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a b s t r a c t

In this paper, the tracking problem for a class of discontinuous piecewise affine (PWA) systems is
addressed. We propose an observer-based output-feedback control design, consisting of a feedforward, a
piecewise affine feedback law and amodel-based observer, solving the tracking problem. These synthesis
results can also be employed to tackle the master–slave synchronisation problem for PWA systems. It
is shown that for certain classes of PWA systems the design is characterised in terms of linear matrix
inequalities. The results are illustrated by application to mechanical systems with discontinuous friction
characteristics.
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1. Introduction

The asymptotic tracking of prescribed reference signals is
a central problem in control theory. For smooth nonlinear
systems, a vast amount of literature exists on this topic.
Well-known approaches towards tackling the tracking control
problems are formulated in the scope of the output regula-
tion problem, feedback linearisation techniques, inversion-based
tracking, Lyapunov-based control design, backstepping designs,
passivity-based designs, designs based on the notion of absolute
stability, and many more.
Currently, PWA systems are receiving wide attention due to

the fact that the PWA framework (Sontag, 1981) provides a way
to describe dynamic systems exhibiting switching between a
multitude of linear dynamic regimes, see also Carmona, Freire,
Ponce, and Torres (2002), Heemels, Camlibel, and Schumacher
(2002), Mosterman and Biswas (2000) and Voros (2002). Such
switching can be due to piecewise-linear characteristics such as
dead-zone, saturation, hysteresis or relays or result frompiecewise
linear approximations of complex nonlinear dynamics. Results
on the stabilization problem (of equilibria) for PWA systems are
presented in e.g. Bemporad andMorari (1999), Chen, Zhu, and Feng
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(2004), Feng (2002), Habets and van Schuppen (2004), Johansson
(2002), Johansson and Rantzer (1998), Rodrigues and How (2003)
and Rodrigues and Boyd (2005). Because of the intimate relation
between PWA systems and linear parameter-varying systems,
it is important to note the extensive literature on the control
of this type of systems, in which the focus is on stabilisation
with additional performance objectives (e.g. in terms of L2-gain
properties), see e.g. Apkarian, Gahinet, and Becker (1995) and de
Souza and Trofino (2006) and references therein. For continuous
PWA systems that can be represented in the form of a Lur’e
system, stabilising output-feedback control designs are proposed
in Arcak and Kokotović (2001). Despite many stabilisation results
for PWA systems, results on the tracking problem for PWA systems
are rare. The authors are aware of only one publication on this
problem (Sakurama & Sugie, 2005), where a solution is presented
for bimodal PWA systems.
In the current paper, we will propose solutions to the

tracking control problem for a class of multi-modal discontinuous
PWA systems via state feedback and observer-based output
feedback designs. These control designs can also be employed
to tackle the master–slave synchronisation problem for multi-
modal discontinuous PWA systems. To the best of our knowledge
no solutions to the tracking/synchronisation control problems for
multi-modal discontinuous PWA systems have been reported in
the literature. The presented results are based on recent research
on convergence properties of PWA systems (Pavlov, Pogromsky,
van de Wouw, & Nijmeijer, 2007; Pavlov, van de Wouw, &
Nijmeijer, 2005).
The paper is structured as follows. In Section 2, the tracking

problem and master–slave synchronisation problem for PWA
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systems are stated. In Section 3, we design state- and (observer-
based) dynamic output feedback controllers solving the tracking
problem for a class of multi-modal discontinuous PWA systems.
An extension of these controllers fit to tackle the master–slave
synchronisation problem is discussed in Section 4. Moreover, an
example illustrating the results on synchronisation is presented
for a mechanical motion system with discontinuous friction
characteristics. Section 5 gives concluding remarks.

2. Problem formulation

Consider the state space Rn to be divided into polyhedral cells
Λi, i = 1, . . . , l, by hyperplanes given by equations of the form
HTijx + hij = 0, such that Λi ⊂

{
x ∈ Rn : HTijx+ hij ≥ 0

}
and

Λj ⊂
{
x ∈ Rn : HTijx+ hij < 0

}
, with Hij ∈ Rn and hij ∈ R for

{i, j} = 1, . . . , l and i 6= j. Wewill consider piecewise affine (PWA)
systems of the form

ẋ = Aix+ bi + Bu, for x ∈ Λi, i = 1, . . . , l,
y = Cx.

(1)

Here B ∈ Rn×m, C ∈ Rq×n, Ai ∈ Rn×n and bi ∈ Rn, i = 1, . . . , l, are
constant matrices and vectors, respectively. The vector x ∈ Rn is
the state, the vector y ∈ Rq is the measured output and the vector
u ∈ Rm is the control input.
In Section 3, we will design (dynamic) control laws for system

(1) such that the corresponding closed-loop system is again a
PWA systemwith a time-varying input. Solutions of such a closed-
loop system are understood in the sense of Filippov (see Filippov
(1988)). In Filippov’s solution concept, given a differential equation
with a discontinuous right-hand side, one can obtain a differential
inclusion through a certain convexification procedure and the
solutions of the original discontinuous differential equation are
understood as solutions of this differential inclusion. In the results
presented in Section 3, all the algebraic derivations for the (time-
derivative of the) smooth Lyapunov function, which is exploited
for stability analysis, are given for the variables lying in the
continuity domain of the right-hand side of the system. In the
same way as has been done in Pavlov et al. (2007) (with the
original idea from Filippov (1988)), these statements allow us to
conclude on the behaviour of solutions of the differential inclusion
corresponding to the PWA system with a discontinuous right-
hand side. Consequently, the explicit analysis of the differential
inclusions arising from Filippov’s solution concept can be avoided.
In order to reduce the technicalities in the current paper, we refer
to Pavlov et al. (2007) for further details.
The tracking problem considered in this work is formalised as

follows:

Tracking problem. Design a control law for u that, based on
information on the desired state trajectory xd(t) and the
measured output y, renders x(t)→ xd(t) as t →∞ and
the states of the closed-loop system are bounded.

To solve this problem, we adopt the following assumption:

Assumption 1. There exists uff (t) such that the desired solution
xd(t) satisfies

ẋd = Ajxd + bj + Buff (t) (2)

for xd ∈ Λj, j = 1, . . . , l, i.e. uff (t) can be considered to be a
reference control (feedforward) generating xd(t).

The master–slave synchronisation problem is also studied in
this paper. In that scope, in addition to system (1), which we call a
slave system, we consider an identical master system

ẋm = Ajxm + bj + Bw(t),
ym = Cxm,

(3)

for xm ∈ Λj, j = 1, . . . , l, that is excited by w(t). Herein, ym is
the measured output of the master system. It is assumed that all
solutions of the master system are bounded for t ≥ t0 (where
t0 denotes the initial time). The master–slave synchronisation
problem is formulated as follows:

Master–slave synchronisation problem. Design a control law for
the slave system (1) that, based on information on the
measured outputs y and ym and onw(t), renders x(t)→
xm(t) as t → ∞ and the states of the closed-loop slave
system are bounded.

3. Tracking control design

3.1. State-feedback design

Let us first adopt the perspective that the entire state can be
measured, i.e. C = I in (1), where I is the n × n-identity matrix.
Then, we adopt a control law decomposed into a feedforward part
uff (t) and a PWA feedback part:

u(x, t) = uff (t)+ Kix+ di −
(
Kjxd(t)+ dj

)
(4)

for x ∈ Λi, xd(t) ∈ Λj, i, j = 1, . . . , l and with Ki ∈ Rm×n and
di ∈ Rm, i = 1, . . . , l, being feedback parameters. The following
result poses conditions under which asymptotic state tracking is
achieved with controller (4).

Theorem 1. Consider the system (1), with C = I . Suppose the
desired trajectory xd(t) satisfies Assumption 1 with uff (t) being the
corresponding feedforward. If there exist P c ∈ Rn×n,Yi ∈ Rm×n and
di ∈ Rm, i = 1, . . . , l, such that

P c = P T
c > 0,

AiP c + P cATi + BYi +YTi B
T < 0, i = 1, . . . , l,

(5)

and for any pair of cellsΛi andΛj having a common boundary given
byHTijx+hij = 0 there exist vectors Gij ∈ Rn,Mij ∈ Rm and a number
γij ∈ {0, 1} such that

Ai − Aj = GijHTij , (6)

bi − bj − Gijhij = −γijP cHij, (7)

Yi −Yj = MijHTijP c, (8)

di − dj = Mijhij, (9)

then xd(t) is a globally exponentially stable solution of the closed-loop
system (1), (4), with feedback gainsKi = YiP

−1
c , and di, i = 1, . . . , l,

satisfying (5)–(9). In particular, the tracking problem is solved.
Proof. See Appendix A.1. �

Remark 1. It is known that, for γij = 0, conditions (6), (7) are
equivalent to the continuity of the right-hand side of system (1),
see e.g. Rodrigues and How (2003) and Pavlov et al. (2005). Due
to the same result, conditions (8) and (9), after multiplication of
(8) from the right byP−1c , guarantee the continuity of the function
v(x) = Kix+di, for x ∈ Λi, withKi = YiP

−1
c . This, in turn, implies

the continuity of the controller u(x, t) given in (4).

Remark 2. Condition (6) is a structural condition on the system
and it uniquely determines Gij. Conditions (5)–(9) are bilinear
matrix inequalities (BMIs) in terms of P c , Yi, di and Mij. Solving
BMIs is, in general, a computationally challenging problem. At the
same time, in the case of (both continuous anddiscontinuous) PWA
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systems with linear feedback (i.e. Ki = Kj, which corresponds to
Yi = Yj, for all i, j ∈ {1, . . . , l}, and di = 0, for all i ∈ {1, . . . , l} in
(4)) these conditions can be reduced to linear matrix inequalities
(LMIs). More specifically, in the case of linear feedback we have
that:

• (8) and (9) are satisfied for Mij = 0 ∀i, j by linearity of the
controller;
• (5) and (7) represent LMIs in terms of Pc and Yi for fixed γij,
which can be either 0 or 1. Herein, γij = 0 represents the case
inwhich the vectorfield of (1) is continuous over the hyperplane
betweenΛi andΛj and γij = 1 represent the case in which the
vectorfield of (1) is discontinuous over the hyperplane between
Λi andΛj.

Clearly, for the case of linear feedback, LMI conditions are now
available that provide a solution to the tracking problem and for
which computationally efficient tools exist.

3.2. Observer design

In the next result, we propose an observer design for the
discontinuous PWA system (1), which will ultimately be used in
the context of an output-feedback controller solving the tracking
problem.

Theorem 2. Consider system (1). If there exist P o ∈ Rn×n and
X ∈ Rn×q satisfying the inequality

P o = P T
o > 0,

P oAi + ATiP o +XC + CTXT < 0, i = 1, . . . l,
(10)

and for any pair of cellsΛi andΛj having a common boundary given
by HTijx + hij = 0 there exist a vector Gij ∈ Rn and a number
γij ∈ {0, 1} satisfying

Ai − Aj = GijHTij , (11)

P o
(
bi − bj − Gijhij

)
= −γijHij, (12)

then the system

˙̂x = Aι̂x̂+ bι̂ + Bu(t)+ L(ŷ − y(t)),
ŷ = Cx̂,

(13)

for x̂ ∈ Λι̂, ι̂ = 1, . . . , l and with L = P−1o X , is an observer for
system (1) with globally exponentially stable error dynamics.

Proof. See Appendix A.2. �

With ι̂ we indicate the index that determines in which polyhedral
cellΛι̂ the observer state x̂ resides.

Remark 3. Given condition (11), which is a structural condition on
system (1), conditions (10) and (12) are LMIs in terms ofP o andX .
This fact makes these conditions easy to verify.

Note that this observer guarantees exponentially stable observer
error dynamics and does not require knowledge on the moment
of switching of the system between distinct polyhedral cells Λi.
We note that if system (1) exhibits a continuous vector field and
can be represented as a Lur’e system, one can also use the circle
criterion-based observer design from Arcak and Kokotović (2001).
For Lur’e-type systems with set-valued, monotone nonlinearities
in the feedback loop, passivity-based observer designs have been
proposed in Juloski, Heemels, and Weiland (2005). For bi-modal
piecewise linear systems, observer designs have been proposed
in Heemels, Weiland, and Juloski (2007) and Juloski, Heemels,
and Weiland (2002, 2007). For continuous PWA systems that
can be formulated as Lur’e-type systems, the observer designs
from Arcak and Kokotović (2001) and Juloski et al. (2002) are
more general than (13). For general continuous PWA systems,
one can also extend the observer design in (13) based on the
ideas from Arcak and Kokotović (2001) and Juloski et al. (2002).
However, we will not pursue such an extension in this paper.
Observer-based output-feedback designs for PWA systems aiming
at the stabilisation of equilibria (as opposed to the stabilisation of
time-varying trajectories as considered in the current paper) have
been reported in Rodrigues and How (2003).

3.3. Output-feedback design

Theorem 1 shows how to design a state feedback controller
which, based on information on the state x and the desired state
xd(t), solves the tracking problem. Theorem2 provides an observer
design to asymptotically reconstruct x from the measured output
y and input u. In Theorem 3, we combine the proposed controller
and observer to construct an output feedback controller solving the
tracking problem.

Theorem 3. Consider system (1) and a desired trajectory xd(t) satis-
fying Assumption 1 with uff (t) being the corresponding feedforward.
Under the conditions of Theorems 1 and 2, (x, x̂) = (xd(t), xd(t)) is a
globally exponentially stable solution of system (1) in closed loop with
the controller

˙̂x = Aι̂x̂+ bι̂ + Bu+ L(ŷ − y(t)),
ŷ = Cx̂,

u = Kι̂x̂+ dι̂ −
(
Kjxd(t)+ dj

)
+ uff (t),

(14)

for x̂ ∈ Λι̂, ι̂ = 1, . . . , l, xd(t) ∈ Λj, j = 1, . . . , l, and with
Kι̂ = Yι̂P

−1
c , ι̂ = 1, . . . , l, and L = P−1o X , i.e. the tracking problem

is solved.

Proof. See Appendix A.3. �

Remark 4. For the case of a linear feedback law (i.e. Ki = Kj,
which corresponds to Yi = Yj, for all i, j ∈ {1, . . . , l} and
di = 0, for all i ∈ {1, . . . , l} in (14)) applied to either continuous
or discontinuous PWA systems, the conditions for the output-
feedback design reduce to the LMI-conditions (5), (7), (10) and (12),
with the additional structural requirement (6) (or equivalently
(11)) on the plant.

4. Example on master–slave synchronisation for a motion
control system

In this section we, firstly, demonstrate that the results on
tracking, presented in Section 3, can readily be exploited to
tackle the master–slave synchronisation problem and, secondly,
present a motion control example for which the master–slave
synchronisation problem is solved.
Indeed the master–slave synchronisation problem is closely

related to the tracking problem considered in the previous section.
One can easily see that for the state-feedback case (C = I), if the
conditions of Theorem 1 are satisfied, then the controller

u = w(t)+ Kix+ di −
(
Kjxm(t)+ dj

)
, (15)

for x ∈ Λi, xm(t) ∈ Λj, i, j = 1, . . . , l, and with the corresponding
parameters Ki, di, i = 1, . . . , l, defined in Theorem 1, solves
themaster–slave synchronisation problem. In the output-feedback
case (C 6= I), both states x and xm are not available for feedback
and we need to asymptotically reconstruct those states from the
measured outputs y and ym, respectively. Similar to the output-
feedback tracking control design, if the conditions of Theorem3 are
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Fig. 1. Two identical motor–load systems having discontinuous friction
characteristics.

Fig. 2. PWA friction law.

satisfied, then the synchronising controller for the slave system is
given by

˙̂x = Aι̂x̂+ bι̂ + Bu(t)+ L(ŷ − y(t)),
ŷ = Cx̂,
˙̂x
m
= Aĵx̂

m
+ bĵ + Bw(t)+ L(ŷm − ym(t)),

ŷm = Cx̂m,

u = Kι̂x̂+ dι̂ −
(
Kĵx̂

m
+ dĵ

)
+w(t),

(16)

for x̂ ∈ Λι̂, ι̂ = 1, . . . , l, and x̂m ∈ Λĵ, ĵ = 1, . . . , l. The proof that
this controller solves the master–slave synchronisation problem
can be constructed in the same way as the proof of Theorem 3.
Next, we present an example illustrating the results on

master–slave synchronisation for discontinuous PWA systems
with PWA control laws. Hereto, we consider two identical
mechanical motion systems, each consisting of a motor (inertia
m1), a flexible transmission (stiffness c and damping coefficient b)
and a load (inertia m2) which is subject to a friction force Ff , see
Fig. 1. The position of themotor and load of themaster are denoted
by z1 and z2, respectively, whereas the position of the motor and
load of the slave are denoted by z3 and z4, respectively. We will
consider the dynamics of the master and slave in terms of the
states xm :=

[
(z2 − z1) ż1 ż2

]T and xs := [(z4 − z3) ż3 ż4
]T,

respectively. The mass m1 of the master system is perturbed by a
time-varying disturbance w(t) = R sin(ωt) and the first mass of
the slave system can be actuated by control input u. The masses
m2 of both the master and the slave systems are subject to friction
forces Fmf and F

s
f , respectively.We consider a discontinuous friction

model (in order to account for the stiction effect of the friction)
in a PWA form: F sf (x
m
3 ) = −

(
µixm3 + νi

)
, for xm ∈ Λi, Fmf (x

s
3) =

−
(
µixs3 + νi

)
, for xs ∈ Λi, i = 1, . . . , 6. Herein, the sets Λi are

defined by hyperplanes given by equations of the formHTijx+hij =
0, where HT21 = HT32 = HT54 = HT65 =

[
0 0 1

]
,HT43 =[

0 0 (ν4 − ν3)/m2
]
, h21 = δ2, h32 = δ1, h43 = 0, h54 =

−δ1 and h65 = −δ2. See Fig. 2 for a representation of the PWA
friction law in which a pronounced Stribeck (velocity weakening)
effect is visible and viscous damping becomes dominant for higher
velocities. Consequently, the dynamics of both systems is of the
form (1), with l = 6, and the system matrices are given by

Ai =


0 −1 1
c
m1

−
b
m1

b
m1

−
c
m2

b
m2

−
b+ µi
m2

 , B =

 01
m1
0

 ,

bi =

 0
0
−νi

m2

 ,
(17)

for i = 1, . . . , 6.
We adopt the following parameter values: m1 = 1, m2 = 1,

c = 100, b = 1, R = 3, ω = 2π , µ1 = µ6 = −µ3 = −µ4 =

0.981, µ2 = µ5 = 0, ν1 = −ν6 = 3.785, ν2 = −ν5 = −1.120,
ν3 = −ν4 = −1.962, δ1 = 0.858 and δ2 = 5 (see Fig. 2 for the
corresponding friction curve). For the sake of brevity, we consider
the state feedback case, i.e. when both xm and xs are available for
feedback. Let us check the conditions of Theorem 1. A solution for
the LMI (5) is given by

P c =

[0.0342 2.2603 0
2.2603 349.1781 0
0 0 1

]
,

Y1 = Y2 = Y3, Y4 = Y5 = Y6, where the feedback
gains corresponding to Yi are given by Ki = YiP

−1
c =[

−30 −150 −150
]
, for i = 1, 2, 3, and Ki = YiP

−1
c =[

−30 −150 −152
]
, for i = 4, 5, 6. Hence, conditions (8) and

(9) hold forM21 = M32 = M54 = M65 = 0,M43 = −2m2/(ν4−ν3)
and di = 0, i = 1, . . . , l. Conditions (6) and (7) hold with Gij =[
0 0 (µj − µi)/m2

]T
,∀i, j, γ21 = γ32 = γ54 = γ65 = 0

and γ43 = 1. Hence, the synchronising controller exists and takes
the form u = w(t) + Kixs − Kjxm, for xs ∈ Λi and xm ∈ Λj,
which is a piecewise affine control law. Here, the solution to the
BMIs has been obtained in an ad hoc fashion; for a discussion on
techniques for solving BMIs arising from stabilisation problems for
PWA systems, see e.g. Rodrigues and How (2003).

Remark 5. Note that the controller for the slave system could
directly be employed to solve the tracking problem if we replace
w(t) by the feedforward inducing the desired trajectory to be
tracked.

In Figs. 3–5, the state evolutions of the master and slave
system, for the initial states xm(0) =

[
0 0 0

]T and
xs(0) =

[
−0.1 0 0.2

]T, are displayed. Time stepping methods
(see Leine and Nijmeijer (2004) and references therein) are used to
numerically compute solutions of the discontinuous PWA system.
These figures confirm that full state synchronisation is achieved.
Note that both systems converge to a solution on which the
discontinuity of the friction law (at x3 = 0) is addressed; see the
sticking phases of the second mass of both systems in Fig. 5.
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Fig. 3. State evolution x1(t) for master and slave system.

Fig. 4. State evolution x2(t) for master and slave system.

Fig. 5. State evolution x3(t) for master and slave system.

5. Conclusions

In this paper, the tracking and master–slave synchronisation
problem for a class of discontinuous piecewise affine (PWA)
systems with an arbitrary number of polyhedral cells is addressed.
Firstly, we propose a piecewise affine state-feedback control
law that solves these control problems. Moreover, a model-
based-observer for discontinuous multi-modal PWA systems is
proposed. Based on this state-feedback law and the observer, an
output-feedback design is formulated. The synthesis conditions are
formulated in terms of bilinear matrix inequalities. It is shown
that for both continuous and discontinuous PWA systems with
linear feedback laws, these conditions can be characterised in
terms of linear matrix inequalities. The results are illustrated by
application to mechanical systems with discontinuous friction
characteristics.

Appendix. Proofs

A.1. Proof of Theorem 1

First we recall the following lemma which will be employed in
this proof.

Lemma 1 (Pavlov et al., 2007). Consider the PWA system

ẋ = Ãix+ b̃i + Bw(t) := f̃ (x,w(t)), (A.1)

for x ∈ Λi, i = 1, . . . , l, and where w(t) is a time-varying input.
Suppose there exists a matrix P satisfying

P = PT > 0

PÃi + ÃTi P < 0, i = 1, . . . , l,
(A.2)

and for any pair of cellsΛi andΛj having a common boundary given
by HTijx + hij = 0 there exist a vector G̃ij ∈ Rn and a number
γij ∈ {0, 1}, satisfying

Ãi − Ãj = G̃ijHTij (A.3)

P
(
b̃i − b̃j − G̃ijhij

)
= −γijHij. (A.4)

Then, there exists α > 0 such that the inequality (x1 −
x2)TP(f̃ (x1,w) − f̃ (x2,w)) ≤ −α(x1 − x2)TP(x1 − x2) holds for
the matrix P satisfying (A.2), (A.4) for all w ∈ Rm and x1, x2 ∈ D ,
where D = ∪li=1 intΛi is the union of the interior points of all cells
Λi, i = 1, . . . , l.

Consider the PWA system (1) in closed loop with the PWA
control law (4), which yields the closed-loop dynamics described
by

ẋ = Aix+ bi + B
(
Kix+ di −

(
Kjxd(t)+ dj

)
+ uff (t)

)
= (Ai + BKi) x+ (bi + Bdi)+ Bϕ(t)
=: f (x, ϕ(t)) for x ∈ Λi, i = 1, . . . , l,

(A.5)

where ϕ(t) := uff (t)−
(
Kjxd(t)+ dj

)
, for xd(t) ∈ Λj, j = 1, . . . , l.

System (A.5) is of the form (A.1) with Ãi = Ai + BKi, with Ki =
YiP

−1
c , b̃i = bi + Bdi, i = 1, . . . , l, and w(t) = ϕ(t). By pre- and

post-multiplying (5) by P−1c , we can conclude that system (A.5)
satisfies (A.2) with P = P−1c . By post-multiplying (8) by P−1c ,
premultiplying it by B and adding it to (6), we can conclude that
(A.3) holdswith G̃ij = Gij+BMij. By pre-multiplying (9) byB, adding
the resulting inequality to (7) and, subsequently, pre-multiplying
the result byP−1c , we can conclude that (A.4) holds.
Consequently, there exists α > 0 such that the inequality

(x1 − x2)TP(f (x1, ϕ)− f (x2, ϕ))

≤ −α(x1 − x2)TP(x1 − x2),
(A.6)

holds for all ϕ ∈ Rm and all x1, x2 ∈ D . Consider the quadratic
function V (x1, x2) = 1

2 (x1 − x2)TP(x1 − x2). The derivative of V
along any two solutions x1(t) and x2(t) of system (A.5) satisfies
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V̇ = (x1 − x2)TP(f (x1, ϕ)− f (x2, ϕ)) ≤ −2αV , for all t ≥ t0 and
all x1, x2 ∈ D . The latter inequality, in turn, implies (see Pavlov
et al. (2007) for technical details) that any two solutions x1(t) and
x2(t) of system (A.5) satisfy

|x1(t)− x2(t)| ≤ C1e−α(t−t0)|x1(t0)− x2(t0)|, (A.7)

where the number C1 > 0 depends only on the matrix P .
Here we exploit the fact that, for stability analysis using smooth
Lyapunov functions, inequalities regarding the time-derivatives
of the Lyapunov function along solutions of the system are only
required to hold in the continuity domain of the discontinuous
right-hand side of the system, see Filippov (1988). Now, take
x1(t) ≡ x(t) an arbitrary solution of the closed-loop system (A.5),
with initial condition x(t0), and x2(t) ≡ xd(t) the desired solution.
Note that we can make such a choice since xd(t) is a solution of
the closed-loop system due to Assumption 1, the choice of the
control law (4) and due to the continuity of u(x, t). Therefore, (A.7)
yields |x(t) − xd(t)| ≤ C1e−α(t−t0)|x(t0) − xd(t0)|, and the global
exponential stability of the desired solution xd(t) is proved.

A.2. Proof of Theorem 2

Observer (13) can be rewritten as

˙̂x = (Aι̂ + LC) x̂+ bι̂ + Bu(t)− Ly(t),

= (Aι̂ + LC) x̂+ bι̂ + ψ(t), (A.8)

for x̂ ∈ Λι̂, ι̂ = 1, . . . , l, and where ψ(t) = Bu(t) − Ly(t). Let us
define g(x̂, ψ) := (Aι̂ + LC) x̂ + bι̂ + ψ for x̂ ∈ Λι̂, ι̂ = 1, . . . , l,
where L = P−1o X . Using the conditions (10)–(12), we can apply
Lemma 1 (in Appendix A.1) to the observer to conclude that the
following inequality holds

(x̂1 − x̂2)TP o(g(x̂1, ψ)− g(x̂2, ψ))

≤ −β(x̂1 − x̂2)TP o(x̂1 − x̂2), (A.9)

for all ψ ∈ Rn and all x̂1, x̂2 ∈ D and for some β > 0 and for the
matrixP o satisfying (10), (12).
In the same way as in the proof of Theorem 1, this implies that

any two solutions x̂1(t) and x̂2(t) of system (13) satisfy

|x̂1(t)− x̂2(t)| ≤ C2e−β(t−t0)|x̂1(t0)− x̂2(t0)|, (A.10)

where the number C2 > 0 depends only on the matrix P o. Now,
take x̂1(t) ≡ x̂(t) an arbitrary solution of the observer (13), with
initial condition x̂(t0), and x̂2(t) ≡ x(t) a solution of system (1),
with initial condition x(t0). Note that we can make such a choice
since x(t) is a solution of the observer dynamics (13). Therefore,
it holds that (A.10) yields |x̂(t) − x(t)| ≤ C2e−β(t−t0)|x̂(t0) −
x(t0)|. Hence, the global exponential stability of the observer error
dynamics is proved.

A.3. Proof of Theorem 3

Consider the PWA system (1) in closed-loop with the controller
(14). Let us define the extended state vector for this closed-loop
system by xe :=

[
xT x̂T

]T. Moreover, we define the function
γ (x) := Kix + di, for x ∈ Λi, i = 1, . . . , l. Note that, due to
the satisfaction of (8) and (9), γ (x) is a continuous function (see
Remark 1). Since it is piecewise affine with a finite number of
modes, it is globally Lipschitz; i.e. there exists a bounded scalar
ρ > 0 such that

|γ (x̂)− γ (x)| ≤ ρ|x̂− x|, ∀x, x̂. (A.11)
With this definition of γ (x), we can rewrite the third equation in
the control law (14) as follows:

u = γ (x̂)− γ (xd)+ uff (t)

= γ (x)− γ (xd)+ uff (t)+ γ (x̂)− γ (x). (A.12)

Substituting (A.12) in (1) yields ẋ = f (x, ϕ(t)) + B(γ (x̂) − γ (x)),
where f (x, ϕ(t)) is defined in (A.5).
Consider the Lyapunov function candidate V defined by

V (xe, xd) = 1
2 (x − xd)TP(x − xd) + κ

2 (x̂ − x)TP o(x̂ − x), with
P = P−1c . The derivative of V along any solution xe(t) =[
xT(t) x̂T(t)

]T of the closed-loop system (1), (14) satisfies
V̇ = (x− xd)TP

(
f (x, ϕ(t))− f (xd, ϕ(t))+ B(γ (x̂)− γ (x))

)
+ κ(x̂− x)TP o

(
g(x̂, ψ(t))− g(x, ψ(t))

)
. (A.13)

for all t ≥ t0 and x, xd, x̂ ∈ D (recall thatD consists of the interior
points of all cells Λi). At this point, we consider V̇ as a function of
x, xd, x̂ and t which is well-defined for all t ≥ t0 and x, xd, x̂ ∈ D .
Using (A.6), (A.9) and (A.11) in (A.13) gives

V̇ ≤ −α(x− xd)TP(x− xd)

− κβ(x̂− x)TP o(x̂− x)+ σ |x− xd||x̂− x|. (A.14)

with σ := ‖P‖‖B‖ρ. Denote |x − xd|2P = (x − xd)TP(x − xd) and
|x̂− x|2P o = (x̂− x)TP o(x̂− x). By using that 2|x− xd|P |x̂− x|P o ≤
λ|x− xd|2P +

1
λ
|x̂− x|2P o , for any scalar λ > 0, and choosing λ =

2α
σ̄

and κ = σ̄ 2

2αβ , with σ̄ = σ (λmin(P)λmin(P o))
−
1
2 , we can show that

V̇ ≤ −
α

2
(x− xd)TP(x− xd)−

κβ

2
(x̂− x)TP o(x̂− x), (A.15)

or V̇ ≤ −δV , with δ = min(α, β) > 0 and for all t ≥
t0 and x, xd, x̂ ∈ D . The latter inequality, in turn, implies
(see Pavlov et al. (2007) for technical details) that solution xe(t) =[
xTd(t) xTd(t)

]T is a globally exponentially stable solution of the
closed-loop system (1), (14), i.e. the tracking problem is solved.
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