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Abstract

In this paper, a method for the performance assessment of a variable-gain control design for optical storage drives is proposed. The variable-
gain strategy is used to overcome well-known linear control design trade-offs between low-frequency tracking properties and high-frequency
noise sensitivity. A convergence-based control design is proposed that guarantees stability of the closed-loop system and a unique bounded
steady-state response for any bounded disturbance. These favourable properties, guaranteed by virtue of convergence, allow for a unique
performance evaluation of the control system. Moreover, technical conditions for convergence are derived for the variable-gain controlled
system and a quantitative performance measure, taking into account both low-frequency tracking properties and high-frequency measurement
noise sensitivity, is proposed. The convergence conditions together with the performance measure jointly constitute a design tool for tuning the
parameters of the variable-gain controller. The resulting design is shown to outperform linear control designs.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Optical storage drives, such as CD or DVD, either ROM or
audio, drives, are generally controlled using linear (PID-type)
control strategies. Especially for portable or automotive appli-
cations, the requirements on the control design relate to both
tracking requirements and disturbance attenuation properties.
In this scope, two types of disturbances can be distinguished.
Firstly, low-frequent shock disturbances are inevitable in auto-
motive applications due to engine vibration or road excitation.
Secondly, high-frequent disturbances are due to the fact that
the measurement of the position of the disc tracks relative to
the lens position, by the optical pick-up unit, is corrupted by
the presence of finger prints, scratches and dirt spots (i.e. disc
defects).
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When applying linear control, the following fundamental de-
sign trade-off is inherently present: increasing the closed-loop
bandwidth improves the low-frequency disturbance rejection
properties at the cost of deteriorating the sensitivity to high-
frequency measurement noise (Freudenberg, Middleton, &
Stefanopoulou, 2000). Nonlinear control, or more specifically,
nonlinear PID control, see also the work of Armstrong, Neevel,
and Kusid (2001), Jiang and Gao (2001), Fromion and Scorletti
(2002) and Armstrong, Gutierrez, Wade, and Joseph (2006)
combines the possibility of having increased performance in
terms of shock attenuation without unnecessarily deteriorating
the time response under disc defect disturbances. In Heertjes
and Steinbuch (2004) and Heertjes, Pastink, van de Wouw, and
Nijmeijer (2006), variable-gain control strategies are proposed
to overcome the practical implications of such design limita-
tions. In those papers, the comparison between control designs
is based on time- and frequency-domain simulations and ex-
periments. Such analyses do not directly support a quantitative
comparison of the performance of different variable-gain and
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linear control designs. On the other hand, the power of lin-
ear control strategies lies in the fact that essential closed-loop
properties, such as stability and performance, can readily be
checked. It should be noted that generally the design of non-
linear control systems is merely aiming at closed-loop stabil-
ity and the performance assessment is confined—if present at
all—to simulation-based reasoning.

For linear control systems, frequency-domain analysis plays
a central role in the performance assessment of these systems.
Such analysis hinges on the fact that an asymptotically stable
linear time-invariant system exhibits a unique bounded steady-
state solution for any bounded disturbance. Nonlinear systems
do generally not exhibit such properties. Instead, perturbed non-
linear systems can exhibit multiple steady-state solutions. These
facts seriously hamper a performance analysis of such nonlin-
ear control systems. The class of convergent systems, however,
exhibits such favourable properties; see Demidovich (1967),
Pavlov, Pogromsky, van de Wouw, and Nijmeijer (2004) and
Pavlov, van de Wouw, and Nijmeijer (2005) for more informa-
tion on the notion of convergence.

Convergence implies stability (of an equilibrium point) in
the absence of disturbances and it guarantees the existence of
a unique bounded globally asymptotically stable steady-state
solution for every bounded disturbance. Obviously, if such a
solution does exist, all other solutions, regardless of their ini-
tial conditions, converge to this solution, which can be con-
sidered as a steady-state solution (Demidovich, 1967; Pavlov
et al., 2004). Similar notions describing the property of solu-
tions converging to each other are studied in literature. The
notion of contraction has been introduced in Lohmiller and
Slotine (1998) (see also references therein). An operator-based
approach towards studying the property that all solutions of a
system converge to each other is pursued in Fromion, Monaco,
and Normand-Cyrot (1996) and Fromion, Scorletti, and Fer-
reres (1999). In Angeli (2002), a Lyapunov approach has been
developed to study the global uniform asymptotic stability of
all solutions of a system (in Angeli, 2002, this property is called
incremental stability).

We propose a variable-gain control design, which ensures
convergence (and therefore stability) of the closed-loop system,
and therefore allows for a unique performance evaluation in the
face of disturbances. Still, a definition of a performance mea-
sure is needed for a quantitative comparison of control designs.
We propose such a performance measure and use it to support a
performance-based control design for variable-gain controlled
optical storage drives. It will be shown that stability-based and
performance-based control synthesis may lead to different de-
signs and that the variable-gain strategy can outperform linear
control strategies. In Fromion et al. (1999) and Fromion and
Scorletti (2002), the concept of incremental stability is used to
assess the performance of nonlinear control systems. The per-
formance is studied by investigating the L2-norms of inputs
and outputs of the control system. This approach is less suitable
for the performance assessment for optical storage drives be-
cause the performance of such systems is closely related to the
L∞-norm of the tracking error since that determines whether
the disc read-out is terminated or not. Moreover, a view on per-

formance based on gains between norms on inputs and outputs
can be a rather conservative one. Therefore, we adopt the per-
spective of exactly computing the steady-state responses (which
are unique by virtue of the convergence property) to distur-
bances from the specific class of harmonic disturbances and
defining the control performance on the basis of these quantita-
tive data. The performance in the face of harmonic disturbances
is specifically important for optical storage drives. For example,
in practice the performance is tested experimentally by con-
structing so-called ‘drop-out-level curves’ (Heertjes, Cremers,
Rieck, & Steinbuch, 2005), which show the level of the har-
monic disturbance for which a termination of the disc read-out
occurs for varying disturbance frequencies.

The paper is organised as follows. In Section 2, the optical
storage drive is introduced and a simple model for the dy-
namics (in radial direction) is proposed. Moreover, a conven-
tional linear control design and the related fundamental design
limitations are discussed. The variable-gain control strategy is
introduced in Section 3. Section 4 introduces the class of con-
vergent systems and proposes conditions for convergence. Sub-
sequently, the closed-loop behaviour is studied both in the time
domain and in the frequency domain in Section 5. In Section 6,
the performance measure is introduced and used to discriminate
between different control designs. Finally, a discussion of the
obtained results and concluding remarks are given in Section 7.

2. Modelling and control of optical storage drives

Optical storage drives obtain information from a disc using
the principles of optical read-out. Hereby, information is stored
on the disc’s surface by means of a sequence of reflective lands
and non-reflective pits contained in a track. The information
is read from the disc via a light path guided by a lens in a
so-called optical pick-up unit. The light is reflected by the pit
and land structure on the disc. We focus on the control of
the lens in radial direction. The tolerance on the tracking to
be preserved in playing is dictated by the track width which
amounts 0.74 �m for a DVD. A model for the lens dynamics
in radial direction is depicted schematically in Fig. 1. Herein, r
represents the position of the track to be read, since the turntable
with the disc is mounted on the base frame. The two-stage
control strategy of the optical pick-up unit consists of a so-
called long-stroke motion of a sledge containing the lens (pls)

and a short-stroke motion of the lens with respect to the sledge
(pss). We primarily focus on the control of the short-stroke
motion (i.e. pls is assumed fixed). The lens dynamics in the

Fig. 1. Model of the dynamics in radial direction.
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sledge are modelled by a mass–spring–damper system with
mass m, stiffness k and damping b.

A block-diagram of a linearly controlled optical storage drive
is given in Fig. 2. Herein, n represents measurement noise and
u is the control action. It should be noted that in optical storage
drives the error e (the difference between disk position r and
the actual lens position p) is the measured variable. Since it is
corrupted by the measurement noise it is denoted by ẽ. More-
over, HP (s) represents the transfer function related to the lens
dynamics and actuator dynamics:

HP (s) = p(s)

u(s)
= �a

(ms2 + bs + k)(s + �a)
, s ∈ C.

Note that the actuator dynamics are modelled using a low-pass
filter, where �a is the breakpoint of the filter. This low-pass
characteristic is due to the actuator inductance from voltage to
current, see Bittanti, Dell’Orto, Di Carlo, and Savaresi (2002).
The transfer function HC(s) representing the PID-controller
satisfies

HC(s) = u(s)

ẽ(s)
= kp�2

lp(s2 + (�d + �i )s + �d�i )

�d(s3 + 2��lps2 + �2
lps)

,

where �i is the breakpoint of the integral action, �d is the
breakpoint of the differential action, �lp and � denote the break-
point and the damping parameter of the low-pass filter, respec-
tively, and kp is a gain. The parameter values related to the lens
dynamics, actuator dynamics and the control design for a typ-
ical DVD player are m = 7.0 × 10−4 kg, kp = 9.0 × 103 N/m,
b = 2.0 × 10−2 Ns/m, �i = 1.3 × 103 rad/s, k = 32.2 N/m,
�d =1.8×103 rad/s, �a=1.3×105 rad/s, �lp=2.8×104 rad/s
and � = 0.7, see Heertjes et al. (2005, 2006) for related exper-
imental validation results.

The issue of disturbance modelling will be addressed in more
detail in Section 6. It should be noted that we consider two types
of disturbances denoted by r and n. The position of the disc
track, r, is considered as a disturbance since the disc is (rigidly)
attached to the turntable of the optical storage drive, which vi-
brates due to external disturbances. The servo-error e is mea-
sured through a reconstruction mechanism using a so-called ex-
tended S-curve (Stan, 1998) and n is the related measurement
noise. The low-frequency disturbances r typically occur in a
frequency range of 10–200 Hz and the high-frequency distur-
bances typically have a frequency content between 3–45 kHz.

In such linearly controlled motion systems, increasing the
gain kp results in improved tracking performance and dis-
turbance rejection in the low-frequency range. However, at
the same time the disturbance rejection properties in the

Fig. 2. Block diagram of a linearly controlled optical storage drive.

high-frequency range deteriorate.The latter represents a fun-
damental design trade-off in linear control design. In order to
overcome such fundamental design limitations, in Heertjes and
Sperling (2003) and Heertjes and Steinbuch (2004) variable-
gain strategies are proposed.

3. Variable-gain control design

The basic idea behind the variable-gain control design is that,
firstly, when the error is small a low-gain design should be in
effect to ensure low sensitivity to high-frequency measurement
noise and, secondly, when the error becomes large due to low-
frequency shocks a high-gain design should be active to ensure
a high level of low-frequency tracking performance. In Fig. 3,
the variable gain strategy is depicted schematically. It differs
from Fig. 2 through the addition of the variable-gain element
�(ẽ) = (� − ��/ | ẽ |)H(| ẽ | −�), with H(·) the Heaviside
function. Herein, the control design parameters ��0 and ��0
represent the additional gain and a dead zone length, respec-
tively. The variable gain �(ẽ) and the output of the variable
gain block �(ẽ) = �(ẽ)ẽ =: ��(ẽ)[ẽ − �sign(ẽ)] are depicted in
Fig. 4.

For the stability analysis, a state-space notation will be
adopted for the feedback loop shown in Fig. 3:

ẋ = Ax + B�(ẽ) + Bq(t), ẽ = q(t) − Cx, (1)

with q(t) = r(t) + n(t) ∈ R, the state vector x ∈ R6, the
measured radial error signal ẽ ∈ R and the scalar nonlinearity
�(ẽ) due to the variable-gain element. The state x in system (1)

Fig. 3. Block diagram of a variable-gain controlled optical storage drive.
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(ẽ
)[
-]
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is defined as

x = [x1 x2 x3 x4 x5 x6]T

=
[
�dD̃

1

1 + �i/�d

P̃
1

�i

Ĩ F p ṗ

]T

.

The variables x1, x2 and x3 correspond to the derivative, pro-
portional and integral action of the PID controller, all filtered
by the low-pass filter installed in series with the PID controller;
x4 denotes the force that actuates the lens mass; x5 and x6
represent the radial position and the radial velocity of the lens
mass, respectively. In (1), C = [0 0 0 0 1 0],

A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2��lp −�2
lp 0 0 −kp�2

lp 0

1 0 0 0 0 0

0 1 0 0 0 0

�a

�d

�a

(
1+ �i

�d

)
�a

�i

−�a 0 0

0 0 0 0 0 1

0 0 0
1

m
− k

m
− b

m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and B =[kp�2
lp 0 0 0 0 0]T. Since the disturbances r(t) and

n(t) enter the system as r(t) + n(t), for stability analysis of
the closed-loop system they are merged into one signal q(t) :=
r(t) + n(t).

In stability analysis of the closed-loop system we are inter-
ested in the following question: under what conditions on the
controller parameters do all solutions of the closed-loop sys-
tem (1) corresponding to a bounded input signal q(t) converge
to a unique bounded steady-state solution? This property of the
closed-loop system—the so-called convergence property—as
well as an answer to the above stated question are discussed in
the next section.

4. Convergent systems

In this section we give a definition of convergent systems,
discuss some properties of such systems and provide sufficient
conditions under which a system of the form (1) is convergent.
Consider the system

ẋ = f (x, w(t)), (2)

with state x ∈ Rn, piecewise-continuous input w : R → Rm

and locally Lipschitz function f (x, w).

Definition 1 (Demidovich (1967) and Pavlov et al. (2004)).
System (2) with a given input w(t) is said to be (exponentially)
convergent if

i. all solutions x(t) are well-defined for all t ∈ [t0, ∞) and
all initial conditions t0 ∈ R, x(t0) ∈ Rn;

ii. there exists a unique solution x̄w(t) defined and bounded
for all t ∈ (−∞, ∞);

iii. the solution x̄w(t) is globally (exponentially) asymptoti-
cally stable.

The solution x̄w(t) is called a steady-state solution. As fol-
lows from the definition of convergence, any solution of a con-
vergent system “forgets” its initial condition and converges to
some steady-state solution x̄w(t) which is determined only by
the input w(t). Moreover, if the input w(t) is periodic with
period T, then the corresponding steady-state solution x̄w(t) is
also periodic with the same period T, see Demidovich (1967)
and Pavlov et al. (2005).

For systems of the form (note that this form conforms
with (1))

ẋ = Ax + B	(y) + w1(t), y = w2(t) − Cx, (3)

with state x ∈ Rn, input w=[wT
1 , w2]T ∈ Rn+1 and scalar non-

linearity 	(y) depending on the scalar output y, the exponential
convergence property can be verified with the following result.

Theorem 1. Consider system (3). Suppose the matrix A is Hur-
witz and the nonlinearity 	(y) satisfies the incremental sector
condition

0� 	(y1) − 	(y2)

y1 − y2
�
 ∀y1, y2 ∈ R|y1 − y2 �= 0, (4)

where 
 ∈ [0, ∞). If the system satisfies the condition

R{G(j� − �)} > − 1



∀� ∈ R, (5)

for some ��0, where G(s) := C(sI − A)−1B, then system
(3) is exponentially convergent for any bounded piecewise-
continuous input w(t). Moreover, the steady-state solution is
globally exponentially stable with an exponent �̃ satisfying
�̃ > �, i.e. it holds that

‖x̄w(t) − x(t)‖��e−�̃(t−t0)‖x̄w(t0) − x(t0)‖ ∀t > t0, (6)

for some � > 0 independent of the particular input w(t).

Proof. For the case that w2(t) ≡ 0 this theorem was proved
in Yakubovich (1964). For the case that w2(t) /≡ 0, notice that
for all x1, x2 ∈ Rn such that Cx1 − Cx2 �= 0 the time-varying
nonlinearity 	(w2(t) − Cx) satisfies

	(w2(t) − Cx1) − 	(w2(t) − Cx2)

−Cx1 + Cx2

= 	(w2(t) − Cx1) − 	(w2(t) − Cx2)

(w2(t) − Cx1) − (w2(t) − Cx2)
.

Therefore, by condition (4) we obtain

0� 	(w2(t) − Cx1) − 	(w2(t) − Cx2)

−Cx1 + Cx2
�


∀t ∈ R, x1, x2 ∈ Rn|Cx1 − Cx2 �= 0. (7)

Once condition (7) is established, the proof of exponential con-
vergence and inequality (6) repeats the proof from Yakubovich
(1964) for the case of w2(t) ≡ 0. �

Notice, that the closed-loop system (1) is in the form (3)
with y = ẽ, 	(y) = �(ẽ), w1(t) = Bq(t) and w2(t) = q(t). One
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Fig. 5. Left: Nyquist plot of G(j�− �) for �= 10, and graphical investigation of frequency-domain condition (5). Right: relation between � and the maximum
level of � when condition (5) is satisfied.

can easily verify (see Fig. 4) that the nonlinearity � satisfies the
incremental sector condition

0� �(ẽ1) − �(ẽ2)

ẽ1 − ẽ2
�� ∀ẽ1, ẽ2 ∈ R|ẽ1 − ẽ2 �= 0, (8)

with � ∈ [0, ∞) representing the additional gain. Moreover, the
system matrix A is Hurwitz. In order to guarantee the exponen-
tial convergence property, we require that system (1) satisfies
the following condition:

R{C((j� − �)I − A)−1B} > − 1

�
, ∀� ∈ R, (9)

for some ��0 and for the matrices A, B and C defined in
Section 3. This condition allows for a graphical investigation.
The left part of Fig. 5 displays the Nyquist plot of G(j� − �)

for � = 10. Condition (5) is satisfied if the Nyquist plot of
G(j� − �) is entirely on the right side of the line l vertically
passing through −1/�. Hence, � can be increased up to the value
at which l is just tangent to the Nyquist plot of G(j� − �). For
system (1), in case �=10, � is restricted to a maximum value of
�max =1.82. Condition (5) is fulfilled for various combinations
of � and �. The right part of Fig. 5 depicts a curve in the (�, �)

space, which establishes what maximum value of � can be as-
sured if condition (5) is satisfied, given a particular value of �.
The latter curve indicates a convergence (and thereby stability)
region just like the Nyquist plot in the left part of Fig. 5. Namely,
for all � on the left side of the vertical asymptote at � ≈ 1.82,
condition (5) is satisfied. In this context it is important to note
that � is a lower bound for the exponential convergence rate of
the solutions to the steady-state solution. Clearly, the right part
of Fig. 5 expresses the fact that increasing � yields a lower guar-
anteed exponential convergence rate �, which also constitutes a
trade-off in terms of the transient response of the control system.

Finally, by Theorem 1 we conclude that if the additional gain
� ∈ [0, 1.82) then the closed-loop system (5) is exponentially
convergent with the rate of exponential convergence � satisfy-
ing ��10. Notice, that � does not affect the exponential con-
vergence property provided that � ∈ [0, 1.82). Therefore, from
the convergence point of view ��0 can be chosen such that
improved performance of the closed-loop system is attained.

It should be noted that a bound on the state (and thus on the
error and position of the lens) can be computed, given bounds on
the disturbances, based on Theorem 1, see Yakubovich (1964).
The proof of this theorem is based on the fact that under the
conditions of the theorem there exists a quadratic Lyapunov
function for the unperturbed system of the form: V = xTPx,
with P = P T > 0. Given such matrix P an ultimate bound for
the state of the perturbed system can be formulated. Hereto, we
define the set

E =
{
x|‖x‖P � 1

�
sup
t∈R

‖B�(q(t)) + Bq(t)‖P

}
, (10)

where ‖x‖P = √
xTPx is called the P-norm of x. The set E

is a positively invariant set and all solutions of the perturbed
system starting outside this set will converge to it. Therefore,
given bounds on the disturbances q(t) a bound on the P-norm
of x is provided.

For practical implementations, it is important to note that the
convergence property is robust for model uncertainties if one
chooses the additional gain � below �max . The ultimate choice
for � is based on both robustness and performance considera-
tions. The desired level of robustness is attained by choosing
�max − � such that a sufficiently high level uncertainty on the
linear dynamics (typically related to the level of uncertainty in
the identification procedure used to identify these dynamics) is
permitted by the circle criterion.

5. Closed-loop behaviour

In this section, the closed-loop behaviour of the variable-gain
controlled optical storage drive will be investigated for a range
of the control design parameters � (the dead-zone length) and �
(the additional gain). These parameters are chosen such that the
closed-loop system is exponentially convergent. Consequently,
stability is guaranteed and the steady-state performance of the
control design can be assessed in a unique fashion. Here we
adopt the perspective of periodic disturbances, which will, due
to the convergence property, induce unique, globally asymptot-
ically stable periodic responses of the same period time.

The periodic responses of the closed-loop system are eval-
uated in two ways: firstly using the shooting method and the



20 N. van de Wouw et al. / Automatica 44 (2008) 15–27

−7.93

0

7.93
x 10

−7

−7.93

0

7.93
x 10

−7

−7.93

0

7.93
x 10

−7

0 5

x 10
−3

−7.93

0

7.93
x 10

−7

0 5

x 10
−3

−7.93

0

7.93
x 10

−7

0 5

x 10
−3

−7.93

0

7.93
x 10

−7

Fig. 6. Closed-loop response e(t) to a harmonic disturbance for a decreasing dead-zone length � (� = 1, Q = 10−5 m and �/(2) = 200 Hz); simulation (bold
lines), describing function approximation (dash-dot lines).

path-following method (Parker & Chua, 1989) to numerically
compute the periodic responses of the full nonlinear system
and, secondly, using a describing function approximation. For
a more detailed derivation of the describing function of the
variable-gain element, see Heertjes et al. (2006). Response ap-
proximation using describing functions is pursued for reasons
of numerical efficiency in evaluating performance for a wide
range of the parameters � and � and for a range of excitation
frequencies and amplitudes. It will be shown that the describing
function approximation is also accurate for the system under
investigation.

The harmonic disturbance is denoted by q: q(t)=Q sin(�t).
In Fig. 6, the periodic error signal e(t) is depicted for � = 1,
Q = 10−5 m and �/(2) = 200 Hz and for a decreasing dead-
zone length �. Note that for � = 1 the closed-loop system is
exponentially convergent, for all �, and that Fig. 6 depicts the
unique globally asymptotically stable periodic steady-state so-
lutions (with a frequency of 200 Hz). The upper left figure re-
lates to � → ∞ (the low-gain linear control design) and the
lower right figure relates to � = 0 (the high-gain linear control
design). In both designs no gain-switching occurs and the re-
sponse of such linear control systems is purely harmonic. The
intermediate figures express results for various variable-gain
designs, where the responses are no longer harmonic (though
periodic with the period time of the disturbance). The hori-
zontal lines express the dead-zone length � and Fig. 6 shows
that the error is attenuated when the controller applies higher
gains for errors beyond the dead-zone length. Moreover, the re-
sults of simulations with the full nonlinear model and results of
the describing function approximation are shown. Clearly, the
describing function approximation is sufficiently accurate. Fi-
nally, Fig. 6 may lead to the conclusion that the high-gain linear
design is favourable since it results in the lowest tracking error
response for the low-frequency disturbance of 200 Hz. How-

ever, the higher linear gain implies a deterioration of the mea-
surement noise sensitivity at higher frequencies with respect to
the low-gain linear design. The choice of the dead-zone length
in the variable-gain design provides additional design free-
dom in weighting the performance in terms of low-frequency
tracking and the performance in terms of high-frequency mea-
surement noise sensitivity depending on the disturbance char-
acteristic at hand.

In order to quantify this trade-off, simulations are performed
for a whole range of excitation frequencies �. To enhance the
physical meaning of the choice of the dead-zone length, we
introduce a scaled dead-zone length � = �/Q. It can easily
be shown that the dependency of the scaled position of the
lens p/Q and the scaled error e/Q on the parameters � and Q
can be characterised by a dependency on only one parameter:
�=�/Q. In Fig. 7, the results of these simulations are depicted
for � = 1. In the upper figure the infinity-norm of the periodic
error signal (scaled by Q) is plotted against the disturbance
frequency. It is important to note that the infinity-norm of the
error is crucial in the performance of the optical storage drive,
since the read-out will be terminated when the absolute value
of the error becomes larger than the half track width; the latter
criterion is related to the servo-error reconstruction mechanism
using an extended S-curve (Stan, 1998). In Fig. 7, results for
the low-gain linear control design (� → ∞), the high-gain
linear design (� = 0) and several variable-gain control designs
are plotted. For the linear control designs, the upper figure of
Fig. 7 merely depicts the absolute value of the sensitivity func-
tion S(j�) = 1/(1 + HP (j�)HC(j�)) and the lower figure of
Fig. 7 merely depicts the absolute value of the omple-
mentary sensitivity function T (j�) = HP (j�)HC(j�)/(1 +
HP (j�)HC(j�)). Clearly, for low frequencies the high-gain
linear design exhibits better disturbance rejection properties
than the low-gain linear design. However, in accordance with
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Fig. 7. Generalized sensitivity and complementary sensitivity with � = 1 (DF = describing function).

the fact that S(j�) + T (j�) = 1, ∀� ∈ R, the low-gain linear
design achieves a lower high-frequency noise amplification.
For the variable-gain control design we will call the function in
the upper plot of Fig. 7 the generalised sensitivity function and
it expresses both frequency and amplitude dependency. This
amplitude dependency can be recognised in the fact that if the
disturbance amplitude Q becomes larger, the scaled dead-zone
length � = �/Q becomes smaller, which induces different
closed-loop behaviour. The behaviour of the variable-gain de-
sign equals that of the low-gain linear design for ‖e‖∞ < �.
Beyond that level the results of the variable-gain design differ
from that of the low-gain linear design.Once the error response
of the variable-gain controlled system is such that it spends
most of its time outside the dead-zone, the results will resemble
that of the high-gain linear design. Consequently, the variable-
gain design improves the low-frequency rejection properties
with respect to the low-gain linear design (� → ∞); however,
it can never improve upon the low-frequency disturbance re-
jection properties of the high-gain linear design (� → 0). In
the lower plot of Fig. 7, the infinity-norm of the periodic lens
displacement signal (scaled by Q) is plotted against the dis-
turbance frequency. For the linear control designs, this is the
complementary sensitivity function T (j�) and for the variable-
gain design we will call this the generalised complementary
sensitivity function. This figure expresses the superiority of
the low-gain linear design in terms of high-frequency (mea-
surement noise) disturbance rejection properties. Moreover,
the variable-gain design improves upon the high-frequency
disturbance rejection properties of the high-gain linear
design.

Fig. 7 expresses the fact that the variable-gain design can
negotiate between low-frequency tracking properties and high-

frequency measurement noise sensitivity in a way not available
to the linear control designs. Of course, the choice for the best
design (either linear or variable-gain) is largely determined
by the actual frequency- and amplitude-range of both the
low-frequency vibrations and the high-frequency measurement
noise. Moreover, mere visual inspection of the data plotted
in Fig. 7 cannot provide a means to discriminate between the
designs in this respect. Therefore, a quantitative performance
measure accounting for both low-frequency tracking properties
and high-frequency measurement noise sensitivity is neces-
sary to support a performance-based control design strategy.
Given the disturbances acting on the system, such performance
measure should allow to find the control parameters � and �
achieving optimal performance in terms of both low-frequency
tracking properties and high-frequency measurement noise
sensitivity.

A performance measure based on computed responses al-
lows to discriminate between the different control designs, see
Fig. 7. It should be noted that a (conservative) approach to-
wards performance assessment based on merely providing
bounds on the response, given bounds on the disturbances,
will not allow to discriminate between the different control de-
signs. Namely, the frequency-dependency expressed by Fig. 7
cannot be accounted for and the bound on the response would
always be larger (or equal) than the maximum over the frequen-
cies. Clearly, the upper plot in Fig. 7 shows that the difference
in the tracking performance of the different designs is promi-
nent in a frequency range significantly separated from the
frequencies for which the maximum (generalised) sensitivity is
observed. Therefore, the discrimination between the different
control designs can best be assessed through these computed
responses.
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6. Performance assessment

For optical storage drives, satisfactory performance is
achieved when the disc read-out is never stopped, given the
disturbances acting on the system. A stop in the disc read-out
is directly related to the tracking error exceeding the half track
width. Therefore, as mentioned before, the infinity norm of the
tracking error should play a central role in the performance
measure. Two types of disturbances affect this error: low-
frequency vibrations of the disc and high-frequency measure-
ment noise. In optical storage drives, generally performance
is increased, firstly, by reducing the influence of measurement
noise on the lens position and, secondly, by increasing the
capability of the lens to follow the desired disc track in the
presence of disc vibrations. Performance in terms of a devi-
ation with respect to the desired disc track is then quantified
by a weighted sum of the radial position p of the lens under
measurement noise and the radial error e resulting from disc
vibrations.

We adopt the perspective of exactly computing the unique
steady-state responses to disturbances from the specific class
of harmonic disturbances and defining the control performance
on the basis of these quantitative data. The latter computations
are performed efficiently using describing function approxima-
tions, see Section 5. The performance in the face of harmonic
disturbances is specifically important for optical storage drives
since in practice the performance is tested experimentally by
constructing so-called ‘drop-out-level curves’ (Heertjes et al.,
2005), which show the level of the harmonic disturbance for
which a termination of the disc read-out occurs for a range of
disturbance frequencies. It is worth noting that Theorem 1 also
allows one to compute bounds on the responses given bounds
on arbitrary inputs, see the discussion at the end of Section 4
and Yakubovich (1964). This allows one to consider more gen-
eral classes of disturbances, however, only yielding a conser-
vative view on performance.

6.1. Disturbance modelling

In this section, the disturbance modelling is discussed in
detail. At this point, we revert to the notation introduced in
Section 2: r represents disc vibrations and n denotes the mea-
surement noise. Once more, the perspective of harmonic distur-
bances is taken: r(t, �r , Qr) = Qr |Fr(j�r )| sin(�r t), ∀t ∈ R,
∀�r × Qr ∈ [�−

r , �+
r ] × [Q−

r , Q+
r ] and zero elsewhere, and

n(t, �n, Qn) = Qn|Fn(j�n)| sin(�nt), ∀t ∈ R, ∀�n × Qn ∈
[�−

n , �+
n ] × [Q−

n , Q+
n ] and zero elsewhere, where Qr and Qn

represent the amplitudes of the disc vibrations r and the mea-
surement noise n, respectively. Similarly, �r and �n represent
the frequencies of the disc vibrations r and the measurement
noise n, respectively. The linear filters Fr(j�r ) and Fn(j�n)

enable appropriate frequency weighting. The choice for rep-
resenting both the shock disturbances and the measurement
noise by means harmonic disturbances (with a range of fre-
quencies) is motivated by, firstly, the fact that the sensitivity to
shock disturbances is commonly specified in practice through
its sensitivity to harmonic disturbances (Heertjes et al., 2005)

(in automotive applications engine- and road-induced vibra-
tions are essentially narrow-banded when arriving at the optical
storage drive), secondly, the fact that a specific disc defect in-
duces a disturbance in a pronounced frequency band, whereas
the entire considered class of disc defects will represent dis-
turbances in a broad frequency range and, thirdly, the bene-
fit of representing both types of disturbances within the same
framework.

The variables e(t, �, Q) and p(t, �, Q) denote the error re-
sponse and the displacement of the lens to a harmonic distur-
bance with amplitude Q and angular frequency �, respectively.
Moreover, by ‖e(t, �, Q)‖∞=supt∈[0,T ]{|e(r(t, �, Q))|}, with
T = (2)/� being the period time of the disturbance (and of
the response), we denote the maximum absolute error occurring
on the periodic steady-state solution induced by the periodic
disturbance. A similar notation is adopted for p.

The modelling of r(t, �r , Qr) is motivated in the follow-
ing way. According to the drop-out-level curve (Heertjes et al.,
2005), the spectral content of radial disc displacements is in
the range from 10 to 200 Hz, i.e. [�−

r , �+
r ] = [10 × 2, 200 ×

2] rad/s. Moreover, this frequency range of disturbances is
particularly of interest for automotive applications in which
the suspension dynamics filters higher disturbances frequen-
cies present in the road excitation. The maximum amplitude
of the disc vibrations Q+

r and the filter Fr(j�r ) are chosen
such that the combination induces the occurrence of a termi-
nated disc readout (commonly called a mute). The occurrence
of a mute conforms to the maximum radial error level in op-
tical disc drives. Now, we choose the filter Fr(j�r ) such that
for a maximal disc vibration amplitude of Q+

r = 4 × 10−7, the
disc readout is terminated for all disturbance frequencies when
the low-gain control design is implemented. For the low-gain
linear design, ‖e(r(t, �r , Qr))‖∞ is related to the disturbance
through the low-gain sensitivity function Slg(j�):

‖e(r(t, �r , Qr))‖∞ = ‖F−1{Slg(j�)R(j�, �r , Qr)}‖∞

= Qr |Slg(j�r )Fr(j�r )|, (11)

where R(j�, �r , Qr) = F{r(t, �r , Qr)} is the Fourier trans-
form of r(t, �r , Qr). By choosing |Fr(j�r )| = |S−1

lg (j�r )|,
∀�r ∈ [10 × 2, 200 × 2], we guarantee that the disc read-
out is terminated for Qr = Q+

r , ∀�r ∈ [10 × 2, 200 × 2].
Consequently, we have constructed a maximum disturbance
level (higher disturbance levels are of no interest since the
disc readout will already be terminated at lower disturbance
levels). Note that |S−1

lg (j�r )| has a low-pass characteristic for
�r ∈ [10×2, 200×2], see left figure in Fig. 8. Motivated by
the foregoing line of thought, we model the low-frequency disc
vibrations according to r(t, �r , Qr) = Qr |S−1

lg (j�r )| sin(�r t),

∀t ∈ R, ∀�r × Qr ∈ [10 × 2, 200 × 2] × [0, 4 × 10−7].
The modelling of n(t, �n, Qn) is motivated as follows. We

presume the frequency content of measurement noise due to
disc defects starts at 3 kHz, see Vidal, Andersen, Stoustrup,
and Pedersen (2001) and Helvoirt, Leenknegt, Steinbuch, and
Goossens (2004), i.e. �−

n =3×103 ×2 rad/s. The latter bound
is motivated by a disc defect (e.g. a black dot) of maximum size
of 0.002 m encountered while reading an outer track of the DVD



N. van de Wouw et al. / Automatica 44 (2008) 15–27 23

10 20 100 200

10
−6

10
−5

10
−4

10
−3

10
−2

3000 6000 45000 90000

10
−8

10
−7

10
−6

Fig. 8. Design weighting filters and maximum levels of disturbance as a function of frequency.

(at a radius of approximately 0.06 m) while rotating at 15 Hz.
In such case the black dot is crossed in approximately 1/3000 s,
leading to a lowest disturbance frequency of 3 kHz. The highest
frequency at which measurement noise can possibly disturb the
output is dictated by half the sample frequency which amounts
45 kHz maximum. Consequently, we define �+

n = 4.5 × 104 ×
2 rad/s. Measurements are performed to show that, when only
measurement noise disturbs the output, generally the measured
radial error ẽ does not exceed 10−7 m in case the low-gain linear
control design is applied. For such a linear control design, the
transfer function from n to ẽ is given by the sensitivity function.
Using this fact, it is obtained that

‖ẽ(n(t, �n, Qn))‖∞ = ‖F−1{Slg(j�)N(j�, �n, Qn)}‖∞

= Qn|Slg(j�n)Fn(j�n)|, (12)

where N(j�, �n, Qn) = F{n(t, �n, Qn)} is the Fourier
transform of n(t, �n, Qn). To respect the maximum level
of ẽ experienced in practice, Q+

n is upper bounded through
Q+

n |Slg(j�n)Fn(j�n)| = 10−7, �n ∈ [3 × 103 × 2, 4.5 ×
104 × 2] which is guaranteed if we set Q+

n = 10−7 m
and define |Fn(j�n)| = |S−1

lg (j�n)|, ∀�n ∈ [3 × 103 ×
2, 4.5 × 104 × 2], see the right figure in Fig. 8. Moti-
vated by the foregoing reasoning, we model n(t, �n, Qn)

through n(t, �n, Qn) = Qn|S−1
lg (j�n)| sin(�nt), ∀t ∈ R,

∀�n × Qn ∈ [3 × 103 × 2, 4.5 × 104 × 2] × [0, 10−7].
Note that [�−

r , �+
r ] ∩ [�−

n , �+
n ] = ∅, which avoids conflicting

goals otherwise encountered when both disturbances show a
frequency-range overlap.

6.2. Performance measure

The performance measure should reflect the aim to minimise
both the effect of the disc vibrations on the tracking error and
the effect of the measurement noise on the position of the lens.
Moreover, it has been motivated that the infinity-norm of these
variables determines whether or not a termination of the disc
read-out will occur. Consequently, the performance measure
P, which we will call the integral deviation formulation, is
formulated as follows:

P = Ir + In

I ref
r + I ref

n

, (13)

with

Ir =
∫ Q+

r

Q−
r

∫ �+
r

�−
r

‖e(r(t, �r , Qr))‖∞ d�rdQr ,

In =
∫ Q+

n

Q−
n

∫ �+
n

�−
n

‖p(n(t, �n, Qn))‖∞ d�ndQn,

I ref
r =

∫ Q+
r

Q−
r

∫ �+
r

�−
r

‖eref (r(t, �r , Qr))‖∞ d�rdQr ,

I ref
n =

∫ Q+
n

Q−
n

∫ �+
n

�−
n

‖pref (n(t, �n, Qn))‖∞ d�ndQn. (14)

Herein, we accounted for the fact that [�−
r , �+

r ]∩[�−
n , �+

n ]=∅
for the disturbance modelling proposed in the previous sec-
tion. The first integral in the equations in (14), i.e. the integral
over Q̄, is incorporated to account for the conceivable ampli-
tude dependency inherent to the variable-gain control design.
The second integral, i.e. the integral over �, is incorporated to
account for the frequency dependency of the closed-loop be-
haviour. Note that in defining (13), (14) it is presumed that
the integrands are integrable with respect to � and Q, which
is guaranteed by the convergence properties of the closed-loop
system. The response of an arbitrary reference design is indi-
cated by means of the subscript ref in the denominator of (13).
The integral deviation formulation is defined as a relative mea-
sure to facilitate the interpretation of its outcome. Namely, if
the control design under evaluation (related to the numerator of
(13)) and the reference design yield equal performance, a value
P = 1 is obtained. If, however, P < 1, the control design under
evaluation yields a better performance than the reference de-
sign. For the remainder of this paper the low-gain linear design
is chosen to serve as the reference design.

Note that one could also model the disturbances by a
parametrised family of signals consisting of multiple harmon-
ics. Then, the same approach can be adopted to assess the
performance. Namely, still the convergence properties ensure
the existence of a unique and bounded globally asymptotically
stable steady-state solution for every bounded disturbance and
again this fact allows for a unique performance assessment.
However, the performance measure itself will be considerably
more complex. Namely, in the case of harmonic disturbances
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Fig. 9. Pr for a range of linear and variable gain control designs (� in [m]).
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only two parameters (amplitude and frequency) need to be
taken into account in the performance measure (see (13),
(14)), whereas in the case of multiple harmonics the number
of parameters will change accordingly.

6.3. Performance-based control design

Let us now use the performance measure to assess, and
compare, the performance of both linear and variable-gain
control designs given the type of disturbances described in
Section 6.1. In order to illuminate qualitative contributions
of improvements/deteriorations with respect to low-frequency
disturbance rejection properties and high-frequency measure-
ment noise sensitivity to the performance P, the following
quantities are introduced: Pr = Ir/I

ref
r and Pn = In/I

ref
n . Pro-

vided �+
r is below the bandwidth of the reference design, by

means of Pr the conceivable improvement in low-frequency
disturbance rejection properties is studied. Furthermore, pro-
vided that �−

n is above the bandwidth of the reference design,
Pn enables a quantification of the possible deterioration of
measurement noise sensitivity. Note that P �= Pr + Pn.

Fig. 9 depicts the value of Pr as a function of �. Herein,
� ∈ [0, 1.82] as to guarantee convergent system properties, see
Section 4. Furthermore, Pr is evaluated for several levels of the
dead-zone length �. If ��4×10−7 m, it is obtained that Pr =1,
∀� ∈ [0, 1.82], because the error due to radial disc displacement
is upper-bounded by 4 × 10−7 m, see Section 6.1. Therefore, if
��4×10−7 m, the dead-zone will not be exceeded. For smaller
values of �, Pr < 1 ∀� ∈ [0, 1.82] implying an improvement of

low-frequency disturbance rejection properties. The monotonic
decrease of Pr with � follows from the fact that we evaluate the
radial error merely for frequencies below the bandwidth of the
reference design. Not surprisingly, Pr is minimal if (i) �=0 m,
i.e. for the high-gain linear design, and (ii) � = 1.82; hence
maximal low-frequency disturbance attenuation is attained.

Fig. 10 depicts the value of Pn as a function of �. For
��10−7 m, it is obtained that Pn = 1, ∀� ∈ [0, 1.82] because
the measured radial error resulting from measurement noise is
upper-bounded by 10−7 m, see Section 6.1. For smaller values
of �, it is obtained that Pn �1, ∀� ∈ [0, 1.82], indicating a dete-
rioration of measurement noise sensitivity. The monotonic in-
crease of Pn with � is caused by considering the measurement
noise sensitivity only for frequencies above the bandwidth of
the reference design. The measurement noise sensitivity is de-
teriorated to a maximum extent if (i) � = 0 m hence for the
high-gain linear design, and (ii) � = 1.82.

Fig. 11 depicts the outcome of (13) evaluated for the distur-
bances, modelled in Section 6.1, as a function of �. Further-
more, P is evaluated for several levels of the dead-zone length
�. The figure indicates that the performance depends strongly
on both � and �. If ��4×10−7 m, it is obtained that P =1 ∀� ∈
[0, 1.82]. Initially, a reduction of � will enhance performance
because low-frequency disturbance rejection properties are im-
proved whereas the measurement noise sensitivity remains un-
altered, see the curves for � ∈ {10−7, 2 × 10−7, 3 × 10−7} m.
For these levels of �, P decreases monotonically with � and
therefore maximum performance, i.e. minimum P, is obtained
if � = 1.82.
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Fig. 11. The performance measure P for a range of linear and variable gain control designs (� in [m]).

A further decrease of � results in a deterioration of per-
formance compared to the design with � = 10−7 m. Namely,
if � < 10−7 m, the measured radial error resulting from mea-
surement noise will exceed the dead-zone length and hence, a
deterioration of the measurement noise sensitivity is effected.
Consequently, P no longer monotonically decreases with � and
therefore, maximum performance is no longer obtained for
maximum �. If � ∈ {6 × 10−8, 8 × 10−8} m, the variable gain
control design under evaluation still accomplishes better per-
formance than the reference design for all � ∈ [0, 1.82]. Note
that the level of the dead-zone length on the boundary between
performance deterioration and improvement strongly depends
on the (relative) level of the two types disturbances (shock dis-
turbances and disc defects). However, for � ∈ {0, 2×10−8, 4×
10−8} m there exist values for � for which P > 1, implying
a deterioration of the performance compared to the low-gain
linear design. For these levels of �, the improvement in low-
frequency disturbance rejection properties is canceled by the
deterioration of the measurement noise sensitivity. Therefore,
for smaller levels of �, the increase of the gain � within the
range for which convergence is guaranteed, does not lead to an
improved performance. In order not to arrive at a worsening of
performance compared to the low-gain linear design for these
levels of �, one must select � carefully.

Depending on the combination of � and �, the variable gain
control design can outperform both the low-gain and the high-
gain linear design. Given the performance measure (13), the
weighting filters in Fig. 8 and the disturbance modelling pro-
posed in Section 6.1, Fig. 11 clearly shows that nonlinear con-
trol can prevail over linear control.

The proposed performance-based design strategy allows to
compute settings of the control parameters � and � that guar-
antee ‘optimal’ performance given the plant and disturbance
model. In practice, the sensitivity of the optimality of such con-
trol settings with respect to model uncertainties is an important
issue. However, the dynamics of the system under study can be
modelled with high accuracy by exploiting simple frequency-
domain identification procedures, see, for example, Heertjes
et al. (2006). Moreover, if large deviations in the controlled
mechanics would occur, a redesign of the nominal (low-gain)
control design would be in effect in practice aiming at the same
type of nominal closed-loop dynamics (e.g. in terms of nominal
bandwidth).

7. Conclusions

In this paper, a variable-gain control design for opti-
cal storage drives is studied from a control performance
perspective. The variable-gain strategy is adopted to over-
come well-known linear control design trade-offs between
low-frequency tracking properties and high-frequency noise
sensitivity.

The contribution of this paper lies in the following aspects.
Firstly, a convergence-based control design is proposed, which
guarantees stability of the closed-loop system and a unique
bounded steady-state response for any bounded disturbance.
These favourable properties, induced by convergence, allow
for a unique steady-state performance evaluation of the con-
trol system. Secondly, technical conditions for exponential
convergence are proposed for the variable-gain controlled
system. Thirdly, a quantitative performance measure, tak-
ing into account both low-frequency tracking properties and
high-frequency measurement noise sensitivity, is proposed to
support the design and tuning of the nonlinear (non-smooth)
control design.

The proposed performance measure is based on the com-
puted steady-state responses to a class of harmonic distur-
bances, which allows for an accurate performance comparison
between different control designs. Such a performance mea-
sure is consistent with industrial performance specifications for
optical storage drives which are given in terms of the level
of harmonic disturbances for which the data read-out is ter-
minated. The convergence conditions together with the perfor-
mance measure jointly constitute a design tool for tuning the
parameters of the variable-gain controller. The resulting de-
sign is shown to outperform linear control designs. The latter
statement is based on the steady-state behaviour of the control
system under harmonic excitation and is supported by measure-
ments in Heertjes et al. (2006).

As a final remark, the trade-off between low-frequency track-
ing properties and high-frequency measurement noise sensitiv-
ity is not unique for optical storage drives but can be recognised
in a wide variety of motion control systems, such as pick and
place machines, robots, etc. As a consequence, the method to-
wards performance assessment proposed here can support the
design of variable-structure controllers for other applications
as well.
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The discriminative nature of the performance evaluation can
be further improved by future work on enhanced disturbance
modelling.
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