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a b s t r a c t

The presence of friction in mechanical motion systems is a performance limiting factor as it induces
stick–slip vibrations. To appropriately describe the stiction effect of friction, we adopt set-valued force
laws. Then, the complete motion control system can be described by a Lur’e system with set-valued
nonlinearities. In order to eliminate stick–slip vibrations formechanicalmotion systems, a state-feedback
control design is presented to stabilize the equilibrium. The proposed control design is based on an
extension of a Popov-like criterion to systems with set-valued nonlinearities that guarantees input-to-
state stability (ISS). The advantages of the presented controller is that it is robust to uncertainties in
the friction and it is applicable to systems with non-collocation of actuation and friction where common
control strategies such as direct friction compensation fail. Moreover, an observer-based output-feedback
design is proposed for the case that not all the state variables are measured. The effectiveness of the
proposed output-feedback control design is shown both in simulations and experiments for a typical
motion control system.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In many mechanical motion systems, the presence of friction
gives rise to undesired behavior such as steady-state positioning
errors, large settling times and stick–slip vibrations (Armstrong-
Hélouvry, 1991; Armstrong-Hélouvry, Dupont, & Canudas de
Wit, 1994; Canudas de Wit, Olsson, Åström, & Lischinsky, 1995;
Olsson, Åström, Canudas de Wit, Gafvert, & Lischinsky, 1998).
Especially, friction-induced stick–slip vibrations lead to kinetic
energy dissipation, noise, excessive wear, premature failure of
machine parts and inferior positioning performance. Research on
the presence of friction-induced stick–slip vibrations is conducted
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for different mechanical systems; e.g. drilling systems (Jansen
& van den Steen, 1995; Navarro-López & Suárez, 2004), flexible
rotor systems (Mihajlović, van de Wouw, Hendriks, & Nijmeijer,
2006; Mihajlović, van Veggel, van de Wouw, & Nijmeijer,
2004), robots (Jeon & Tomizuka, 2005), servo systems (Olsson &
Åström, 2001), turbine blade dampers (Pfeiffer & Hajek, 1992),
etc. In this paper, a control strategy for mechanical motion
systems is proposed in order to eliminate the undesired friction-
induced stick–slip vibrations and to guarantee stability of the
desired setpoint. The proposed control strategy is applied to an
experimental setup and its effectiveness is shown in experiments.
To properly describe the stiction effect in dry friction, set-valued
friction models are commonly used (Brogliato, 2004; Glocker,
2001; Leine & Nijmeijer, 2004), which lead to dynamic models
in terms of differential inclusions (Aubin & Cellina, 1984; Brézis,
1973; Filippov, 1988).
A common approach to tackle motion control problems for

systems with (set-valued) friction is the application of direct
friction compensation techniques, see e.g. (Armstrong-Hélouvry,
1991; Armstrong-Hélouvry et al., 1994; Olsson et al., 1998;
Putra, van de Wouw, & Nijmeijer, 2007; Southward, Radcliffe,
& MacCluer, 1991; Swevers, Al-Bender, Ganseman, & Projogo,
2000) and many others. Since friction characteristics are known
to be sensitive to temperature, humidity, etc., it may be hard to
obtain accurate friction models with limited complexity suitable
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for a compensation scheme. Furthermore, the absence of accurate
friction models has been shown to be a performance limiting
factor in employing friction compensation in practice (Canudas
de Wit, 1993; Mallon, van de Wouw, Putra, & Nijmeijer, 2006),
leading to limit cycles and steady-state errors. This indicates a first
drawback of a typical compensation technique that it is not robust
to frictionuncertainties.Moreover, common friction compensation
schemes are typically applied when the actuation and friction are
collocated, meaning that the friction force and the actuation force
act at the same place and the friction can be compensated directly
(if an accurate friction model is available). However, this is not
the case for many mechanical systems. Here, we are interested
in a feedback control approach for motion systems with non-
collocation of actuation and friction, that is inherently robust to
uncertainties in the friction characteristic.
A robust compensation approach is discussed in Taware, Tao,

Pradhan, and Teolis (2003), where they consider a motor-load
system with, possibly discontinuous, friction at the load and
joint flexibility and damping (between the motor and the load).
However, the model reference adaptive control scheme does not
guarantee a zero tracking error. A variable structure control design
is presented in Kwatny, Teolis, andMattice (2002) for systemswith
nonsmooth uncertainties, where the intended application is for
systems in which the uncertain friction forces are relatively small.
Since for motion systems exhibiting friction-induced vibrations
the friction forces are relatively large, the latter approach is
not directly applicable. Another approach for controller design
can be based on the well-known absolute stability theory, using
circle or Popov criteria (see e.g. Khalil (2002)). In particular,
stabilization techniques based on absolute stability theory for
locally Lipschitzian systems with slope-restricted nonlinearities
are discussed in Arcak and Kokotović (2001) and Arcak, Larsen, and
Kokotović (2003), which are not applicable to the systems under
study since they contain set-valued nonlinearities to accurately
describe the friction. A generalized circle criterion, that is suitable
for systemswith set-valued nonlinearities, is discussed in Brogliato
(2004). Unfortunately, the conditions of the circle criterion are
rather restrictive for typical motion control applications as will be
indicated in this paper.
In this paper, we present a generalization of the Popov-

like criterion, in the sense that it is applicable to systems with
set-valued nonlinearities. Moreover, we obtain input-to-state
stability (ISS) (instead of only asymptotic stability) with respect to
perturbations on the system (e.g. measurement noise). In analogy
with the ‘‘absolute stability’’ property, obtained by satisfaction
of the conventional Popov-criterion, one might call this property
‘‘absolute ISS’’. The concept of absolute ISS is used for the design of a
state-feedback controller for mechanical motion systemswith set-
valued nonlinearities that can be described by Lur’e-type systems,
i.e. linear systems with set-valued nonlinearities in the feedback
loop. An advantage of the proposed control design is that it is
applicable to systems with non-collocation of actuation and set-
valued friction laws, a situation that has not been studied in
literature before, at least not in the generality as presented here.
Moreover, the fact that the satisfaction of such an adapted Popov
criterion guarantees absolute ISS implies robustness with respect
to uncertainties in the friction and measurement errors. Next,
the ISS property is used to construct an observer-based output-
feedback controller cf. Doris et al. (2008). Finally, we provide a
separation principle for the output-feedback controlled system,
i.e. the controller and the observer can be designed separately.
The notion of ISS (Sontag, 1989) is a useful property in the

field of control, which ensures that the state of the system is
bounded for a bounded input. In Arcak and Teel (2002), a proof
of ISS for Lur’e-type systems is given, which is not applicable to
systems with set-valued modeled friction laws. Next to the fact
that the usually work on ISS considers continuous systems, they
focus typically on the use of smooth ISS Lyapunov functions (see
e.g. Arcak and Teel (2002), Sontag and Wang (1995) and Sontag
(1989) to mention just a few). In case of extending the Popov
criterion to the discontinuous systems as considered here, one
has to adopt non-smooth (ISS) Lyapunov functions. The reason of
non-smoothness is that the Lyapunov function contains a term
consisting of an integral of the nonlinearity. Despite some recent
attempts, see Cai and Teel (2005), Vu, Chatterjee, and Liberzon
(2007) and Heemels, Weiland, and Juloski (2007), to bring ISS
concepts to the realmof discontinuous and switched systems, none
of these papers can be used in the present context.
Much experimental work is performed on the control of

systemswith collocation of actuation and friction, e.g. in the field of
friction compensation for an industrial hydraulic robot (Lischinsky,
Canudas-de-Wit, & Morel, 1999), a KUKA robot (Swevers et al.,
2000), a robotic gripper (Johnson & Lorenz, 1992), etc. However,
to the best of our knowledge, no experimental work is performed
for stabilization of setpoints for systems with non-collocation
of actuation and set-valued modeled friction. Here, we will
apply the proposed output-feedback controller to an experimental
rotor dynamic system, which represents a typical motion control
example of a motor-load systemwith non-collocation of actuation
and set-valued friction laws. Earlier work (Mihajlović et al., 2006)
has shown that this system exhibits stick–slip limit cycling. The
control proposed here will eliminate these limit cycles. Moreover,
it will be shown that the circle criterion is not feasible for
this system implying that the extension of the Popov criterion
is indispensable within this context. The effectiveness of the
designed output-feedback controller is shown in simulations and
experiments.
The structure of this paper is as follows: We start with some

notation in Section 2. In Section 3, we introduce models that
include set-valued nonlinearities in their structure, representing
a large class of mechanical motion systems with dry friction. The
control designs are presented in Section 4, where we discuss the
state-feedback control design with the generalization of the Popov
criterion and the absolute ISS property, the observer design and
the output-feedback control design. A rotor dynamic system is
presented in Section 5 as an example of a mechanical system
with non-collocated actuation and set-valued friction laws and the
results of the application of the output-feedback control design are
shown in simulations and experiments. We finish this paper with
conclusions in Section 6.

2. Notations and definitions

A function u : R+ → Rn is piecewise continuous, if on
every bounded interval the function has only a finite number of
points at which it is discontinuous. Without loss of generality we
will assume that every piecewise continuous function u is right
continuous, i.e. limt↓τ u(t) = u(τ ) for all τ ∈ R+. With ‖ · ‖ we
will denote the usual Euclidean norm for vectors in Rn, and ‖ · ‖1
denotes the 1-norm. A function γ : R+ → R+ is of classK if it is
continuous, strictly increasing and γ (0) = 0. It is of class K∞ if,
in addition, it is unbounded, i.e. γ (s)→∞ as s→∞. A function
β : R+ × R+ → R+ is of class KL if, for each fixed t ∈ R+,
the function β(·, t) is of class K , and for each fixed s ∈ R+, the
function β(s, ·) is decreasing and tends to zero at infinity. λmin(A),
λmax(A) denote the minimal andmaximal eigenvalue of the matrix
A, respectively. A differential inclusion is given by an expression of
the form

ẋ(t) ∈ F(x(t), e(t)), (1)

where F is a set-valued mapping and x ∈ Rn, e ∈ Rm represent the
state and input, respectively. An absolutely continuous function x
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is considered to be a strong solution of the differential inclusion
(1) if (1) is satisfied almost everywhere. Let us define the graph
of a set-valued function f : Rn → Rn by Graph(f ) =
{(x, y) ∈ Rn × Rn | x ∈ Rn, y ∈ f (x)}. A set S is a set of isolated
points if for every point a ∈ S there exists an ε > 0 such that
[a− ε, a+ ε] ∩ S = {a}. The point a is an accumulation point of a
set S if there exists a sequence {al}, l ∈ N, with al ∈ S and al 6= a
for all l ∈ N, such that liml→∞ al = a.

Definition 1 (Sontag (1995)). The system (1) is said to be input-
to-state stable (ISS) if there exist a function β of class KL and a
function γ of classK such that for each initial condition x(0) = x0
and each piecewise continuous bounded input function e defined
on [0,∞),

• all solutions x of the system (1) exist on [0,∞) and,
• all solutions satisfy

‖x(t)‖ ≤ β(‖x0‖, t)+ γ ( sup
τ∈[0,t]

‖e(τ )‖), ∀t ≥ 0. (2)

The system is called globally asymptotically stable (GAS) if the
above holds for e = 0.
Consider the following linear system

ẋ = Ax+ Gw
z = Hx+ Dw,

(3)

with the state x ∈ Rn, input and outputw, z ∈ Rp.

Definition 2. The system (3) or the quadruple (A,G,H,D) is said
to be strictly passive if there exist an ε > 0 and a matrix P = PT >
0 such that[
A>P + PA+ εI PG− H>

G>P − H −D− D>

]
≤ 0. (4)

3. Mechanical motion systems with set-valued friction laws

A large class ofmechanicalmotion systemswith dry friction can
be described by the following second-order form (Glocker, 2001):

Mq̈+ Dq̇+ Kq = Su+ TλT , (5)

with the generalized coordinates q ∈ Rn/2, the control input
u ∈ Rm, friction forces λT ∈ Rp and the mass, damping
and stiffness matrices M ∈ Rn/2×n/2, D ∈ Rn/2×n/2 and K ∈
Rn/2×n/2, respectively. The matrices S ∈ Rn/2×m and T ∈ Rn/2×p
represent the generalized force directions of the actuation and
friction, respectively. We adopt the following set-valued friction
law (cf. Glocker (2001)) for the ith frictional contact λT ,i:

λT ,i ∈ −µiλN,i Sign(T>i q̇)+ FS,i(T
>

i q̇)

=: Ff ,i(T>i q̇) for i = 1, . . . , p. (6)

Herein, Ti represents the ith column of T and T>i q̇ is the sliding
velocity in contact i. Note that the sliding velocity and the friction
forces are aligned and, therefore, the friction laws are a function of
T>i q̇. The first part in (6) reflects a set-valued Coulomb friction law
with

Sign(y) ,

{
{−1}, y < 0
[−1, 1] y = 0
{1}, y > 0.

(7)

Moreover, µi and λN,i are the Coulomb friction coefficient and
the normal force in contact i, respectively. The second contribution
to the friction law (6) is the smooth function FS,i(T>i q̇), which
models the velocity dependency of the friction. The equations (5)
and (6) together constitute a differential inclusion which can be
written in the following state-space form:
ẋ = Ax+ Gw + Bu (8a)
z = Hx (8b)
y = Cx (8c)
w ∈ −ϕ(z), (8d)
where x = [q> q̇>]> ∈ Rn is the system state, w ∈ Rp is
the output, z ∈ Rp, with z = T>q̇, is the input of a set-valued
nonlinearity ϕ, u ∈ Rm is the control input and y ∈ Rκ is the
measured output. The matrices A ∈ Rn×n, B ∈ Rn×m, G ∈ Rn×p
and H ∈ Rp×n are given by

A =
[

0 I
−M−1K −M−1D

]
, G =

[
0

M−1T

]
, (9a)

B =
[
0

M−1S

]
, H =

[
0 T>

]
, (9b)

and C ∈ Rκ×n is indicating the measured output. Finally, the
nonlinearity ϕ =

[
ϕi(zi) . . . ϕp(zp)

]> is defined by
ϕi(zi) = −Ff ,i(zi) i = 1, . . . , p. (10)
Note that if the image of T (respectively, G) is not contained

in the image of S (respectively, B), then the actuation and the
friction are non-collocated (at least partly) and direct friction
compensation is impossible. The state-space equations (8) are in
Lur’e-type form, which means that the system consists of a linear
system (8a), (8b), (8c) with the set-valued nonlinearity (8d) in the
feedback loop.

4. Control design for Lur’e-type systems

In this section, we design controllers for systems in the form
(8) aiming at the stabilization of the origin x = 0. We first state
the following assumptions on the properties of the set-valued
nonlinearity ϕ(z) in (8d).

Assumption 3. The set-valued nonlinearity ϕ : Rp → Rp satisfies
• 0 ∈ ϕ(0);
• ϕ is upper semicontinuous (see Aubin and Cellina (1984));
• ϕ is decomposed as ϕ(z) = [ϕ1(z1), . . . , ϕp(zp)]>, z =
[z1, . . . , zp]> and ϕi : R→ R, for i = 1, . . . , p;
• ϕi, i = 1, . . . , p, are only set-valued on a countable set (of
Lebesgue measure zero) of isolated points;
• for all zi ∈ R the set ϕi(zi) ⊆ R, i = 1, . . . , p, is non-empty,
convex, closed and bounded;
• each ϕi satisfies the [0,∞] sector condition in the sense that

ziwi ≤ 0 for allwi ∈ −ϕi(zi) for i = 1, . . . , p; (11)
• there exist positive constants γ1 and γ2 such that forw ∈ −ϕ(z)
and for any z ∈ Rp it holds that

‖w‖ ≤ γ1‖z‖ + γ2. (12)

The input functions u(·) are assumed to be in the space
of piecewise continuous bounded functions from [0,∞) to Rm,
denoted by PC. Clearly, the nonlinear function (t, x) 7→ Ax −
Gϕ(Hx) + Bu(t) is upper semicontinuous on intervals, where u is
continuous and attains non-empty, convex, closed and bounded
set-values. From Aubin and Cellina (1984, p. 98) or Filippov (1988,
Section 7), it follows that local existence of solutions is guaranteed
given an initial state x0 at initial time0. Due to the growth condition
(12), finite escape times are prevented and thus any solution to
(8) is globally defined on [0,∞). Hence, solutions x(·) and also
z(·) = Hx(·) are absolutely continuous functions. Note that 0 ∈
ϕ(0) implies that the origin x = 0 is an equilibrium (which may
belong to an equilibrium set) of the open-loop system (8) for input
u = 0.
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(a) Cascade representation of system (14) using the dynamic multiplier (16). (b) Closed-loop system (17) after transformation with
dynamic multiplier (16).

Fig. 1. Block diagrams of the closed-loop system (17).
4.1. State-feedback control

In order to make the origin x = 0 of system (8) a unique
isolated equilibrium point, that is globally asymptotically stable,
we propose a linear static state-feedback law (assuming C = I and,
therefore, y = x for this case) where we take the measurement
error e into account, which is piecewise continuous and bounded:

u = K(x− e). (13)

Here, K ∈ Rm×n is the control gain matrix. Consequently,
the resulting closed-loop system is described by the following
differential inclusion:

ẋ = (A+ BK)x+ Gw − BKe
z = Hx

(14a)

w ∈ −ϕ(z). (14b)

The transfer function Gcl(s) from the input w to the output z of
system (14) is given by

Gcl(s) = H(sI − (A+ BK))−1G, s ∈ C. (15)

The intended control goal here is to render the closed-loop system
(14) ‘‘absolutely ISS’’ with respect to e, as formalized below, by
means of a proper choice of the control gain K .

Definition 4. We call a system (14) absolutely ISS with respect
to input e, if the system (14) is ISS with respect to input e, as in
Definition 1, for any ϕ satisfying Assumption 3.

To obtain sufficient conditions to guarantee that system (14) is
absolutely ISS, we use, as in Khalil (2002) for smooth systems, a
so-called dynamic multiplier with transfer functionM(s) given by

M(s) = I + Γ s, s ∈ C, (16)

where Γ = diag(η1, . . . ηp) ∈ Rp×p, with ηi > 0 for i = 1, . . . , p.
The inverse ofM(s)will be chosen to bepassive, because (aswewill
explain later) the multiplication of the set-valued nonlinearity in
(14)with the inverse of the dynamicmultipliermust yield a passive
system. A cascade that represents system (14) together with the
multiplier M(s) is shown in Fig. 1. Using the dynamic multiplier
M(s) we aim to transform the original system into a feedback
interconnection of two passive systems (with the perturbation
input e), as is done in Khalil (2002) and Arcak et al. (2003) for
systems with Lipschitz continuous nonlinearities.
In state-space formulation, the interconnected system Σ1,Σ2
takes the following form:

Σ1 =

{
ẋ = (A+ BK)x+ Gw − BKe(t)
z̃ = H̃x+ D̃w + Z̃e(t)

(17a)

Σ2 =

{
ż = −Γ −1z + Γ −1z̃
w ∈ −ϕ(z). (17b)

See also Fig. 1. Herein, z̃ ∈ Rp and the matrices H̃ ∈ Rp×n, D̃ ∈
Rp×p and Z̃ ∈ Rp×n can be derived from the fact that z̃ = z + Γ ż
(due to the choice of the multiplierM(s) as in (16)) and hence,

H̃ = H + Γ H(A+ BK),

D̃ = Γ HG, Z̃ = −Γ HBK .
(18)

The following theorem states sufficient conditions under which
system (14) is ISSwith respect to input e for anyϕ ∈ [0,∞], i.e. the
system (14) is absolutely ISS.

Theorem 4.1. Consider system (14) and suppose there exists a
diagonal matrix Γ = diag(η1, . . . , ηp) ∈ Rp×p with ηi > 0,
i = 1, . . . , p, such that (A + BK ,G, H̃, D̃) with H̃ and D̃ as in (18)
is strictly passive. Then system (14) is absolutely ISS with respect to
input e for any ϕ satisfying Assumption 3.

The proof of Theorem 4.1 is given in Appendix A. We also note
that in (Yakubovich, Leonov, & Gelig, 2004), frequency-domain
conditions (including Popov-type conditions) guaranteeing a prop-
erty close to GAS are stated for Lur’e-type systems with discon-
tinuous nonlinearities. Here, we provide a Popov-like criterion for
systemswith set-valued nonlinearities that guarantees ISSwith re-
spect to input e.
An advantage of achieving absolute ISS is, firstly, the robustness
to uncertainties in the nonlinearity ϕ in the feedback loop and,
secondly, the robustness with respect to input e. Note that the ISS
gain is independent of the exact form of the nonlinearity ϕ. In case
of mechanical motion systems as in (5) and (6), this means that we
have robustnesswith respect to uncertainties in the frictionmodel.
Note that if the input e is zero, the origin x = 0 of system (14) is
absolutely stable under the conditions of Theorem 4.1.

4.2. Observer design

Following (Doris et al., 2008), we propose the following
observer for the system (8)
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Fig. 2. Combination of the observer design and the controller design.

˙̂x = (A− LC)x̂+ Gŵ + Bu+ Ly (19a)

ŵ ∈ −ϕ(ẑ) (19b)

ẑ = (H − NC)x̂+ Ny (19c)

ŷ = Cx̂ (19d)

with the observer gains N ∈ Rp×κ and L ∈ Rn×κ .
At this point, we state an additional assumption on the set-valued
nonlinearity ϕ(·) of system (8):

Assumption 5. The set-valued nonlinearity ϕ : Rp → Rp is such
that ϕ is monotone, i.e. for all z1 ∈ Rp and z2 ∈ Rp withw1 ∈ ϕ(z1)
and w2 ∈ ϕ(z2), it holds that 〈w1 − w2, z1 − z2〉 ≥ 0, where 〈·, ·〉
denotes the inner product in Rp.

Since the right-hand side of (19a) is again upper semicontinu-
ous in (t, x) due to continuity of y and piecewise continuity of u,
using Assumptions 3 and 5 on ϕ it can be shown that there ex-
ist global solutions of (19) (Aubin & Cellina, 1984; Filippov, 1988).
Also, the solutions x̂ and ŵ are unique a.e. and knowing that both
the plant and the observer have global solutions, the dynamics for
the observer error e := x− x̂ is given by

ė = (A− LC)e+ G(w − ŵ) (20a)
w ∈ −ϕ(Hx) (20b)

ŵ ∈ −ϕ(Hx̂+ N(y(t)− Cx̂)). (20c)

The problem of the observer design is finding the gains L and N
such that all solutions to the observer error dynamics converge
exponentially to the origin, which implies that limt→∞ |x̂(t) −
x(t)| = 0.

Theorem 4.2 (Doris et al., 2008). Consider system (8) and the
observer (19) with (A − LC,G,H − NC, 0) strictly passive and the
matrix G being of full column rank. Then, the point e = 0 is a globally
exponentially stable equilibrium point of the observer error dynamics
(20) for any ϕ(·) satisfying Assumptions 3 and 5.

4.3. Output-feedback control

In this section, an observer-based output-feedback controller
is presented, where we use the observer design, presented in the
previous section, to estimate the system state. Next, the estimated
state x̂ is fed back to the system (8) with u = Kx̂ = K(x − e) as
in (13), where e now represents the estimation error. Application
of the observer-based output-feedback controller results in an
interconnection of system (14) and system (20), which is depicted
in Fig. 2. We aim to prove global asymptotic stability (GAS) of the
equilibrium (x, e) = (0, 0) of the interconnected system (14), (20).
Fig. 3. Photo of the rotor dynamic setup.

Theorem 4.3. Consider system (14) and observer (19). Suppose there
exists a matrix Γ = diag(η1, . . . , ηp) ∈ Rp×p with ηi > 0,
i = 1, . . . , p, such that (A + BK ,G, H̃, D̃) is strictly passive with
G̃ and H̃ as in (18). Moreover, suppose, (A − LC,G,H − NC, 0) is
strictly passive and G being full column rank. Then, (x, e) = (0, 0) is a
globally asymptotically stable equilibrium point of the interconnected
system (14), (20) for any ϕ(·) satisfying Assumptions 3 and 5.

Proof. According to Theorem 4.1, under the hypotheses of the
current theorem, system (14) is ISS with respect to the observer
error e(t). Moreover, according to Theorem 4.2, the observer error
dynamics are globally exponentially stable. Using the proof of
Lemma 4.7 in (Khalil, 2002), we can conclude that (x, e) = (0, 0)
is a globally asymptotically stable equilibrium point of system
(14), (20). Note that Lemma 4.7 in (Khalil, 2002) is given for
locally Lipschitzian systems. However, the proof is given on a
trajectory level and, therefore, it can also be applied to differential
inclusions. �

5. Application to a rotor dynamic system with friction

5.1. Experimental setup and modeling

The experimental setup consists of an upper disc actuated by a
drive part (consisting of a power amplifier, DC-motor and a gear
box), a steel string, a lower disc and a brake device, see Fig. 3.
The actuator input voltage of the drive part is limited to the range
[−5V , 5V ]. The upper disc is connected to the lower disc by a steel
string, which is a low-stiffness connection between the discs. A
brake disc is connected to the lower disc and a brake device exerts a
normal force to it. Oil is supplied to create an oil layer between the
disc and the brake device, resulting in a friction characteristic with
a Stribeck effect (Olsson et al., 1998) (i.e. with a so-called negative
damping characteristic). Two incremental encoders are used to
measure the angular positions of the lower and the upper discs.
The configuration of the experimental setup can be recognized in
the structure of drilling systems and other rotor dynamic motion
systems.
We define u as the input voltage to the drive part. The system

has two degrees of freedom: the angular displacements of the
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Fig. 4. Upper friction model Tfu .

Fig. 5. Lower friction model Tfl .

upper and lower discs, θu and θl, respectively. The equations of
motion for the upper disc and the lower disc are given by

Juθ̈u + kθ (θu − θl)+ b(θ̇u − θ̇l)+ Tfu(θ̇u)− kmu = 0 (21)

Jlθ̈l − kθ (θu − θl)− b(θ̇u − θ̇l)+ Tfl(θ̇l) = 0.

Set-valued force laws are needed tomodel the friction acting on
the upper and lower disc to account for the pronounced sticking
effect in both characteristics. The friction torque acting on the
upper disc is caused by the electromagnetic field in the drive part
and the bearings that support the disc and is modeled by Tfu, see
Fig. 4:

Tfu(θ̇u) ∈

Tcu(θ̇u)sgn(θ̇u) for θ̇u 6= 0
[−Tsu +1Tsu,
Tsu +1Tsu] for θ̇u = 0,

(22)

Tcu(θ̇u) = Tsu +1Tsusgn(θ̇u)+ bu|θ̇u| +1buθ̇u. (23)

The friction torque Tfl, see Fig. 5, is caused by bearings that
support the lower disc and, mainly, by the brake device and is
represented by

Tfl(θ̇l) ∈
{
Tcl(θ̇l)sgn(θ̇l) for θ̇l 6= 0
[−Tsl, Tsl] for θ̇l = 0,

(24)

Tcl(θ̇l) = Tcl + (Tsl − Tcl)e
−|

θ̇l
ωsl
|
δsl
+ bl|θ̇l|. (25)

We define the state vector x as

x =

[x1
x2
x3

]
=

[
α
ωu
ωl

]
=

θu − θlθ̇u

θ̇l

 . (26)

Note that the state x1 = α = θu − θl represents the relative
angular displacement of the lower disc with respect to the upper
disc, which can be obtained via the encoder measurements of
θu and θl (y = x1). The desired solution for the rotor dynamic
system is a constant (and identical) velocity for both discs, which
corresponds to an equilibrium (note that in drilling systems
Table 1
Estimated parameters.

Parameter Value Unit

km 4.3228 [Nm/V]
Ju 0.4765 [kg m2]
Tsu 0.37975 [N m]
1Tsu −0.00575 [N m]
bu 2.4245 [kg m2/rad s]
1bu −0.0084 [kg m2/rad s]
kθ 0.075 [N m/rad]
b 0 [kg m2/rad s]
Jl 0.035 [kg m2]
Tsl 0.26 [N m]
Tcl 0.05 [N m]
ωsl 2.2 [rad/s]
δsl 1.5 [–]
bl 0.009 [kg m2/rad s]

such constant velocity solution corresponds to nominal operating
conditions). The state-space equations of the rotor dynamic system
in Lur’e-type form are given by (8), with state x ∈ R3, w, z ∈
R2, input u ∈ R, measured output y ∈ R, and ϕ(z) =
[ϕ1(z1) ϕ2(z2)]> = [Tfu(z1) Tfl(z2)]> with ϕi : R → R for
i = 1, 2. The matrices and the nonlinearity ϕ(z) in (8) are given
by

A =


0 1 −1

−
kθ
Ju
−b b

kθ
Jl

b −b

 , B =


0
km
Ju
0

 , (27)

G =


0 0
1
Ju

0

0
1
Jl

 , H =
[
0 1 0
0 0 1

]
, C> =

[1
0
0

]
, (28)

ϕ(z) =
[
Tfu(z1)
Tfl(z2)

]
. (29)

The parameters of the rotor dynamic model (8), (27), (28), (29)
are estimated by dedicated parameter identification experiments,
see Table 1, following a similar procedure as described in Miha-
jlović et al. (2006), and are validated by comparing the steady-state
solutions of the simulations with those of the experiments.
For varying constant inputs uc (i.e. u = uc in (8)), we observe

several bifurcations in simulations and experiments. Different
(co-existing) steady-state solutions of the rotor dynamic system
as result of the simulations and experiments, are depicted in
a bifurcation diagram in Fig. 6 for constant input voltages uc ,
which is the bifurcation parameter. For the case where the steady-
state response is a periodic solution (stick–slip limit cycle), we
plot the maximum and minimum value of the state variable ωl
(velocity of the lower disc) in the bifurcation diagram. For the
region with constant input voltages up to approximately uc =
2.7 V, we observe only stable limit cycles. Fig. 7 shows such
a limit cycle response for uc = 2.7 V. In the region from
approximately 2.7 to 4.5 V, two stable steady-state solutions co-
exist: an equilibrium point or a stick–slip limit cycle, depending
on the initial conditions. For constant input voltages higher than
4.5 V, only a stable equilibrium point occurs. The reader is referred
to Mihajlović et al. (2006) for an extensive analysis of the dynamic
behavior of the rotor dynamic system including the discussion of
the bifurcations involved. As we remarked earlier, the equilibria
of the rotor dynamic system correspond to both discs rotating
with the same constant velocity, which are the desired operating
conditions. As such, the control goal is to stabilize the unstable
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Fig. 6. Bifurcation diagram for the open-loop rotor dynamic system.

Fig. 7. Experimental limit cycle response of the rotor dynamic system for uc =
2.7 V.

equilibria up to uc = 2.7 V and to eliminate the limit cycles up
to uc = 4.5 V.

5.2. Output-feedback controller

One could opt to design an output-feedback controller by using
the circle criterion, instead of the more involved Popov-criterion-
inspired approach with the dynamic multiplier M(s). However,
the control design based on the circle criterion is not feasible for
the rotor dynamic system (8) according the presented feasibility
conditions in Arcak and Kokotović (2001). In order to satisfy the
feasibility conditions in Arcak and Kokotović (2001), the damping
coefficient b should satisfy {b > min ∂

∂ωl
Tfl(ωl)|ωl > 0}. Thiswould

imply that the negative damping in the friction model Tfl, which
is, basically, the cause of the friction-induced stick–slip vibrations
is dominated by such viscous damping b in the string. However,
the damping coefficient b reflects only material damping in the
string which is generally very low and will not satisfy the above
condition (b = 0, see Table 1). As many mechanical motion
systems consist of inertias coupled by a low-damping connection,
there exists a large class of systems for which a circle-criterion
based control design is not feasible. For these systems, the output-
feedback control design presented in Section 4.3 can be a solution
since the use of the dynamic multiplier relaxes the circle-criterion
conditions. The control strategy presented in Section 4.3 is applied
to the rotor dynamic system (8) and the output-feedback control
law is given by

u = uc + ucomp + K(x̂− xeq), (30)
with xeq = [αeq ωeq ωeq]> the desired equilibrium of the rotor
dynamic system (8), the control gain K ∈ R1×3 and

ucomp =
1
km
(Tfu(x̂2)− bux̂2). (31)

The part ucomp of the control law compensates partly the
friction acting at the upper disc of the rotor dynamic system. The
‘effective’ friction after compensation acting at the upper disc is
purely viscous. Note that such a friction compensation can not
be employed to compensate for the friction at the lower disc
(which is responsible for the stick–slip limit cycling), due to the
non-collocation of actuation and friction. We can easily transform
the closed-loop rotor dynamic system (8), (30) to a system in
Lur’e-type form with the origin as equilibrium by choosing, for
example, the new state ξ = x − xeq. For the sake of brevity,
we will omit this transformation here (see Doris (2007) for more
details). Assumption 5 requires that the set-valued nonlinearity ϕ
is monotone. If we consider the friction model Tfl, see Fig. 5, which
is contained in ϕ, then it is clear that Tfl is not monotone. We will
render ϕ monotone by applying a loop transformation, which will
add ‘viscous’ damping to Tfl and subtract it from the linear part of
(8), see Doris (2007). The following feedback and observer gains
satisfy Theorem 4.3:

K> =

[15.9
1.57
27.6

]
, L =

[ 195
−312
−9080

]
, N =

[
−2.22
−37.8

]
, (32)

with the multiplier matrix Γ = 10I . A solution for P that satisfies
the strict passivity condition for (A+ BK ,G, H̃, D̃) is

P =

[3.639 0.431 6.382
0.431 0.070 0.740
6.382 0.740 11.627

]
. (33)

The above results are obtained by a linear matrix inequality (LMI)
solving routine within the program MATLAB.

5.3. Simulations and experiments

The presented output-feedback controller is applied to the
rotor dynamic system to stabilize the equilibria of the rotor
dynamic setup for a large range of constant inputs. We show the
experimental closed-loop transient response for the constant input
voltage uc = 2.5 V and uc = 4.0 V, respectively, in Fig. 8.
The only stable open-loop solution for uc = 2.5 V is a stick–slip
limit cycle, see Fig. 6. For an input of uc = 4.0 V, two stable
open-loop solutions exist: an equilibrium and a stick–slip limit
cycle. The output-feedback controller is switched on at t = 5 s
for uc = 2.5 V and the closed-loop system converges to the
equilibrium state (ωeq = 4.40 rad/s). Also for uc = 4.0 V, the
closed-loop system converges to the equilibrium state (ωeq =
7.06 rad/s)where the initial open-loop solution is a stick–slip limit
cycle. Both experimental and model-based bifurcation diagrams
for the closed-loop rotor dynamic system are depicted in Fig. 9.
The simulated bifurcation diagram shows that for all constant uc
the desired equilibrium is globally asymptotically stabilized. In
experiments, the output-feedback controller is able to eliminate
the stable limit cycles and to stabilize the unstable equilibria for
a large range of constant inputs uc . However, for a small range of
low voltages, the output-feedback controller can not stabilize the
equilibria of the experimental rotor dynamic setup. The remaining
closed-loop limit cycles up to uc = 1.5 V differ from the open-
loop limit cycles. A cause for this lack of stability of the equilibria
at these low input voltages may be some unmodeled position-
dependent friction acting on the lower disc.
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Fig. 8. Experimental closed-loop response of the rotor dynamic system for uc =
2.5 V and 4.0 V, respectively.

Fig. 9. Bifurcation diagram for the closed-loop rotor dynamic system.

6. Conclusions

In this paper, we considered the feedback control of mechani-
cal motion systems with set-valued frictional nonlinearities. The
concept of absolute ISS was presented, together with a general-
ization of a Popov-like criterion that guarantees ISS for systems
with set-valued nonlinearities. The latter concept is used to de-
sign a state-feedback controller and the related absolute stability
conditions are less restrictive than those related to a control de-
sign based on the circle criterion. Since the presented controller
induces absolute ISS, an advantage is that the closed-loop system is
robust to uncertainties in the friction, a crucial property in practice.
A second advantage is that the state-feedback controller is appli-
cable to systems with non-collocation of actuation and friction for
which well-known strategies such as direct friction compensation
techniques fail. Furthermore, an output-feedback control design is
constructed by exploiting the ISS property, where a model-based
observer, forwhich stability of the error dynamics is proven, is used
to estimate the system state. We provided a separation principle
for the considered class of Lur’e-type systems. The effectiveness of
the proposed output-feedback control strategy is shown both in
simulations and experiments for a typical motion system with dry
friction.
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Appendix. Proof of Theorem 4.1

Proof. Consider the following ISS Lyapunov function candidate
(see Sontag (1989), Sontag and Wang (1995), Khalil (2002)
and Heemels et al. (2007)), which will be continuous, but not
necessarily differentiable:

V (x) = V1(x)+ V2(z), (A.1)

with z = Hx and

V1(x) =
1
2
x>Px, P = P> > 0, (A.2a)

V2(z) =
p∑
i=1

V2,i(zi), (A.2b)

where for i = 1, . . . , p

V2,i(zi) = ηi

∫ zi

0
ϕi(σ )dσ , (A.3)

where dσ denotes the ordinary Lebesgue integration on the real
line. Note that due to the fact that set-valued functions ϕi, i, . . . , p,
are only set-valued on a set (of Lebesgue measure zero) of isolated
points (seeAssumption3), they are locally integrable functions.We
will show that the function V satisfies the following bounds

ψ1(‖x‖) ≤ V (x) ≤ ψ2(‖x‖), (A.4)

where ψ1 and ψ2 are class K∞-functions. To do so, note that
V2,i(zi) ≥ 0, since ϕi belongs to [0,∞], see (11). Consequently, a
lower bound of the ISS Lyapunov function is obtained by

ψ1(‖x‖) =
1
2
λmin(P)‖x‖2. (A.5)

Using the growth condition (12), an upper bound for V2 can be
derived:

V2 ≤
p∑
i=1

ηi

∫
|zi|

0
|ϕi(σ )|dσ

≤

p∑
i=1

ηi

∫
|zi|

0
(γ1σ + γ2)dσ

=

p∑
i=1

γ1

2
ηiz2i +

p∑
i=1

γ2ηi|zi|

≤
γ1

2
ηmax‖z‖2 + γ2ηmax‖z‖1

≤
γ1

2
ηmax‖z‖2 + γ2ηmax

√
p‖z‖

≤
γ1

2
ηmax‖H‖2‖x‖2 + γ2ηmax

√
p‖H‖‖x‖

=: ψ2,V2(‖x‖), (A.6)

where p is the dimension of z, i.e. z ∈ Rp, and ηmax :=
maxi∈{1,...,p} ηi. Using (A.6), an upper bound of the ISS Lyapunov
function V is given by

ψ2(‖x‖) =
1
2
λmax(P)‖x‖2 + ψ2,V2(‖x‖). (A.7)

We are now going to consider the derivative of V along trajectories
of the system. To do so, let x be a solution trajectory of the system
(14) given a piecewise-continuous external (measurement noise)
signal e. Moreover, let w be a locally integrable function and z an
absolutely continuous function such that they satisfy (14) for this
trajectory x. First, observe that x 7→ V (x) is (locally) Lipschitz
continuous and t 7→ x(t) is absolutely continuous. This implies
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that t 7→ V (x(t)) is absolutely continuous as well. Hence, the time
derivatives of t 7→ V (x(t)) and t 7→ x(t) exist almost everywhere.
The time derivative of V1 can be written as follows:

V̇1 =
1
2
[(A+ BK)x+ Gw − BKe]>Px

+
1
2
x>P[(A+ BK)x+ Gw − BKe]. (A.8)

At this point we add and subtract 12 {z̃
>w+w>z̃} to the right-hand

side of (A.8) and use (17a):

V̇1 = V̇1 −
1
2
(H̃x+ D̃w + Z̃e)>w

−
1
2
w>(H̃x+ D̃w + Z̃e)+ z̃>w

=
1
2

[
x
w

]>
F(P, K)

[
x
w

]
−
1
2
e>K>B>Px

−
1
2
x>PBKe−

1
2
e>Z̃>w −

1
2
w>Z̃e+ z̃>w, (A.9)

with F(P, K) defined as

F(P, K) :=
[
(A+ BK)>P + P(A+ BK) PG− H̃>

G>P − H̃ −D̃− D̃>

]
. (A.10)

For the V2 contribution, with V2 as in (A.2b), (A.3) and z(t) = Hx(t),
we have that:

V2(z(t2))− V2(z(t1)) =
p∑
i=1

[V2,i(zi(t2))− V2,i(zi(t1))], (A.11)

for i = 1, . . . , p,

V2,i(zi(t2))− V2,i(zi(t1)) = ηi

∫ zi(t2)

zi(t1)
ϕi(σ )dσ . (A.12)

Since ϕi(zi), i = 1, . . . , p, are set-valued functions which are
only set-valued on a countable set (of Lebesgue measure zero) of
isolated points, the integral in the right-hand side of (A.12) can be
written as follows:∫ zi(t2)

zi(t1)
ϕi(zi)dzi =

∫ zi(t2)

zi(t1)
ϕ̄i(zi)dzi, (A.13)

where ϕ̄i(zi) is a single-valued function, such that (zi, ϕ̄i(zi)) ∈
Graph(ϕi)∀zi. Now, the integral in the right-hand side of (A.13) can
be expressed as∫ zi(t2)

zi(t1)
ϕ̄i(zi)dzi =

∫ t2

t1
ϕ̄i(zi(s))dzi(s), (A.14)

where dzi denotes the usual Lebesgue measure on the real line
and the latter integral denotes the Lebesgue–Stieltjes integral with
respect to the Lebesgue–Stieltjes measure dzi(s) corresponding to
the generating function zi, see Kolmogorov and Fomin (1970). For
this Lebesgue–Stieltjes integral we can use the following result
in Kolmogorov and Fomin (1970),∫ t2

t1
ϕ̄i(zi(s))dzi(s) =

∫ t2

t1
(ϕ̄i ◦ zi)(s)

dzi(s)
ds
ds, (A.15)

where ds denotes the ordinary Lebesgue measure again. Us-
ing (A.13), (A.14) and (A.15) in (A.12) yields

V2,i(zi(t2))− V2,i(zi(t1)) = ηi

∫ t2

t1
(ϕ̄i ◦ zi)(s)

dzi(s)
ds
ds. (A.16)
Next, we exploit that the following equality holds:∫ t2

t1
(ϕ̄i ◦ zi)(s)

dzi(s)
ds
ds =

∫ t2

t1
−wi(s)

dzi(s)
ds
ds, (A.17)

where wi is a locally integrable function corresponding to the
solution x in the sense of satisfying (14). Consequently, we have
that wi(t) ∈ −ϕi(zi(t)). The validity of (A.17) is shown by
the following reasoning. Let us define the set Si = Ŝi ∪

S̄i, with Ŝi =
{
t ∈ [t1, t2] |

dzi(t)
dt does not exist

}
and S̄i ={

t ∈ [t1, t2] | (ϕ̄i ◦ zi)(t)
dzi(t)
dt 6= −wi(t)

dzi(t)
dt ∧

dzi(t)
dt exists

}
. Si is

the set of time instants at which the integrands of the integrals
in the left- and right-hand side of (A.17) differ (or are not well-
defined). In order to validate the equality in (A.17), we will
show that the Lebesgue measure of Si (denoted by µ(Si)) is
zero; namely, this implies that the contribution to the integrals
in (A.17) over Si is zero. Firstly, due to the fact that zi(t) is
an absolutely continuous function of time, its derivative dzi(t)

dt
exists almost everywhere. Hence, µ(Ŝi) = 0. Let us now
show that also µ(S̄i) = 0. It holds that S̄i ⊂ ∪j∈N Tij , with

Tij =
{
t ∈ [t1, t2] | zi(t) = αij ∧

dzi(t)
dt exists ∧

dzi(t)
dt 6= 0

}
and

{αij}j∈N, the countable set of discontinuity points of ϕi. Next, we
will show thatµ(Tij) = 0,∀j ∈ N. In order to do so, we exploit the
following technical lemma:

Lemma 6. Let z : [a, b] → R be a function that is differentiable in
the point c ∈ [a, b]. Let c be an accumulation point of the zeros of z.
Then the derivative of z at c is zero: dzdt (c) = 0.

Proof. Note that due to the fact that z is differentiable in c , and
hence continuous in c , z(c) = liml→∞ z(tl) = 0. Let {tl}l∈N be a
sequence of zeros of z, with tl 6= c , such that tl → c as l → ∞.
Then dzdt (c) = liml→∞(z(tl) − z(c))/(tl − c) = 0, since z(tl) =
z(c) = 0. �

The set Tij consist of the zeros of the function z̃ij(t) = zi(t)−αij ,

for which
dz̃ij (t)

dt exists and
dz̃ij (t)

dt 6= 0. According to Lemma 6,
Tij cannot have accumulation points and consists therefore of
isolated points only. Consequently, Tij is a countable set and, thus,
µ(Tij) = 0. Using the fact that ϕi exhibits a countable set {αij}j∈N of
discontinuity points, we can conclude that µ(Tij) = 0⇒ µ(S̄i) =

µ(∪j∈N Tij) = 0. Hence, we have proven the fact that Si = Ŝi ∪ S̄i
is a set of Lebesgue measure zero and, consequently, the validity
of (A.17).
Using (A.17) and the fact that żi = 1

ηi
(z̃i−zi) in (A.16), we obtain

that

V2,i(zi(t2))− V2,i(zi(t1)) =
∫ t2

t1
−wi(s)

(
z̃i(s)− zi(s)

)
ds, (A.18)

for i = 1, . . . , p. Combining (A.1), (A.9) and (A.18) we can derive
that for all t1, t2 ∈ R, with t2 ≥ t1,

V (x(t2))− V (x(t1)) =
1
2

∫ t2

t1

{[
x(s)
w(s)

]>
F(P, K)

[
x(s)
w(s)

]
+ 2z>(s)w(s)− e(s)>K>B>Px(s)− x>(s)PBKe(s)

− e>(s)Z̃>w(s)− w>(s)Z̃e(s)

}
ds. (A.19)
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Hence, the derivative of V with respect to time, for all x ∈ Rn and
zi ∈ R, i = 1, . . . , p, can be, almost everywhere, written as

V̇ =
1
2

[
x
w

]>
F(P, K)

[
x
w

]
+ z>w

− e>K>B>Px− e>Z̃>w. (A.20)

As z>w ≤ 0 (due to Assumption 3) and (A+BK ,G, H̃, D̃) is strictly
passive by assumption, we have that the first two components in
the right-hand side of (A.20) satisfy

1
2

[
x
w

]>
F(P, K)

[
x
w

]
+ z>w ≤ −ε‖x‖2 (A.21)

for some ε > 0. In the sequel, we will use the following inequality

y>1 y2 ≤
1
2
y>1 Ry1 +

1
2
y>2 R

−1y2, (A.22)

for any R = R> > 0 and for all vectors y1, y2. More specifically,
using (A.22) with R = εI and the definitions X> := K>B>P and
E := 1

ε
X>X we have for the term−e>K>B>Px in (A.20) that

−e>K>B>Px ≤
1
2
e>Ee+

1
2
εx>x

≤
1
2
λmax(E)‖e‖2 +

ε

2
‖x‖2. (A.23)

Next, we use the growth condition (12), inequality (A.22) and we
dominate the term−e>Z̃w in (A.20) as:

−e>Z̃w ≤ ‖e>Z̃w‖

≤ ‖Z̃‖‖e‖(γ1‖H‖‖x‖ + γ2)
= γ̂1‖e‖‖x‖ + γ̂2‖e‖

≤
ε

4
‖x‖2 +

γ̂ 21

ε
‖e‖2 + γ̂2‖e‖, (A.24)

with γ̂1 := γ1‖Z̃‖‖H‖ and γ̂2 := γ2‖Z̃‖. Based on (A.21), (A.23)
and (A.24), (A.20) yields almost everywhere

V̇ ≤ −
ε

4
‖x‖2 +

(
1
2
λmax(E)+

γ̂ 21

ε

)
‖e‖2 + γ̂2‖e‖. (A.25)

From (A.25) it follows that almost everywhere

V̇ < −α(‖x‖) := −
ε

8
‖x‖2 if ‖x‖ ≥ χ(‖e‖), (A.26)

where α is a positive definite function and with the following
definition for the classK-function χ :

χ(‖e‖) :=

√
4
ε

([
λmax(E)+

2γ̂ 21
ε

]
‖e‖2 + 2γ̂2‖e‖

)
. (A.27)

Consequently,wehave proven (A.4) and V̇ (x(t))≤−α(ψ−12 (V (x)))
when ‖x(t)‖ ≥ χ(‖e(t)‖), which means that we have proven
that V is a (locally) Lipschitz continuous ISS Lyapunov function.
According to Sontag and Wang (1995, Lemma 2.14) the existence
of a continuously differentiable ISS Lyapunov functions implies ISS.
Since our ISS Lyapunov function is only locally Lipschitz, we rely
nowon an extended result of Sontag andWang (1995, Lemma2.14)
for locally Lipschitz continuous ISS Lyapunov functions, which is
provided in Theorem 2 of Heemels et al. (2007), see also (Heemels
& Weiland, 2008). Hence, the system is ISS. �
References

Arcak, M., & Kokotović, P. (2001). Feasibility conditions for circle criterion designs.
Systems and Control Letters, 42(5), 405–412.

Arcak, M., Larsen, M., & Kokotović, P. (2003). Circle and Popov criteria as tools for
nonlinear feedback design. Automatica, 39(4), 643–650.

Arcak, M., & Teel, A. (2002). Input-to-state stability for a class of Lurie systems.
Automatica, 38(11), 1945–1949.

Armstrong-Hélouvry, B. (1991). Control of machines with friction. New York: Kluwer.
Armstrong-Hélouvry, B., Dupont, P., & Canudas deWit, C. (1994). A survey ofmodels,
analysis tools and compensation methods for the control of machines with
friction. Automatica, 30(7), 1083–1138.

Aubin, J., & Cellina, A. (1984). Differential inclusions. Berlin: Springer-Verlag.
Brézis, H. (1973). Operateurs maximaux monotones. Amsterdam: North-
Holland/American Elsevier.

Brogliato, B. (2004). Absolute stability and the Lagrange–Dirichlet theorem with
monotone multivalued mappings. System and Control Letters, 51(5), 343–353.

Cai, C., & Teel, A. (2005). Results on input-to-state stability for hybrid systems. In
Proceedings of the 44th conference on decision and control and 2005 European
control conference (pp. 5403–5408).

Canudas de Wit, C. (1993). Robust control for servo-mechanisms under inexact
friction compensation. Automatica, 29(3), 757–761.

Canudas de Wit, C., Olsson, H., Åström, K., & Lischinsky, P. (1995). A new model for
control of systems with friction. IEEE Transactions on Automatic Control, 40(3),
419–425.

Doris, A. (2007). Output-feedback design for non-smooth mechanical systems:
Control synthesis and experiments. Ph.D. thesis. Eindhoven: Technische
Universiteit Eindhoven.

Doris, A., Juloski, A. L., Mihajlovic, N., Heemels, W. P. M. H., van de Wouw, N.,
& Nijmeijer, H. (2008). Observer designs for experimental non-smooth and
discontinuous systems. IEEE Transactions on Control Systems Technology, 16(6),
1323–1332.

Filippov, A. (1988). Differential equations with discontinuous right-hand sides.
Dordrecht: Kluwer Academic.

Glocker, C. (2001). Set-valued force laws, dynamics of non-smooth systems.
In Lecture notes in applied mechanics: vol.1. Springer.

Heemels,W. P. M. H., &Weiland, S. (2008). Input-to-state stability and interconnec-
tions of discontinuous dynamical systems. Automatica, 44, 3079–3086.

Heemels, W., Weiland, S., & Juloski, A. (2007). Input-to-state stability of
discontinuous dynamical systems with an observer-based control application.
In A. Bemporad, A. Bicchi, & G. Buttazzo (Eds.), Lecture notes in computer
science: Vol. 4416. 10th International workshop on hybrid systems: Computation
and control 2007 (pp. 259–272). Pisa, Italy: Springer.

Jansen, J., & van den Steen, L. (1995). Active damping of self-excited torsional
vibrations in oil well drillstrings. Journal of Sound and Vibration, 179(4),
647–668.

Jeon, S., & Tomizuka, M. (2005). Limit cycles due to friction forces in flexible joint
mechanisms. In Proceedings of the 2005 IEEE/ASME international conference on
advanced intelligent mechatronics (pp. 723–728).

Johnson, C., & Lorenz, R. (1992). Experimental identification of friction and its
compensation in precise, position controlled mechanisms. IEEE Transactions on
Industry Applications, 28(6), 1392–1398.

Khalil, H. (2002). Nonlinear systems (3rd ed.). Upper Saddle River, NJ: Prentice Hall.
Kolmogorov, A., & Fomin, S. (1970). Introductory real analysis. Prentice Hall.
Kwatny, H., Teolis, C., & Mattice, M. (2002). Variable structure control of systems
with uncertain nonlinear friction. Automatica, 38(7), 1251–1256.

Leine, R., & Nijmeijer, H. (2004).Dynamics and bifurcations of non-smoothmechanical
systems (1st ed.). Berlin: Springer.

Lischinsky, P., Canudas-de-Wit, C., & Morel, G. (1999). Friction compensation for an
industrial hydraulic robot. IEEE Control Systems Magazine, 19(1), 25–32.

Mallon, N., van deWouw, N., Putra, D., & Nijmeijer, H. (2006). Friction compensation
in a controlled one-link robot using reduced-order observer. IEEE Transactions
on Control Systems Technology, 14(2), 374–383.

Mihajlović, N., van de Wouw, N., Hendriks, M., & Nijmeijer, H. (2006). Friction-
induced limit cycling in flexible rotor systems: An experimental drill-string set-
up. Nonlinear Dynamics, 46(3), 273–291.

Mihajlović, N., van Veggel, A., van de Wouw, N., & Nijmeijer, H. (2004). Analysis of
friction-induced limit cycling in an experimental drill-string system. Journal of
Dynamic Systems, Measurement, and Control, 126(4), 709–720.

Navarro-López, E., & Suárez, R. (2004). Practical approach to modelling and
controlling stick–slip oscillations in oil well drillstrings. In Proceedings of the
2004 IEEE international conference on control applications (pp. 1454–1460) Vol. 2.

Olsson, H., & Åström, K. (2001). Friction generated limit cycles. IEEE Transactions on
Control Systems Technology, 9(4), 629–636.

Olsson, H., Åström, K., Canudas de Wit, C., Gafvert, M., & Lischinsky, P. (1998).
Friction models and friction compensation. European Journal of Control, 4(3),
176–195.

Pfeiffer, F., & Hajek, M. (1992). Stick-slip motion of turbine blade dampers. Philo-
sophical Transactions: Physical Sciences and Engineering , 338(1651), 503–517.

Putra, D., van de Wouw, N., & Nijmeijer, H. (2007). Analysis of undercompensation
and overcompensation of friction in 1DOF mechanical systems. Automatica,
43(8), 1387–1394.

Sontag, E. (1989). Smooth stabilization implies coprime factorization. IEEE
Transactions on Automatic Control, 34(4), 435–443.

Sontag, E. (1995). On the input-to-state stability property. European Journal of
Control, 1, 24–36.



J.C.A. de Bruin et al. / Automatica 45 (2009) 405–415 415
Sontag, E., & Wang, Y. (1995). On characterizations of the input-to-state stability
property. Systems and Control Letters, 24(5), 351–359.

Southward, S., Radcliffe, C., & MacCluer, C. (1991). Robust nonlinear stick–slip
friction compensation. Journal of Dynamic Systems, Measurement, and Control,
113, 639–644.

Swevers, J., Al-Bender, F., Ganseman, C., & Projogo, T. (2000). An integrated
frictionmodel structurewith improved presliding behavior for accurate friction
compensation. IEEE Transactions on Automatic Control, 45, 675–686.

Taware, A., Tao, G., Pradhan, N., & Teolis, C. (2003). Friction compensation for a
sandwich dynamic system. Automatica, 39(3), 481–488.

Vu, L., Chatterjee, D., & Liberzon, D. (2007). Input-to-state stability of switched
systems and switching adaptive control. Automatica, 43(4), 639–646.

Yakubovich, V. A., Leonov, G., &Gelig, A. K. (2004). Stability of stationary sets in control
systems with discontinuous nonlinearities. World Scientific.

J.C.A. de Bruin (born 1979) obtained his B.Eng degree in
Mechanical Engineering from the Hogeschool van Utrecht,
the Netherlands, in 2001. In 2006, he obtained his M.Sc.
degree in Mechanical Engineering from the Eindhoven
University of Technology, Eindhoven, the Netherlands.
He has held a Ph.D. position from 2006 till 2008 at the
Eindhoven University of Technology where the research
focus of the projectwas on control of non-smooth systems.

A. Doris was born in Thessaloniki, Greece on the 31st of
July 1976. He obtained his M.Sc. degree in Mechanical
Engineering from the Aristotle University of Thessaloniki
in March 2002. In September 2002, he was employed
as a research scientist in the Dynamics and Control
Group of the Department of Mechanical Engineering of
the Eindhoven University of Technology, Eindhoven, The
Netherlands. In September 2007, he obtained his Ph.D.
in that group. From January 2008 until now he has
been working with Shell International Exploration and
Production, the Netherlands, as a research well engineer.

N. van de Wouw (born, 1970) obtained his M.Sc. de-
gree (with honours) and Ph.D. degree in Mechanical En-
gineering from the Eindhoven University of Technology,
Eindhoven, the Netherlands, in 1994 and 1999, respec-
tively. From 1999 until 2007 he has been affiliated with
the Department of Mechanical Engineering of the Eind-
hoven University of Technology in the group of Dynam-
ics and Control as an Assistant Professor and since 2008
as an Associate Professor. In 2000, Nathan van de Wouw
has been working at Philips Applied Technologies, Eind-
hoven, TheNetherlands, and, in 2001, he has beenworking

at the Netherlands Organisation for Applied Scientific Research (TNO), Delft, The
Netherlands. He has held a visiting research position at the University of Califor-
nia Santa Barbara, U.S.A., in 2006/2007. Nathan van deWouw has published a large
number of journal and conference papers and the books ’UniformOutput Regulation
of Nonlinear Systems: A convergent Dynamics Approach’ with A.V. Pavlov and H.
Nijmeijer (Birkhauser, 2005) and ‘Stability and Convergence of Mechanical Systems
with Unilateral Constraints’ with R.I. Leine (Springer-Verlag, 2008). His current re-
search interests are the analysis and control of non-smooth systems and networked
control systems.

W.P.M.H. Heemels (1972) received theM.Sc. degree (with
honours) in mathematics and the Ph.D. degree (with high-
est distinction) from the department of Electrical Engi-
neering (EE), Technische Universiteit Eindhoven (TU/e),
Eindhoven, The Netherlands, in 1995 and 1999, respec-
tively. From 2000 to 2004, he worked at the Control Sys-
tems Group, EE, TU/e, as an Assistant Professor and from
2004 to 2006, at the Embedded Systems Institute (ESI) as a
Research Fellow. Since 2006, he has been with the Control
Systems TechnologyGroup, department ofMechanical En-
gineering, TU/e, as an Associated Professor. He was a Vis-

iting Professor at the Swiss Federal Institute of Technology (ETH), Zurich, Switzer-
land (2001) and at the University of California at Santa Barbara (2008). In 2004, he
worked at the R&D laboratory, Oce, Venlo, The Netherlands. His current research
interests include hybrid and non-smooth dynamical systems, constrained systems
including model predictive control and networked control systems.

H. Nijmeijer (1955) obtained his M.Sc. degree and
Ph.D. degree in Mathematics from the University of
Groningen, Groningen, the Netherlands, in 1979 and 1983,
respectively. From 1983 until 2000 he was affiliated with
the Department of Applied Mathematics of the University
of Twente, Enschede, the Netherlands. Since, 1997 he
was also part-time affiliated with the Department of
Mechanical Engineering of the Eindhoven University of
Technology, Eindhoven, the Netherlands. Since 2000, he
is a full professor at Eindhoven, and chairs the Dynamics
and Control section. He has published a large number of

journal and conference papers, and several books, including the ‘classical’ Nonlinear
Dynamical Control Systems (Springer Verlag, 1990, co-author A.J. van der Schaft),
with A. Rodriguez, Synchronization ofMechanical Systems (World Scientific, 2003),
with R.I. Leine, Dynamics and Bifurcations of Non-Smooth Mechanical Systems
(Springer-Verlag, 2004), and with A. Pavlov and N. van de Wouw, Uniform Output
Regulation ofNonlinear Systems (Birkhauser 2005). HenkNijmeijer is editor in chief
of the Journal of Applied Mathematics, corresponding editor of the SIAM Journal
on Control and Optimization, and board member of the International Journal of
Control, Automatica, Journal of Dynamical Control Systems, International Journal of
Bifurcation and Chaos, International Journal of Robust and Nonlinear Control, and
the Journal of AppliedMathematics and Computer Science. He is a fellow of the IEEE
and was awarded in 1990 the IEE Heaviside premium.


	Control of mechanical motion systems with non-collocation of actuation and friction: A Popov criterion approach for input-to-state stability and set-valued nonlinearities
	Introduction
	Notations and definitions
	Mechanical motion systems with set-valued friction laws
	Control design for Lur'e-type systems
	State-feedback control
	Observer design
	Output-feedback control

	Application to a rotor dynamic system with friction
	Experimental setup and modeling
	Output-feedback controller
	Simulations and experiments

	Conclusions
	Acknowledgement
	Proof of Theorem 4.1
	References


