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a b s t r a c t

This paper presents a discrete-time model for networked control systems (NCSs) that incorporates all
network phenomena: time-varying sampling intervals, packet dropouts and time-varying delays that
may be both smaller and larger than the sampling interval. Based on this model, constructive LMI
conditions for controller synthesis are derived, such that stabilizing state-feedback controllers can be
designed. Besides the proposed controller synthesis conditions a comparison is made between the use
of parameter-dependent Lyapunov functions and Lyapunov–Krasovskii functions for stability analysis.
Several examples illustrate the effectiveness of the developed theory.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The literature on modeling, analysis and controller design of
networked control systems (NCSs) expanded rapidly over the last
decade (Antsaklis & Baillieul, 2007; Tipsuwan & Chow, 2003;
Zhang, Branicky, & Phillips, 2001). The use of networks offers
many advantages such as low installation and maintenance costs,
reduced system wiring (in the case of wireless networks) and
increased flexibility of the system. However, from a control theory
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point of view, the presence of the network also introduces several
disadvantages such as time-varying network-induced delays,
aperiodic sampling or packet dropouts. To understand the impact
of these network effects on control performance several models
have been developed. Roughly speaking, these NCS models can
be categorized into continuous-time and discrete-time models. A
further discrimination can be given on the basis of which network
phenomena they include.
In the continuous-time domain, Fridman, Seuret, and Richard

(2004) applied a descriptor system approach to model the
sampled-data dynamics of systems with varying sampling inter-
vals in terms of (infinite-dimensional) delay differential equations
(DDEs) and study their stability based on the Lyapunov–Krasovskii
functional method. In Gao, Chen, and Lam (2008), Yu, Wang, and
Chu (2005) and Yue, Han, and Peng (2004), this approach is used
for the stability analysis of NCSs with time-varying delays and
constant sampling intervals, using (linear)matrix inequality-based
techniques. The recent results in Gao et al. (2008) also involve H∞
controller designs based on linearmatrix inequalities (LMIs). How-
ever, Mirkin (2007) showed that the use of such an approach for
digital control systems neglects the piecewise constant nature of
the control signal due to the zero-order-hold mechanism and that
it introduces conservatismwhen exploiting suchmodeling for sta-
bility analysis. More specifically, the conservatism is introduced by
the fact that the zero-order hold and delay jointly introduce a par-
ticular linearly increasing time-varying delay within each control
update interval (sometimes indicated by the sawtooth behaviour
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of the delay), whereas in the modeling approach mentioned above
it is replaced by an arbitrary bounded time-varying delay. More-
over, in Mirkin (2007) one indicated that less conservative stabil-
ity conditions are obtained using a robust parametric modeling of
the delay operator as proposed in Kao and Lincoln (2004). An alter-
native approach, proposed in Naghshtabrizi and Hespanha (2006)
and Naghshtabrizi, Teel, and Hespanha (2008), is based on impul-
sive delay differential equations and does take into account the
piecewise constant nature of the control signal due to the zero-
order-hold mechanism and has also been shown by Mirkin (2007)
to be less conservative than the descriptor approach. As also noted
in Naghshtabrizi et al. (2008), the usage of infinite-dimensional
DDE models and Lyapunov functionals to analyse the stability of
essentially finite-dimensional sampled-data NCS does not seem to
offer any advantage. The approach in Naghshtabrizi and Hespanha
(2006) is able to deal simultaneously with time-varying delays and
time-varying sampling intervals but does not explicitly include
packet dropouts in the model (although they might be considered
as variations in the sampling intervals or delays). Moreover, the
stability analysis leads to bilinearmatrix inequalities (BMIs), which
are generally difficult to solve. As a consequence, for the moment
no effective control synthesis results exist within this framework.
The majority of NCS models are discrete-time formulations

based on the exact discretization of the continuous-time linear
plant over a sample interval (see Cloosterman, van de Wouw,
Heemels, & Nijmeijer, 2006; Felicioni & Junco, 2008; Fujioka, 2008;
García-Rivera & Barreiro, 2007; Lin & Antsaklis, 2005; Nilsson,
1998; Sala, 2005;Wouw, Naghshtabrizi, Cloosterman, &Hespanha,
2007; Wang & Yang, 2008; Zhang et al., 2001, and the references
therein). Suchmodels avoid the problemof an infinite-dimensional
state that is encountered in the continuous-time (DDE)models due
to delays. Moreover, in these discrete-time models the piecewise
constant nature of the control signal due to the zero-order hold is
taking into account exactly. Additionally, it has been shown in van
de Wouw et al. (2007), that for systems with aperiodic sampling
and time-varying delay less than the sampling interval the use of
discrete-time models for stability analysis gives less conservative
characterization of stability than the use of (impulsive) delay
differential equations. On the other hand van de Wouw et al.
(2007) and Wouw, Naghshtabrizi, Cloosterman, and Hespanha
(2010) show that the modeling in terms of impulsive difference
equations is favorable for ISS gain analysis for perturbed NCS.
Under simplified assumptions, such that the delay is a multiple of
the sampling interval or it takes values in a finite set, the obtained
models lead to switched linear systems and corresponding stability
conditions can be applied (Lin & Antsaklis, 2005; Nikolakopoulos,
Tzes, & Koutroulis, 2005; Xiao, Hassibi, & How, 2000; Zhang, Shi,
Chen, &Huang, 2005). However, thesemodels are not so realistic as
in practice one typically encounters an infinite number of possible
values for the delay. Moreover, more realistic models should take
into account that the sampling periods might be aperiodic.
For systems with time-varying sampling intervals, Felicioni

and Junco (2008), Fujioka (2008), Sala (2005) and van de Wouw
et al. (2007) address the stability analysis and control design
using a discrete-timemodel. In Felicioni and Junco (2008), discrete
difference inclusions are obtained for the different values of
the sampling interval and sufficient algebraic conditions for
existence of quadratic Lyapunov function are derived based on
the construction of a solvable Lie algebra. A different approach is
given in Fujioka (2008) and Sala (2005), where the authors used
the gridding of the set of possible sampling intervals to derive LMI-
based stability conditions.
Several discrete-time approaches have been proposed for

dealing with network-induced delays. In this context, using
the exact discretization over a sampling period, the obtained
model is generally a difference equation with time-varying

delays in the input and unknown time-varying system matrices.
When the variation of the delay is smaller than the sampling
period, the analysis/control design problems can be addressed
by using a lifted state vector and robust control methods for
parametric uncertainties (Cloosterman et al., 2006; García-Rivera
& Barreiro, 2007; Hetel, Daafouz, & Iung, 2006) or by applying
the Lyapunov–Krasovskii function (LKF) approach (Pan, Marquez,
& Chen, 2006; Wu & Chen, 2007; Xie & Wang, 2004; Yoo &
Kwon, 2005) (for the LKF approach in discrete-time, see Fridman
& Shaked, 2005). In this context, the main problems are the
conservatism inherent to the use of upper boundings in the
increment of the LKF and the reduced applicability of the results
since they are able to deal only with delay variations smaller than
the sampling interval. Generalising such models to the case of
large delay variations, packet dropouts and time-varying sampling
intervals is not a trivial task.
In the literature, two ways of modeling network-induced

uncertainties (such as time-varying delays and sampling intervals
and packet dropouts) can be distinguished. Firstly, in Fujioka
(2008), García-Rivera andBarreiro (2007), Lin andAntsaklis (2005),
Naghshtabrizi and Hespanha (2006), Nes̆ić and Teel (2004), Zhang
et al. (2001) and many other works, bounds are imposed on
the delays, sampling intervals and the maximum number of
subsequent dropouts. Secondly, in e.g. (Hespanha, Naghshtabrizi,
& Xu, 2007; Montestruque & Antsaklis, 2004; Seiler & Sengupta,
2005; Sinopoli, Schenato, Franceschetti, Poolla, Jordan, & Sastry,
2004), a stochastic modeling approach is adopted. In this paper,
we will adopt the first approach. Given bounds on delays,
sampling intervals and subsequent dropouts, we will formulate
stability conditions and constructive controller synthesis results
independent of the probability distribution of the uncertain
variables. So, such robust results also apply in the stochastic
setting and can be seen as ‘probability distribution-free’ results
for the stochastic case if the domain of the probability distribution
function is bounded.
In the current paper,wepropose a discrete-timeNCSmodel that

can deal simultaneously with packet dropouts and time-varying
delays smaller and larger than a possibly time-varying sampling
interval. This model is obtained using the exact discretization
over a sampling interval and it takes into account also the
complicated case in which the delay variations may be larger than
the sampling interval. Moreover, the possibility of packet dropouts
is modeled explicitly. Based on this model, controller synthesis
conditions in terms of LMIs will be derived, using both a common
quadratic and a parameter-dependent Lyapunov approach. Note
that recently, in Hetel, Daafouz, and Iung (2008a), a simplified
event-baseddiscrete-timemodel has beenproposed for taking into
account the different implementation problems in digital control
systems. This model is obtained using the systems representation
at both sampling and actuation times. The advantage of the model
presented in this paper in comparison to this event-basedmodel is
that it generally leads to a discrete-time representation of a smaller
dimension.Moreover, it generalises several of themodels that exist
in the literature to the case in which all the network effects appear
simultaneously. This enables the theoretical comparison with the
existing approaches. A discussion on the stability characterization
based on LKFs and on parameter-dependent Lyapunov functions
(PDLF) will be given. This discussion is inspired by the results
in Hetel, Daafouz, and Iung (2008b) in which a comparison
between LKFs and Lyapunov functions for switched systems is
presented in the case of difference equations with time-varying
delays in the state. The approach in Hetel et al. (2008b) can
deal only with delays that are a multiple of the sampling time,
and therefore it does not apply to continuous-time systems as
the NCS studied here. We show that the stability analysis based
on the most general LFK of a quadratic type is always more
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conservative than the novel stability characterization presented
here. This result applies to the context of NCS in which we are
faced with an interaction between continuous-time systems and
discrete-time controllers under different perturbing networked
effects. In particular, we will show that the existence of general
LKFs as used in the literature, implies also the existence of a
Lyapunov function in our framework. It is important to note that all
existing LKFs are a particular case of the one proposed in this paper
and our approach allows much more freedom in the Lyapunov
function than the typical LKFs adopted in the literature (Pan et al.,
2006; Wu & Chen, 2007; Xie & Wang, 2004; Yoo & Kwon, 2005),
which have repetitions of terms. Stated differently, the Lyapunov
function that we consider corresponds to a general LKF for which
LMI-based stability conditions never appeared in the literature
before. In addition, it can formally be proven that our approach
is never more conservative than the LKF approach. Next to the
stability characterization,wewill also present LMI-based synthesis
techniques for feedback based on the state vector and on an
augmented state vector that includes old inputs next to the system
state.
In summary, the main contributions of the paper are as

follows. Firstly, a model for NCSs including three network-induced
uncertainties (large delays, time-varying sampling intervals and
packet dropouts) is developed. Moreover, we present a procedure
for the overapproximation of this model to arrive at a polytopic
model suitable for stability analysis and controller synthesis.
Secondly, we present a stability characterization for NCSs using
(parameter-dependent) quadratic Lyapunov functions, which
generalises stability characterizations using Lyapunov–Krasovskii
functionals existing in the literature. Thirdly, next to LMI-based
stability conditions, we provide a solution to the (structured)
state feedback synthesis problem in terms of linear matrix
inequalities for NCS models including all the above network-
induced uncertainties.
This paper is structured as follows: In Section 2 we present our

NCS model. Section 3 is dedicated to the theoretical comparison of
stability characterizations. Section 4 presents LMI control design
methods that are illustrated by numerical examples in Section 4.
Section 5 closes with concluding remarks.

2. NCS modeling

In this section, the discrete-time description of a NCS including
delays larger than the uncertain, and time-varying sampling
interval and packet dropouts is presented. The NCS is depicted
schematically in Fig. 1. It consists of a linear continuous-time plant

ẋ(t) = Ax(t)+ Bu(t),

with A ∈ Rn×n and B ∈ Rn×m, and a discrete-time static time-
invariant controller which are connected over a communication
network that induces network delays (τ sc and τ ca). The state
measurements (y(t) = x(t)) are sampled resulting in the sampling
time instants sk:

sk =
k−1∑
i=0

hi ∀k ≥ 1, s0 = 0, (1)

which are non-equidistantly spaced in time due to the time-
varying sampling intervals hk > 0. The sequence of sampling
instants s0, s1, s2, . . . is strictly increasing in the sense that sk+1 >
sk, for all k ∈ N. We denote by yk := y(sk) the kth sampled value
of y and by uk the control value corresponding to yk = xk. Packet
drops may occur (see Fig. 1) and is modeled by the parameter mk.
This parameter denotes whether or not a packet is dropped:

mk =
{
0, if yk and uk are received
1, if yk and/or uk is lost.

(2)

Fig. 1. Schematic overview of the NCS with variable sampling intervals, network
delays and packet dropouts.

In (2), we make no distinction between packet dropouts that
occur in the sensor-to-controller connection and the controller-
to-actuator connection in the network. This can be justified by
realizing that, for static controllers, the effect of the packet
dropouts on the control updates implemented on the plant is the
same in both cases. Indeed, for packet dropouts between the sensor
and the controller no new control update is computed and thus
no new control input is sent to the actuator. In the case of packet
dropouts between the controller and the actuator no new control
update is received by the actuator either. Finally, the zero-order-
hold (ZOH) function (in Fig. 1) is applied to transform the discrete-
time control input uk to a continuous-time control input u∗(t)
being the actual actuation signal of the plant.
In the model, both the varying computation time (τ ck ), needed

to evaluate the controller, and the network-induced delays, i.e. the
sensor-to-controller delay (τ sck ) and the controller-to-actuator
delay (τ cak ), are taken into account. We assume that the sensor
acts in a time-driven fashion (i.e. sampling occurs at the times sk
defined in (1)) and that both the controller and the actuator act in
an event-driven fashion (i.e. responding instantaneously to newly
arrived data). Furthermore, we consider that not all the data is
used due to packet dropouts and message rejection, i.e. the effect
that more recent control data is available before the older data
is implemented and therefore the older data is neglected. Under
these assumptions, all three delays can be captured by a single
delay τk := τ sck + τ

c
k + τ

ca
k , see also Nilsson, 1998; Zhang et al.,

2001. To include these effects in the continuous-time model, let
us define the parameter k∗(t) that denotes the index of the most
recent control input that is available at time t as k∗(t) := max{k ∈
N|sk + τk ≤ t ∧ mk = 0}. The continuous-time model of the plant
of the NCS is then given by:

ẋ(t) = Ax(t)+ Bu∗(t)
u∗(t) = uk∗(t),

(3)

withA ∈ Rn×n andB ∈ Rn×m. Here,we assume that themost recent
control input remains active in the plant if a packet is dropped.
We assume that the variation in the delays is bounded by τmin

and τmax, the variation in the sampling interval is bounded by hmin
and hmax and that the number of subsequent packet dropouts is
upper bounded by δ. The latter means that

k∑
v=k−δ

mv ≤ δ (4)

as this guarantees that from the control inputs uk−δ , uk−δ+1, . . . , uk
at least one is implemented. In summary, the class S of admissible
sequences {(sk, τk,mk)}k∈N can be described as follows:

S :=

{(sk, τk,mk)}k∈N| hmin ≤ sk+1 − sk ≤ hmax,

s0 = 0, τmin ≤ τk ≤ τmax,
k∑

v=k−δ

mv ≤ δ, ∀k ∈ N

 , (5)

which includes variable sampling intervals, large delays, and
packet dropouts.
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Remark. In the modeling of the network-induced uncertainties,
we impose bounds on the delays, sampling intervals and the
maximum number of subsequent dropouts as was also done
in Fujioka (2008), García-Rivera and Barreiro (2007), Lin and
Antsaklis (2005), Naghshtabrizi and Hespanha (2006), Nes̆ić
and Teel (2004), Zhang et al. (2001) and many other works.
Given such bounds, we will formulate stability conditions and
constructive controller synthesis results independent of the
probability distribution of the uncertain variables. So, such robust
results also apply in the stochastic setting and can be seen as
probability distribution-free results of the stochastic case if the
domain of the probability distribution function is bounded.
Next, the general description of the continuous-time control

input u∗(t) in (3) is reformulated to indicate explicitly which
control inputs uk are active in the sampling interval [sk, sk+1). Such
a reformulation is needed to derive the discrete-time NCS model,
which will ultimately be employed in the controller synthesis
methods.
Lemma 1. Consider the continuous-time NCS as defined in (3) and
the admissible sequences of sampling instants, delays, and packet
dropouts as defined in (5). Define d := b τminhmax

c, the largest integer
smaller than or equal to τmin

hmax
and d := d τmaxhmin

e, the smallest integer
larger than or equal to τmax

hmin
. Then, the control action u∗(t) in the

sampling interval [sk, sk+1) is described by

u∗(t) = uk+j−d−δ for t ∈ [sk + tkj , sk + t
k
j+1), (6)

where the actuation instants tkj ∈ [0, hk] are defined as:

tkj = min

max
0, τk+j−d−δ − k−1∑

l=k+j−δ−d

hl

+mk+j−d−δhmax,
max

0, τk+j−d−δ+1 − k−1∑
l=k+j+1−δ−d

hl

+mk+j−d−δ+1hmax,
. . . ,max

{
0, τk−d −

k−1∑
l=k−d

hl

}
+mk−dhmax, hk

 , (7)

with tkj ≤ t
k
j+1 and j ∈ {0, 1, . . . , d + δ − d} (see Fig. 2). Moreover,

0 = tk0 ≤ t
k
1 ≤ · · · ≤ t

k
d+δ−d

≤ tk
d+δ−d+1

:= hk.

Proof. The proof is given in Appendix A. �
Based on Lemma 1 and σ = {(sk, τk,mk)}k∈N ∈ S, the discrete-
time NCS model can be defined as:

xk+1 = eAhkxk +
d+δ−d∑
j=0

∫ hk−tkj

hk−tkj+1

eAsdsBuk+j−d−δ, (8)

with tkj as defined in Lemma1. Theminimumandmaximumvalues
of the tkj parameters are described in Lemma 2.

Lemma 2. Consider the time instants tkj as defined in (7), where
sk+j−d−δ (with hk+j−d−δ = sk+j−d−δ+1 − sk+j−d−δ), τk+j−d−δ , and
mk+j−d−δ are taken from the classS defined in (5). Theminimumvalue
of tkj , j ∈ {0, 1, . . . , d+ δ − d}, is given by

tj,min =
{
min{τmin − dhmax, hmin} if j = d+ δ − d
0 if 1 ≤ j < d+ δ − d,

(9)

and the maximum value of tkj , j ∈ {1, 2, . . . , d+ δ − d}, is given by

tj,max =

min{τmax − (d− j)hmin, hmax} if 1 ≤ j ≤ d− d
hmax if d− d+ 1 ≤ j

≤ d+ δ − d.
(10)

Fig. 2. Graphical interpretation of tkj .

Additionally, tk0 := 0 and tk
d+δ−d+1

:= hk, which gives for the
minimum and maximum bound td+δ−d+1 ∈ [hmin, hmax].

Proof. The proof can be derived based on Lemma 1 if the bounds
on the delay, sampling interval and number of subsequent packet
dropouts are taken into account. The interested reader is referred
to Cloosterman (2008) for the detailed proof. �

Let θk denote the vector of uncertain parameters consisting of
the sampling interval and the actuation instants:

θk := (hk, tk1, . . . , t
k
d+δ−d). (11)

The description of θk does not include tkd+δ−d+1, as hk = t
k
d+δ−d+1

,

which is already included in θk. Moreover, tk0 is not considered
either, since it represents a constant term, tk0 = 0. Using the fact
that hk ∈ [hmin, hmax] and the bounds tj,min, tj,max on the actuation
instants given in (9) and (10), we can define the set

Θ =

{
θk ∈ Rd+δ−d+1 |hk ∈ [hmin, hmax],

tkj ∈ [tj,min, tj,max], 1 ≤ j ≤ d+ δ − d,

0 ≤ tk1 ≤ · · · ≤ t
k
d+δ−d ≤ hk

}
. (12)

Note that this set does not depend on k. System (8) represents a
discrete-time system with multiple delays in the input. Moreover,
the system matrices are time-varying according to the uncertain
parameters θk ∈ Θ . In the following section, we will show how to
characterize the stability of this systembased on LMIs and compare
this to the Lyapunov–Krasovskii Function (LKF) approach.

3. Stability characterizations and relations with the LKF theory

In this section we discuss the stability characterization for the
NCS (3) with a state feedback of the form

uk = −Kxk. (13)

We canwithout loss of generality assume thatK has a full row rank.
When K does not have a full row rank, it is always possible to write
the controller in the form

uk =
(
uak
ubk

)
=

(
I
G

)
Kaxk =

(
I
G

)
uak,

where Ka has full row rank (possibly after a permutation of the
inputs) and we obtain a model similar to (3) with Ka instead of K
and B

(
I
G

)
instead of B that does satisfy the full row rank condition

on the feedback gain.
To render the model (8) with the feedback (13) suitable for

analysis, we consider an equivalent delay-free model, based on a
lifted state vector

ξk =
(
xTk uTk−1 . . . uTk−d−δ

)T
that includes past system inputs.
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This leads to the lifted model

ξk+1 = Ã1(θk)ξk, (14)

where Ã1(θk) =

Λ(θk) M̃d+δ−1(θk) M̃d+δ−2(θk) . . . M̃1(θk) M̃0(θk)
−K 0 0 . . . 0 0
0 I 0 . . . 0 0
...

. . .
. . .

. . .
...

...
...

. . .
. . . 0 0

0 . . . . . . 0 I 0


withΛ(θk) = eAhk − M̃d+δ(θk)K and

M̃j(θk) =


∫ hk−tkj

hk−tkj+1

eAsdsB if 0 ≤ j ≤ d+ δ − d,

0 if d+ δ − d < j ≤ d+ δ.

(15)

The goal of this section is to prove that characterizing the stability
of the closed-loop NCS (8) using the lifted model (14) and
(parameter-dependent) quadratic Lyapunov functions is less (or, in
theworst case, equally) conservative than themethods available in
the literature based on discrete-time LKF.
In order to show this, we will use an alternative lifted state

space model as an intermediate step in the proof. This model uses

the state vector χk =
(
xTk x

T
k−1 . . . x

T
k−d−δ

)T
, i.e.

χk+1 = Ã2(θk)χk, (16)

where Ã2(θk) =
Λ(θk) −M̃d+δ−1(θk)K −M̃d+δ−2(θk)K . . . −M̃0(θk)K
I 0 0 . . . 0
0 I 0 . . . 0
...

. . .
...

0 . . . 0 I 0

 .
This second lifted model is important since it is easy to show
that if there exists a LKF (even the most general LKF that can be
obtained using quadratic terms), then there exists a parameter-
dependent quadratic Lyapunov function for (16) as well. This
relationwill be described in detail at the end of the section. Firstwe
will show that the existence of a parameter-dependent Lyapunov
function for (16) is equivalent to the existence of a parameter-
dependent Lyapunov function for (14). This issue is relevant
since it would formally prove that we can base the stability
analysis for the NCS (8) with state feedback controller (13) on (14)
without losing stability properties that could be obtained via (16).
Note that the state dimension of ξk in (14) is smaller than the
dimension of χk in (16), which clearly has modeling and numerical
advantages.

3.1. Equivalence of stability characterizations for the two lifted
models

Let us discuss the equivalence of the lifted models (16) and
(14) with respect to stability and Lyapunov functions in more
detail. Clearly, for a given constant parameter θ , the stability of
(16) is equivalent to the stability of (14) and vice versa. More-
over, since for linear time-invariant systems the existence of a
quadratic Lyapunov is a necessary and sufficient stability condi-
tion, there exists a quadratic Lyapunov function for (16) if and only
if there exists one for (14) when θ is constant. However, assum-
ing that there exists a quadratic Lyapunov function for one of the
systems, (16) or (14), there is no constructive method available

in the literature for deducing a Lyapunov function for the other
one. We will provide such a constructive method, and moreover,
we will even consider a more complicated problem as (16) and
(14) are uncertain systems that vary over time as θk is chang-
ing. In this case, quadratic Lyapunov functions are known to be
sufficient only for characterizing stability, not necessary. The ques-
tion is now whether, in the time-varying uncertain case, the
existence of a quadratic Lyapunov function for system (16) is
equivalent to the existence of a quadratic Lyapunov function for
(14). In Theorem 4, we will answer this question and we will
show that there exists a quadratic-like Lyapunov function for sys-
tem (14) if and only if there exists one for the alternative repre-
sentation (16). To prove this result for any parameter-dependent
quadratic Lyapunov function, the following lemma will be
needed.

Lemma 3. Consider the matrix R ∈ Rq×p and the matrices A(θ) ∈
Rp×p that depend continuously on θ ∈ Θ , whereΘ ⊂ Rl is a compact
set. Define the matrices

Ā(θ) =
(
A(θ) 0
R 0

)
∈ R(p+q)×(p+q), (17)

for θ ∈ Θ . The following statements are equivalent:

• There exist symmetric positive definite matrices P(θ) ∈ Rp+q×p+q,
θ ∈ Θ such that

Ā(θ1)TP(θ2)Ā(θ1)− P(θ1) < 0, ∀θ1, θ2 ∈ Θ. (18)

• There exist symmetric positive definite matrices Q (θ) ∈ Rp×p,
θ ∈ Θ such that

A(θ1)TQ (θ2)A(θ1)− Q (θ1) < 0, ∀θ1, θ2 ∈ Θ. (19)

Moreover, there exists a common solution P(θ) = P > 0, for
all θ ∈ Θ to (18) if and only if there exists a common solution
Q (θ) = Q > 0 to (19).

Proof. See Appendix B. �

Theorem 4. Consider the NCS (8)with state feedback controller (13)
and the two representations (14) and (16). The following statements
are equivalent:

• There exist symmetric positive definite matrices P(θ), θ ∈ Θ such
that

ÃT1(θk)P(θk+1)Ã1(θk)− P(θk) < 0, (20)

for all θk, θk+1 ∈ Θ , thus

V (ξk) = ξ Tk P(θk)ξk (21)

is a parameter-dependent Lyapunov function for system (14).
• There exist symmetric positive definite matrices Q (θ), θ ∈ Θ such
that

ÃT2(θk)Q (θk+1)Ã2(θk)− Q (θk) < 0, (22)

for all θk, θk+1 ∈ Θ , thus

V (χk) = χ Tk Q (θk)χk (23)

is a parameter-dependent Lyapunov function for system (16).
Moreover, system (14) has a common quadratic Lyapunov function
V (ξk) = ξ Tk Pξk if and only if system (16) has a common quadratic
Lyapunov function V (χk) = χ Tk Qχk.

Proof. Since the state feedback matrix K has full row rank there
exists a matrix S ∈ R(n−m)×n such that the matrix

(
K
S

)
is invertible.
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Define the matrices Ã3(θk) =

Λ(θk) M̃d+δ−1(θk) . . . . . . M̃1(θk) M̃0(θk) 0 0
−K 0 . . . . . . 0 0 0 0
0 I 0 . . . 0 0 0 0
... 0

. . .
...

...
...

...
...

...
. . . 0

...
...

...
0 0 . . . 0 I 0 0 0
S 0 . . . . . . 0 0 0 0
0 0 . . . . . . 0 0 I 0


andW =

I 0 . . . . . . 0 0
0 −K 0 . . . 0 0
... 0

. . .
...

...
...

...
. . . 0

...

0 0 . . . 0 −K 0
0 0 . . . . . . 0 −K
0 S 0 . . . 0 0
... 0

. . .
...

...
...

...
. . . 0

...
0 0 . . . 0 S 0
0 0 . . . . . . 0 S



∈ R(n+1)·(d+δ)×(n+1)·(d+δ).

Notice that Ã3(θk)W = WÃ2(θk) =

Λ(θk) −M̃d+δ−1(θk)K . . . . . . −M̃1(θk)K −M̃0(θk)K
−K 0 . . . . . . 0 0
0 −K 0 . . . 0 0
... 0

. . .
...

...
...

...
. . . 0

...

0 0 . . . 0 −K 0
S 0 . . . . . . 0 0
0 S 0 . . . 0 0
... 0

. . .
...

...
...

...
. . . 0

...
0 0 . . . 0 S 0



.

This implies that Ã3(θk) is similar to Ã2(θk). It is easy to show that
(22) holds if and only if there exists symmetric positive definite
matrices P̃(θk) = W−TQ (θk)W−1 such that

ÃT3(θk)P̃(θk+1)Ã3(θk)− P̃(θk) < 0.

Furthermore, notice that Ã3(θk) can be expressed as

Ã3(θk) =

 Ã1(θk) 0 0
S | 0 0 0
0 I 0

 .
Then, apply Lemma 3 with

A(θ) :=
(
Ã1(θk) 0
S | 0 0

)
and R :=

(
0 I

)
.

Next apply Lemma 3 again for

A(θ) := Ã1(θk) and R :=
(
S 0

)
in order to complete the proof. �

3.2. Relations with the Lyapunov–Krasovskii stability characteriza-
tion

For discrete-time uncertain systems with delay in the in-
put such as (8), several stability results exist based on Lya-
punov–Krasovskii functions (LKFs). Using an adequate partition of
the Lyapunov matrix

Q (θk) =


Q 0,0(θk) Q 0,1(θk) . . . Q 0,d+δ(θk)

Q 0,1(θk) Q 1,1(θk)
. . .

...
...

. . .
. . .

...

Q 0,d+δ(θk) . . . . . . Q d+δ,d+δ(θk)

 , (24)

it can be shown that the Lyapunov function (23) is equivalent to
the LKF

V (xk, . . . , xk−d−δ) =
d+δ∑
i=0

d+δ∑
j=0

xTk−iQ
i,j(θk)xk−j, (25)

which is themost general LKF that can be obtained using quadratic
forms. Any of the quadratic LKFs found in the literature (see Pan
et al., 2006; Wu & Chen, 2007; Xie & Wang, 2004; Yoo & Kwon,
2005) are a particular case of (25). As a consequence of Theorem 4,
we know that there exists a Lyapunov function (23) for (16) if and
only if there exists one of the form (21) for (14), i.e. if and only
if the equations (20) are satisfied. Consequently, condition (20)
represents a necessary and sufficient condition for the existence of
themost general form of LKFs that can be obtained using quadratic
terms as in (25). Hence, using a stability characterization based on
the model (14) is less (or, in the worst case, equally) conservative
than the stability analysis results based on quadratic LKF that are
available in the literature (Pan et al., 2006; Wu & Chen, 2007; Xie
& Wang, 2004; Yoo & Kwon, 2005).
In the next section, we will present a constructive LMI method

for controller design using stability characterizations based on
parameter-dependent Lyapunov functions such as in (21).

4. Controller synthesis

To render the model (8) suitable for controller synthesis, we
rewrite it as:

ξk+1 = Ã(θk)ξk + B̃(θk)uk, (26)
where

Ã(θk) =


eAhk M̃d+δ−1(θk) M̃d+δ−2(θk) . . . M̃0(θk)
0 0 0 . . . 0
0 I 0 . . . 0
...

. . .
...

0 . . . 0 I 0

 ,

B̃(θk) =
(
M̃Td+δ(θk) I 0 . . . 0

)T
. This model is equivalent

to (14) when the input is a state feedback of the form (13).
Let us now design a static state feedback controller of the form

(13). The main difficulty to synthesize a state feedback (13) is that
it results in a structured control synthesis problem, i.e. we need to
design a control law of the form
uk = −Kξk (27)
with a specific structure in the feedback gain matrix: K =(
K 0m×(d+δ)m

)
. A solution to this structured controller synthesis

problem is to apply the approach presented in de Oliveira, Bernus-
sou, and Geromel (1999). Moreover, such an approach allows for
the use of a parameter-dependent Lyapunov function (Daafouz &
Bernussou, 2001) that might result in less conservative controller
synthesis results than the use of a common quadratic Lyapunov
function.
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Remark. From the control synthesis point of view, when dealing
with a system such as (26), a natural alternativewould be to design
a state feedback controller of the form (27) using the full state ξk
of the underlying model (26). However, from the point of view of
the NCS (3), this is equivalent to using a dynamical controller of the
form

uk = −K0xk − K1uk−1 · · · − Kd+δuk−d−δ. (28)

The use of such a dynamic control law requires a reconsideration
of the assumption made earlier to lump all the delays τ sck ,τ

c
k and

τ cak in one parameter τ . Using a dynamic control law as in (28)
actually leads to more restrictive assumptions on the network
modeling setup as yk = xk should always arrive at the controller
after the moment that uk−1 is sent to the actuator, i.e. sk +
τ sck > sk−1 + τ sck−1 + τ ck−1 as otherwise special precautions
are needed to handle out-of-order arrival of measured outputs
resulting in longer delays. In addition, the adopted modeling
setup and controller in (28) require that no packet dropouts occur
between the sensors and the controller. Namely, in the case of a
packet dropout between the sensor and controller, it is possible
that yk = xk does not arrive at the controller and thus uk
cannot be computed; furthermore the controller (28) cannot be
updated beyond the k-th update. Therefore, a deadlock in the
controller can occur and the worst case scenario would be not
sending control updates at all to the actuator. Although modeling
dropouts alternatively as prolongations of the sampling interval
(see, e.g., the comparison in van Schendel, Donkers, Heemels, and
van de Wouw (2010)) might alleviate these issues to some extent,
dropouts in the channel between the controller and the actuators
introduce similar complications in this case. We care to stress that
a static state feedback as in (13) does not suffer from such problems
and additional assumptions, as explicated in above, are not needed,
which greatly enhances its applicability.

To derive the control synthesis conditions, the model (26) is
rewritten using the real Jordan formof the continuous-time system
matrix A. Basically, we express the state matrix A = TJT−1 with J
the real Jordan form, and T an invertible matrix. Next, we compute
all the integrals in (15) using eAs = TeJsT−1 to obtain a model in
which the uncertain parameters θk appear explicitly. This leads to
a generic model of the form

ξk+1 =

(
F0 +

ζ∑
i=1

αi(θk)Fi

)
ξk

+

(
G0 +

ζ∑
i=1

αi(θk)Gi

)
uk, (29)

with θk defined in (11) and ζ the number of time-varying functions
αi(·) given by (d + δ − d + 1)ν, with ν ≤ n, where n is the
dimension of the state vector x.Wehave ν = nwhen the geometric
multiplicity of each distinct eigenvalue of A is equal to one and
ν < n when the geometric multiplicity of an eigenvalue is larger
than one. A typical function αi(θk) is of the form e

λ(hk−tkj ), with λ
a real eigenvalue of A, and of the form ea(hk−t

k
j ) cos(b(hk − tkj )) or

ea(hk−t
k
j ) sin(b(hk−tkj ))whenλ is a complex eigenvalue (λ = a+bj)

of A. For more details on the use of the Jordan form, including the
case that ν < n the reader is referred to Appendix B in Cloosterman
(2008).
Using bounds on the uncertain parameters θk = (hk, tk1, . . . ,

tk
d+δ−d

) described by the set Θ in equation (12) this gives rise to
the set of matrices

F G =

{(
F0 +

ζ∑
i=1

αi(θk)Fi,G0 +
ζ∑
i=1

αi(θk)Gi

) ∣∣∣∣θk ∈ Θ
}

(30)

that contains all possible matrix combinations in (26) and (29).
Based on this infinite setF G ofmatriceswewill derive a stabilizing
controller of the form (13) for the NCS (3). To overcome the
infinite dimension of the set F G a convex overapproximation of
the set is used. Denote themaximumandminimumvalue ofαi(θk),
respectively, by

αi = max
θk∈Θ

αi(θk), αi = min
θk∈Θ

αi(θk), (31)

withΘ defined in (12). Then the set of matrices F G, given in (30),
is a subset of co(HFG)with

HFG =

{((
F0 +

ζ∑
i=1

αiFi

)
,

(
G0 +

ζ∑
i=1

αiGi

))
:

αi ∈ {αi, αi}, i = 1, 2, . . . , ζ

}
, (32)

where ’co’ denotes the convex hull.
Wewill alsowrite the set of verticesHFG asHFG = {(HF ,j,HG,j) |

j = 1, 2, . . . , 2ζ }. Using this finite set of 2ζ vertices, a finite
number of LMI controller synthesis conditions is given for the
state-feedback controller (13) in the following theorem.

Theorem 5. Consider the NCS model (3), (6), (7), (13), and its
discrete-time representation (26), (13) for sequences of sampling
instants, delays, and packet dropouts σ ∈ S with S as in (5). Consider
the equivalent representation (29) based on the Jordan form of A and
the set of verticesHFG defined in (32).
If there exist symmetric positive definite matrices Yj ∈

R(n+(d+δ)m)×(n+(d+δ)m), a matrix Z ∈ Rm×n, matrices Xj =(
X1 0
X2,j X3,j

)
, with X1 ∈ Rn×n, X2,j ∈ R(d+δ)m×n, X3,j ∈

R(d+δ)m×(d+δ)m, j = 1, 2, . . . , 2ζ , and a scalar 0 ≤ γ < 1 that satisfy(
Xj + X Tj − Yj X Tj H

T
F ,j −

(
Z 0

)T HTG,j
HF ,jXj − HG,j

(
Z 0

)
(1− γ )Yl

)
> 0, (33)

for all j, l ∈
{
1, 2, . . . , 2ζ

}
, then the closed-loop NCS (3), (6), (7), (13)

with K = Z X
−1
1 is globally asymptotically stable.

Proof. To prove this theorem, we first note that, due to the convex
overapproximation based on the uncertain parameters αi(·), it
holds for all θk ∈ Θ that

(
Ã(θk), B̃(θk)

)
∈ F G ⊂ co(HFG). Hence,

for the stability of (26) and (29) with the state feedback controller
(13), it is sufficient to prove stability of the system

ξk+1 =

2ζ∑
j=1

µkj
(
HF ,j − HG,jK

)
ξk, (34)

where K =
(
K 0m×(d+δ)m

)
and µk1, µ

k
2, . . . , µ

k
2ζ ≥ 0, satisfy∑2ζ

j=1 µ
k
j = 1, for all k ∈ N. Assume that the inequalities (33) hold.

Using the fact that K X1 = Z we have that(
Z 0

)
= K

(
X1 0
X2,j X3,j

)
,

and thus we obtain:(
Xj + XTj − Yj XTj (HF ,j − HG,jK)

T

(HF ,j − HG,jK)Xj (1− γ )Yl

)
> 0. (35)

Applying Theorem 3 in Daafouz and Bernussou (2001) this
inequality implies that the function

V (ξk) = ξ Tk P(µ
k
1, µ

k
2, . . . , µ

k
2ζ )ξk, (36)
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Fig. 3. Feasibility regions for different transient response specifications.

with P(µk1, µ
k
2, . . . , µ

k
2ζ ) =

∑2ζ
j=1 µ

k
j Pj and Pj = Y

−1
j , is strictly

decreasing along the trajectories of system (34). Consequently
system (26), (13) is globally asymptotically stable. Using similar
arguments as in Hetel et al. (2006) it can be shown that the
intersample behaviour is stable as well and, consequently, that
the NCS (3), (6), (7), (13) for all σ ∈ S is globally asymptotically
stable. �

Remark. This theorem shows that (36) is a parameter-dependent
Lyapunov function for the system (26) with the controller (13).
Using the results from the previous section, this shows that if
the LMIs (33) are satisfied they imply the existence of a LKF
of the form (25). Notice that using this approach we avoid the
conservative upper boundings in the difference of the LKF, which
are usually encountered in the literature to arrive at LKF-based
stability conditions in LMI form.
The case of a common quadratic Lyapunov function (CQLF)

V (ξ) = ξ Tk Pξk is a particular case of this theorem by taking Yj =
Y , ∀ j = 1, . . . , 2ζ , with P = Y−1.
If one is still interested in using an extended state feedback

(27) despite the mentioned disadvantages, then Theorem 5 can
be modified by replacing the matrices Xj, ∀i 6= j with a constant
matrix X without a specific structure and using Z instead of (Z 0).
The extended controller is obtained then by K = ZX−1.
In this paper we adopted an overapproximation of the NCS

model using the Jordan form and leading to (32). All the theory also
applies if the overapproximation is obtained by other techniques
(e.g. Fujioka, 2008; Hetel et al., 2006, or any other).

5. Illustrative examples

Consider a NCS represented by (3), with A =
(
0 1
0 0

)
and

B =
(
0
1

)
(double integrator). First, let us show the applicability

of the presented theory for time-varying sampling intervals and
delays. We consider δ = 0 and we analyse the feasibility of the
LMI conditions in Theorem 5 for various values of τmax, hmax and
γ (keeping hmin fixed, i.e. hmin = 0.01 s). In order to use the same
continuous-time transient response specifications, the parameter
γ used in the LMIs is scaled according to the different values of
hmax, i.e. we use γ = 1− (1− γ0)hmax/hmin where γ0 represents the
value taken for hmax = hmin = 0.01 s. The delay is considered to be
time-varying, and the LMIs are solved for τmin = 0.1hmin and τmax
in the interval [0.1hmin, 0.98hmin]. Note that in this case message

Fig. 4. Comparison between the CQLF and PDLF approaches.

Fig. 5. Evolution from an arbitrary initial condition.

rejection cannot occur since τmax < hmin. The tradeoff curves
between transient performance (decay rate) and robustness versus
uncertainties (hmax, τmax), i.e. the regions for which Theorem 5
provides a stabilizing state feedback, are depicted in Fig. 3. We
can remark that the feasibility of LMIs is reduced as γ0 increases.
This is due to the fact that if the parameter γ0 is increased, a
faster transient response is required. As an example, for the bounds
hmin = 0.01 s and hmax = 0.014 s on the sampling interval
and time-varying delays characterized by τmin = 0.1hmin and
τmax = 0.6hmin, the stabilizing state-feedback controller with gain
K =

(
0.622 1.089

)
is obtained using Theorem 5 with γ0 = 0.

For γ0 = 0.17 a faster transient response is obtained with the
controller gain K =

(
164.837 22.64

)
.

Next, a comparison between the use of a common quadratic
(CQLF) and of a parameter-dependent Lyapunov function (PDLF) is
given in Fig. 4 for a constant sampling interval and time-varying
delays characterized by τmin = 0 and τmax = h. The example
illustrates the improvement of the transient response specification
(γ ) with the PDLF approach. A simulation is given in Fig. 5, for two
different values of γ with hmin = hmax = 0.01 s and τmax = hmin.
The controller gain used in this simulation has been obtained using
parameter-dependent Lyapunov functions.
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Fig. 6. Time response with delay and packet dropouts for h = 0.25, τmax = h and
δ = 1.

Finally, we illustrate the situation with time delays larger than
the constant sampling interval h. In this case τmax = 2.8 h and
τmin = 0. Note that the same results hold also for the situationwith
packet dropouts δ = 1 and τmax = 1.8 h or δ = 2 and τmax = 0.8 h.
This is generally true for our result as long as d+ δ = constant . In
this case a stabilizing controller can be found for sampling intervals
up to h = 0.55 s (e.g. for h = 0.55 s a stabilizing controller is
given by K = (0.0363 0.2525)). A simulation with both delay
and packet dropouts using the latter controller gain is presented in
Fig. 6 for h = 0.25, τmax = h and δ = 1.

6. Conclusions

A discrete-time NCS model, based on an exact discretization of
the continuous-time system at the sampling instants, is presented.
Thismodel includes all relevant networkphenomena: the presence
of time-varying delays that may be larger than the sampling
interval, message rejection, packet dropouts, and variations in
the sampling interval. Next, a stability characterization based
on parameter-dependent Lyapunov functions is proposed. It is
shown theoretically that the stability characterization presented
here is generally less conservative than the methods available
in the literature based on LKF. Based on the developed model
and on the proposed stability characterization, constructive state
feedback synthesis conditions are derived in terms of linearmatrix
inequalities (LMIs). Simulations are presented that show the
applicability and effectiveness of the obtained controller synthesis
results.

Appendix A. Proof of Lemma 1

To prove that uk−d−δ is the oldest control input that might be
active during the sampling interval [sk, sk+1), we consider, firstly,
the case without packet dropouts, and secondly, the case with
packet dropouts. From the definition of d in Lemma 1, it follows
that the control input uk−d is always available at the plant before
or exactly at sk, if uk−d is not dropped. To prove this, we use the
relation sk = sk−d +

∑k−1
l=k−d hl, which provides the upper and

lower bounds on sk, given by sk−d + dhmin ≤ sk ≤ sk−d + dhmax.
Combining the lower bound on sk and sk−d + τk−d ≤ sk−d + τmax
gives: sk−d + τk−d ≤ sk−d + τmax ≤ sk − dhmin + τmax ≤ sk, due
to the definition of d = d τmaxhmin

e. Hence, in case that the control
input uk−d is not dropped (i.e. mk−d = 0), it is available before

or on sk and no older control inputs uk+j−d, with j < 0 will be
active in the sampling interval [sk, sk+1). To show that uk−d can
be active in the sampling interval [sk, sk+1), we need to show that
uk−d+1 can become active after sk, if no packets are dropped. To
do so, note that d − 1 < τmax/hmin ≤ d and thus we have that
sk−d+1 + τmax > sk−d+1 + (d − 1)hmin. As the smallest value
of sk = sk−d+1 +

∑k−1
l=k−d+1 hl is equal to sk−d+1 + (d − 1)hmin,

and the largest implementation time of uk−d+1 is sk−d+1 + τmax,
the previous inequality shows that uk−d+1 might be available for
implementation (strictly) after sk. As a consequence, in the case
without dropouts, uk−d+1 can indeed be active in the sampling
interval [sk, sk+1).
To prove that in the case of packet dropouts uk−d−δ is the

oldest control input that can possibly be active in [sk, sk+1),
note that, from (4), it follows that at least one of the control
inputs uk−d−δ, uk−d−δ+1, . . . , uk−d is not lost. If uk−d+1 is indeed
implemented after sk (which is possible as just shown), then at
least one of the inputs uk−d−δ, uk−d−δ+1, . . . , uk−d will be active
in the sampling interval [sk, sk+1). The fact that the maximum
number of subsequent packet dropouts equals δ implies that
uk−d−δ is the oldest control input that might be implemented in
the sampling interval [sk, sk+1).
From the definition of d in Lemma 1, it follows that the input

uk−d represents the most recent control input that might be
implemented during the sampling interval [sk, sk+1). To prove this,
consider the smallest time at which uk−d might be implemented
that is given by sk−d + τmin. Based on the definition of d, which
gives that τmin < (d+ 1)hmax, we can conclude that sk−d + τmin <
sk−d + (d+ 1)hmax. Combining this with the tight bounds on sk+1,
given by:
sk−d + (d+ 1)hmin ≤ sk+1 ≤ sk−d + (d+ 1)hmax
yields that it might hold that sk−d + τmin ≤ sk+1 as sk+1 may
attain the value sk−d + (d + 1)hmax. Consequently, uk−d might be
implemented before sk+1.
To show that uk−d is the most recent data that can be active

in [sk, sk+1), we prove that more recent control inputs always
arrive after sk+1. Consider j > d + δ − d. Then, we have that
sk+j−d−δ + τmin is the earliest time at which uk+j−d−δ might be
implemented. To determine if this moment may occur before sk+1,
consider the upper bound on sk+1, in terms of sk+j−d−δ , given by
sk+1 ≤ sk+j−d−δ+ (−j+d+ δ+1)hmax for j > d+ δ−d. However,
for j > d+ δ − d

sk+j−d−δ + τmin ≥ sk+j−d−δ + (−j+ d+ δ + 1)hmax ≥ sk+1,

due to the definition of d = b τminhmax
c. This proves that uk−d is indeed

the most recent control input that can be active in the sampling
interval [sk, sk+1).
So far we proved that uk+j−d−δ, j ∈

{
0, 1, . . . , d+ δ − d

}
are

the only control values that can be implemented in [sk, sk+1). Now,
the times tkj with j ∈ {0, 1, . . . , d + δ − d} will be constructed
in such a manner that [sk + tkj , sk + t

k
j+1) is the time interval in

which the control input uk+j−d−δ is active in the sampling interval
[sk, sk+1). The time tkd+δ−d (being the starting time of uk−d in the
interval [sk, sk+1]) is given by

tkd+δ−d = min

[
hk, τk−d −

k−1∑
l=k−d

hl +mk−dhmax

]
. (A.1)

Indeed, if mk−d = 0, then sk + τk−d −
∑k−1
l=k−d hl is the time at

which uk−d is available at the plant. If τk−d −
∑k−1
l=k−d hl > hk,

then uk−d might be active after sk+1, but not in [sk, sk+1). Since we
are only interested in the interval [sk, sk+1), we take the minimum
of this value and hk in (A.1). Note that, by the definition of d,
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τk−d −
∑k−1
l=k−d hl ≥ 0. Finally, if uk−d is dropped, i.e. mk−d = 1,

then the expression in (A.1) gives hk, which means that the input
uk−d is not used in [sk, sk+1).
Next, as uk−d−1 can only be active before uk−d is available,

tk
d+δ−d−1

is given by

tkd+δ−d−1 = min

[
tkd+δ−d,max

{
0, τk−d−1 −

k−1∑
l=k−d−1

hl

}

+ mk−d−1hmax

]
. (A.2)

Similarly to tk
d+δ−d

, ifmax{0, τk−d−1−
∑k−1
l=k−d−1 hl}+mk−d−1hmax ∈

[0, tk
d+δ−d

), then sk + τk−d−1 −
∑k−1
l=k−d−1 hl is the time at which

uk−d−1 is available at the plant. In case τk−d−1 −
∑k−1
l=k−d hl < 0,

then uk−d−1might be active before sk. Since, we are only interested,
here, in the interval [sk, sk+1), we take the maximum of this value
and zero in (A.2). For the other values of tkj , the recursion can be
derived similarly, which leads to

tkj = min

[
tkj+1, max

0, τk+j−d−δ − k−1∑
l=k+j−d−δ

hl


+mk+j−d−δhmax

]
,

for 0 ≤ j ≤ d + δ − d, mk+j−d−δ satisfying (4), and with
tk
d+δ−d+1

:= hk. The evaluation of this recursive relation yields the
explicit characterization of (7).

Appendix B. Proof of Lemma 3

Suppose that (18) holds for some matrices PT (θ) = P(θ) >
0,∀θ ∈ Θ . Decompose the matrices as follows:

P(θ) =
(
P1(θ) P2(θ)
PT2 (θ) P3(θ)

)
in accordance with the matrix Ā(θ). By expanding (18) we obtain
for all θ1, θ2 ∈ Θ that[AT (θ1)P1(θ2)A(θ1)− P1(θ1)+ RTP2(θ2)A(θ1)+AT (θ1)P2(θ2)R+ RTP3(θ2)R

]
−P2(θ1)

−PT2 (θ1) −P3(θ1)

 < 0.

This is equivalent (using the Schur complement lemma) to

AT (θ1)P1(θ2)A(θ1)− P1(θ1)+ RTP2(θ2)A(θ1)+ AT (θ1)P2(θ2)R
+ RTP3(θ2)R+ P2(θ1)P−13 (θ1)P

T
2 (θ1) < 0.

Adding and subtracting

AT (θ1)P2(θ2)P−13 (θ2)P
T
2 (θ2)A(θ1)

to the previous inequality implies for all θ1, θ2 ∈ Θ that

AT (θ1)Q (θ2)A(θ1)− Q (θ1)+W (θ1, θ2) < 0,

where

Q (θ) = P1(θ)− P2(θ)P−13 (θ)P
T
2 (θ), ∀ θ ∈ Θ (B.1)

and

W (θ1, θ2) = (P2(θ2)A(θ1)+ P3(θ2)R)T × P−13 (θ2)
× (P2(θ2)A(θ1)+ P3(θ2)R) .

AsW (θ1, θ2) ≥ 0 and Q (θ) > 0 (since P3(θ) > 0 and Q (θ) is the
Schur complement of P(θ)), clearly Q (θ), θ ∈ Θ , satisfy condition

(19). Notice that when the matrices P(θ) are constant, i.e.

P(θ) = P =
(
P1 P2
PT2 P3

)
, ∀θ ∈ Θ,

the corresponding matrices Q (θ) as in (B.1) that satisfy (19) are
constant as well:
Q (θ) = Q = P1 − P2P−13 P

T
2 , θ ∈ Θ.

To prove the converse, assume that (19) holds. Then, due to the
continuity ofAwith respect to θ and to the compactness ofΘ , there
exists ε > 0 such that for all θ1, θ2 ∈ Θ(
AT (θ1)Q (θ2)A(θ1)− Q (θ1)+ εRTR 0

0 −εI

)
< 0.

This inequality shows that the matrices P(θ) defined as

P(θ) =
(
Q (θ) 0
0 εI

)
> 0, θ ∈ Θ

satisfy (18).
Clearly, when Q (θ) = Q , θ ∈ Θ , the common matrix

P(θ) = P =
(
Q 0
0 εI

)
> 0, θ ∈ Θ

satisfies the inequality (18), which completes the proof.
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