force F is said to be overcompensated if

F̃s − Fs > 0 and g̃(y) − g(y) > 0, ∀y �= 0. (14)

A schematic representation of (13) and (14) is depicted in
Fig. 1. The effects of undercompensation and overcompensa-
tion of friction to the dynamics of the closed-loop system (10)
will be analyzed separately in the next two sections.

Fig. 1. Schematic representation of undercompensation, i.e. (13), and over-
compensation, i.e. (14).

3. Undercompensation of friction

In this section, it will be proven that in the case of undercom-
pensation the origin of the closed-loop system (10) is stable
and the equilibrium set SE is globally attractive. For this pur-
pose, we apply Lyapunov’s stability theorem (Shevitz & Paden,
1994) and LaSalle’s invariance principle (Adly & Goeleven,
2004; Alvarez et al., 2000).

The invariance principle requires uniqueness of solutions
in forward time (Alvarez et al., 2000, Theorem 1). Following
Filippov’s solution concept, existence of solutions of the differ-
ential inclusion (10) is guaranteed but uniqueness of solutions
depends on the dynamics near the discontinuity manifold of
the vector field (Filippov, 1988; Leine & Nijmeijer, 2004). The
discontinuity manifold of (10) is S ={(x, y) ∈ R2 : y =0} with
n = [0 1]T is the corresponding normal vector. The manifold
S partitions the state space into G− = {(x, y) ∈ R2 : y < 0}
and G+ = {(x, y) ∈ R2 : y > 0}. The projections of the vector
field in G+ and G− on the normal vector n at the discontinuity
manifold S are given by

nTf +(x, y) = −Kp

J
x + F̃s − Fs

J
, ∀(x, y) ∈ S

and

nTf −(x, y) = −Kp

J
x − F̃s − Fs

J
, ∀ (x, y) ∈ S,

respectively.
Solutions of the system (10) cross the discontinuity manifold

S transversally if and only if

nTf +(x, y) · nTf −(x, y) > 0 	⇒ Kp|x| > |F̃s − Fs|.
Therefore, these transversal intersections occur at

ST =
{

(x, y) ∈ R2 : |x| > |F̃s − Fs|
Kp

, y = 0

}
. (15)
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Note that ST =S\SE. Repulsive sliding modes occur at the dis-
continuity manifold S if nTf +(x, y) > 0 and nTf −(x, y) < 0,
which results in

Kp|x| < (F̃s − Fs). (16)

Since Kp > 0 and in the undercompensation case F̃s − Fs < 0,
the inequality (16) never holds and thus repulsive sliding modes
never occur. The absence of repulsive sliding modes and the fact
that S=SE∪ST guarantee uniqueness of solutions of the closed-
loop system (10) on the discontinuity manifold S (Leine &
Nijmeijer, 2004, Section 3.3). Hence, we can conclude that the
closed-loop system (10) has unique solutions in forward time.
Now, we are ready to state a result on the global attractivity of
the equilibrium set SE.

Theorem 1. The origin of the closed-loop system (10) is glob-
ally stable and the equilibrium set SE given by (12) is globally
attractive if the friction force is undercompensated, i.e. condi-
tion (13) holds.

Proof. Consider the Lyapunov function candidate

V (x, y) = Kp

2
x2 + J

2
y2. (17)

The time-derivative of V (x, y) along trajectories of the closed-
loop system (10) is given by

V̇ (x, y) = −(Kd + Fv)y
2 + �F(y)y. (18)

From the condition (13), it can be shown that

�F(y)y < 0, ∀y �= 0 and �F(y)y = 0 iff y = 0. (19)

Substitution of (19) into (18), yields

V̇ (x, y)� − (Kd + Fv)y
2. (20)

The existence of the Lyapunov function (17) with its time-
derivative satisfying (20) proves that the origin is globally stable
(Shevitz & Paden, 1994). Furthermore, V̇ (x, y)= 0 only in the
set S and the equilibrium set SE is the largest invariant set of
(10) contained in the set S. Because the controlled system (10)
has unique solutions in forward time, the invariance principle
(Alvarez et al., 2000, Theorem 1) can be applied to conclude that
all trajectories of the system (10) converge to the equilibrium
set SE. Hence, the equilibrium set SE is globally attractive. �

Theorem 1 indicates that undercompensation of friction leads
to steady-state errors, which are bounded by |F̃s − Fs|/Kp due
to the size of the equilibrium set SE. Limit cycling, however,
never occurs. This result on the undercompensation case can
be extended to a multi-degree of freedom system with multiple
friction forces because in this case the equilibrium set is due
to the remaining friction forces. By choosing an appropriate
Lyapunov function, for example as proposed in van de Wouw
and Leine (2004), and applying LaSalle’s invariant principle a
similar result can be obtained.

4. Overcompensation of friction

The objective of this section is to provide a rigorous analysis
showing that overcompensation of friction in the controlled
system (10) may provoke limit cycling around the setpoint.
The analysis is based on the properties of the �-limit set of
trajectories of a two-dimensional differential inclusion. Here,
we adopt the definition of �-limit sets given in Filippov (1988,
p. 129). In order to prove that the system (10) exhibits limit
cycling, it is sufficient to show that the �-limit set of trajectories
of (10) contains an isolated closed orbit. The following theorem,
which is proven in Filippov (1988, Theorem 3, p. 137), is used
to achieve this goal.

Theorem 2. Consider a two-dimensional autonomous diffe-
rential inclusion

ż ∈ F(z) (21)

with F(z) a set-valued function that is closed, convex and
bounded for all z ∈ R2 and the function F is upper semi-
continuous. Suppose that uniqueness of solutions in forward
time holds at any point on a trajectory � = {z ∈ R2 : z =
�(t), t ∈ [0, ∞)} of (21). If the �-limit set of � is bounded and
contains no equilibrium points then it consists of one closed
orbit.

The right-hand side of the closed-loop system (10) satisfies
the conditions of Theorem 2 because it is obtained from Filip-
pov’s convexification method. Next, we state a result on bound-
edness of trajectories of the system (10).

Proposition 3. The �-limit set of all trajectories of the closed-
loop system (10) is bounded if the friction force is overcom-
pensated, i.e. condition (14) holds.

Proof. Consider the positive definite function

V (x, y) = 1
2 (Fvx + Jy)2 + 1

2 (KpJ + KdFv)x
2 (22)

that is radially unbounded. Its time-derivative along trajectories
of (10) is given by

V̇ (x, y)∈−KpFvx
2+Fv�F(y)x−KdJy2+J�F(y)y. (23)

Using the property of the Stribeck curve, Fc �g(y)�Fs and
(11), it can be shown that

�F(y)x�(F̃s − Fc)|x| and �F(y)y�(F̃s − Fc)|y|. (24)

Substitution of (24) into (23) yields

V̇ (x, y)� − KpFvx
2 + Fv(F̃s − Fc)|x|

− KdJy2 + J (F̃s − Fc)|y|. (25)

Following (25), V̇ (x, y) < 0 if

KpFvx
2 + KdJy2 > (F̃s − Fc) (Fv|x| + J |y|) . (26)

Since F̃s −Fc > 0, inequality (26) holds for all pairs (x, y) that
are sufficiently separated from the origin because the left-hand
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Fig. 2. The vector field of (10) in the case of overcompensation of friction,
where a = Kp/(Kd + Fv) and b = (F̃s − Fs)/(Kd + Fv).

side of the inequality is a quadratic function of x and y while
the right-hand side is a linear function of the absolute values of
x and y. Therefore, trajectories of the closed-loop system (10)
cannot grow unbounded in forward time. �

In the following, we find the conditions on the closed-loop
system (10) such that the �-limit set of its trajectories does
not contain any equilibrium points. It has been shown in the
previous section that repulsive sliding modes occur at the dis-
continuity manifold S if the inequality (16) holds. Since for the
overcompensation case F̃s − Fs > 0, following (16) repulsive
sliding modes occur at the segment

� =
{

(x, y) ∈ R2 : |x| < |F̃s − Fs|
Kp

, y = 0

}
(27)

of the discontinuity manifold S. Note that the equilibrium set
SE can be stated as

SE =
(

− F̃s − Fs

Kp
, 0

)
∪ � ∪

(
F̃s − Fs

Kp
, 0

)
. (28)

Therefore, the set � is an unstable equilibrium set of (10) and
it can be concluded that the �-limit set of all trajectories of
(10) starting at (x0, y0) ∈ R2\SE does not contain the set � but
it may contain one or both of the extremal equilibrium points
(−(F̃s − Fs)/Kp, 0) and ((F̃s − Fs)/Kp, 0).

Next, possible convergence of trajectories to those two ex-
tremal equilibrium points is investigated through a phase-plane
analysis as depicted in Fig. 2. The projection of the vector field
of (10) on the normal m = [1 0]T to the y-axis is

mTf (x, y) = y (29)

such that mTf (x, y) < 0 for all (x, y) ∈ G− and mTf (x, y) > 0
for all (x, y) ∈ G+. The projection of the vector field on the
normal n = [0 1]T to the x-axis is given by

nTf (x, y) ∈ −Kp

J
x − (Kd + Fv)

J
y + 1

J
�F(y). (30)

Since in the overcompensation case we have that �F(y)� F̃s −
Fc, ∀y�0 and �F(y)� − (F̃s − Fc), ∀y�0, (30) yields

nTf (x, y) < 0 if y >
−Kp

Kd + Fv
x + F̃s − Fc

Kd + Fv
and y�0,

nTf (x, y) > 0 if y <
−Kp

Kd + Fv
x − F̃s − Fc

Kd + Fv
and y�0.

In the previous section, we have shown that trajectories of the
closed-loop system (10) cross the x-axis transversally at ST
given by (15).

The phase-plane analysis shows that the extremal equilib-

rium points ( F̃s−Fs
Kp

, 0) and (− F̃s−Fs
Kp

, 0) can only be reached

from G+ and G−, respectively. The dynamics of (10) in G+
reduces to

ẋ = y, (31a)

ẏ = −Kp

J
x − Kd + Fv

J
y + �g(y)

J
, (31b)

with �g(y) = g̃(y) − g(y). Let us approximate the Stribeck
functions g̃(y) and g(y) by a Taylor expansion such that �g(y)

can be approximated by

�g(y) = g̃(0) − g(0) + (g̃′(0) − g′(0))y + h.o.t., (32)

where g̃(0)=F̃s, g(0)=Fs, g̃′(y)= �g̃(y)

�y
and g′(y)= �g(y)

�y
. Note

that for the Stribeck functions (3) and (4) this approximation is
possible only for ��1 because g′(0)=0 if � > 1, g′(0)=−Fs−Fc

vs

if � = 1 and g′(0) is not defined if � < 1. Hence, for the case
where g̃′(0) and g′(0) are well-defined, the system (31) around
y�0 can be approximated by the linear system

ẋ = y, (33a)

ẏ = −Kp

J
x − Kd + Fv − g̃′(0) + g′(0)

J
y + F̃s − Fs

J
. (33b)

Note that the extremal equilibrium point ( F̃s−Fs
Kp

, 0) coincides
with the equilibrium point of the linear system (33). Because of
the symmetry of the vector field about the y-axis a similar linear
approximation also holds for the extremal equilibrium point

(− F̃s−Fs
Kp

, 0). The linear approximation allows to investigate the
possible convergence of trajectories of the closed-loop system
(10) to the extremal equilibrium points such that the following
result can be concluded.

Theorem 4. Consider the closed-loop system (10) in the case
of overcompensation of friction, i.e. condition (14) holds, and
assume that g̃′(0) = �g̃(y)

�y
|y=0 and g′(0) = �g(y)

�y
|y=0 are well-

defined. The �-limit set of any trajectory of the closed-loop
system (10), starting away from the equilibrium set SE, consists
of one closed orbit that encircles the equilibrium set SE if the
inequality

Kd + Fv − g̃′(0) + g′(0) > 0 (34)
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is violated or if both (34) and

(Kd + Fv − g̃′(0) + g′(0))2 < 4KpJ (35)

hold. But if only (35) is violated, the �-limit set does not contain
such a closed orbit but it may consist of one of the extremal

equilibrium points (− F̃s−Fs
Kp

, 0) or ( F̃s−Fs
Kp

, 0).

Proof. Since J, Kp > 0, applying the Hurwitz condition, the
linear approximation (33) is stable if and only if the inequality
(34) holds. Thus, if (34) is violated the linear system (33) be-
comes unstable and following the phase plane analysis trajec-
tories of the closed-loop system (10) will not converge to the
extremal equilibrium points. Consequently the �-limit set of
any trajectory of (10), starting outside the equilibrium set SE,
does not contain any equilibrium points. Applying Theorem 2
and Proposition 3 the �-limit set consists of one closed orbit
if uniqueness of solutions holds any point along those trajec-
tories. It has been shown in Section 3 that transversal intersec-
tions occur at the segment ST of the discontinuity manifold S
and uniqueness of solutions in forward time holds at any point
on ST. Since S = SE ∪ ST and the trajectories do not contain
any point in SE, we can conclude that uniqueness of solutions
in forward time holds at any point along those trajectories and
the first part of the theorem is proven.

If the Hurwitz condition (34) holds, trajectories in G+
may eventually converge to the extremal equilibrium point

( F̃s−Fs
Kp

, 0). However, if the inequality (35) holds the dynamics
of the linear system (33) are undercritically damped (it has
a pair of complex eigenvalues) such that those trajectories
will oscillate before converging to the equilibrium point. Note
that the dynamics (33) hold only in G+ and once a trajectory
crosses the x-axis it will move away from the x-axis towards
the region G− as depicted in Fig. 2. Because the vector field in
G− and in G+ are symmetric the same scenario takes place and
the cycle repeats such that the two extremal equilibrium points
cannot be reached neither in finite time nor in infinite time.
Hence, the �-limit set of those trajectories does not contain
any equilibrium points. By applying the same reasoning as in
the first part, we can conclude the second part of the theorem.

If only the inequality (35) is violated, the dynamics of the
linear system (33) become supercritically damped, i.e. it has
two real eigenvalues, such that trajectories in G+ converge

exponentially fast to the extremal equilibrium point ( F̃s−Fs
Kp

, 0)

without oscillation. Therefore, the extremal equilibrium point
can be reached in infinite time. This result also holds for the
other extremal equilibrium point due to the symmetry of the
vector field. Hence, the �-limit set of trajectories of the closed-
loop system (10) may consist of one of those two extremal
equilibrium points. �

Theorem 4 indicates that overcompensation of friction may
provoke limit cycling and that the limit cycling effect can be
eliminated by tuning the gains of the PD controller, i.e. choose
Kp and Kd satisfying the Hurwitz condition (34) and violating
the inequality (35). This limit cycling result cannot be extended
to a multi-degree of freedom system because it is based on

Theorem 2, which is valid only for two-dimensional systems.
However, the result on boundedness of the �-limit set, Propo-
sition 3, can possibly be extended to a multi-degree of freedom
system by using a similar approach. The sliding-mode analysis
of the discontinuous manifold, see for example (Leine & Ni-
jmeijer, 2004), and the local stability analysis of the extremal
equilibrium points can also be applied to investigate possible
convergence of trajectories of a multi-degree of freedom fric-
tional system to an equilibrium point. Such extended analysis
can predict whether trajectories of a controlled system con-
verge to an attractor—not necessarily a closed orbit—or to an
equilibrium point as the result of overcompensation of friction.

5. A numerical example

This section provides numerical illustrations of the theoreti-
cal results obtained in the previous two sections. For this pur-
pose we consider the 1DOF mechanical system studied in Putra
and Nijmeijer (2004). The dynamics of the system can be de-
scribed by (1) with g(y) = Fc + (Fs − Fc)e−(y/vs)

2
and the pa-

rameter values: J =0.0260 kg m2, Fv =0.0710 Nm s/rad, Fc =
0.4195 Nm, Fs = 0.5005 Nm and vs = 0.15 rad/s. The friction
compensation is given by (6) with F̃s = �Fs and g̃(y) = �g(y),
where � > 0 is a scaling factor. Following the definitions in
Section 2, we have undercompensation case if � < 1 and over-
compensation case if � > 1.

Solutions of the closed-loop system are obtained numerically
using the so-called switch-model approximation for the dynam-
ics around the discontinuity manifold S, see e.g. (Leine, van
Campen, de Kraker, & van den Steen, 1998; Putra & Nijmeijer,
2004). A phase portrait showing an attracting equilibrium set of
the controlled system (10), with �= 0.8 (20% undercompensa-
tion) and the PD controller gains set to Kp = 0.1 and Kd = 0.1,
is depicted in Fig. 3. This simulation result agrees with Theo-
rem 1. Fig. 4(a) depicts a phase portrait showing an asymptot-
ically stable closed orbit of the closed-loop system (10) with
�=1.2 (20% overcompensation) in the undercritically damped

Fig. 3. Phase portrait of the controlled system (10) with � = 0.8 (undercom-
pensation), Kp = 0.1 and Kd = 0.1.
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Fig. 4. Phase portrait of the system (10) with � = 1.2 (overcompensation):
(a) the undercritically damped case with Kp = 1 and Kd = 0.2, and (b) the
supercritically damped case with Kp = 1 and Kd = 0.8, E1 and E2 are the
extremal equilibrium points.

case, with Kp = 1 and Kd = 0.2. The closed orbit comes
closer to the extremal points of the equilibrium set SE as it is
about to cross the y-axis but does not hit them such that the
closed orbit encircles the equilibrium set SE. On the other hand,
Fig. 4(b) depicts a phase portrait of (10) with the same value of
� in the supercritically damped case, with Kp =1 and Kd =0.8.
The phase portrait shows two attracting extremal equilibrium
points of the equilibrium set SE. The last two simulation results
confirm the prediction of Theorem 4.

6. Conclusions

We have investigated the negative effects of undercom-
pensation and overcompensation of friction in PD controlled
1DOF mechanical systems for a class of discontinuous friction
models consisting of static, Coulomb and viscous friction, and
including the Stribeck effect. It has been proven that undercom-
pensation of friction in 1DOF controlled mechanical systems
results in a globally attracting equilibrium set containing the
setpoint, which is globally stable. This result indicates that the
controlled system may exhibit steady-state errors and that limit

cycling effect never occurs. The steady-state error is bounded
by the size of the equilibrium set, which can be influenced by
tuning the proportional gain of the PD controller.

It also has been rigorously proven that overcompensation of
friction in the same controlled mechanical systems provokes
limit cycling in case the linearized dynamics of the controlled
systems around the extremal equilibrium points are undercriti-
cally damped. However, such a limit cycling effect disappears
if the PD controller gains are tuned such that the linearized
dynamics become supercritically damped. Since the analysis
involves the linearized dynamics around the extremal equilib-
rium points, this result is valid only for discontinuous friction
models whose the first partial derivative of the Stribeck func-
tion is well-defined locally at zero velocity. The predictions of
the theoretical results have been demonstrated by a numeri-
cal example. Furthermore, possible extensions of the results to
multi-degree of freedom systems are also indicated.
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