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based on polytopic inclusions. The proposed method is compared with existing approaches in terms of
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1. Introduction

Surveys on future directions in control, e.g.Murray (2002), iden-
tify networked control systems (NCS) to be one of the emerg-
ing key topics in control. The distinguishing feature of NCS is
that the connection between plant and controller is made through
a communication network. As discussed in the comprehensive
NCS overviews (Hespanha, Naghshtabrizi & Xu, 2007; Tipsuwan
& Chow, 2003), this brings specific, additional challenges to con-
troller design, such as the presence of uncertain time-varying de-
lays, timing jitter and packet dropouts.
This paper focusses on the problem of obtaining a discrete-time

model of a linear system affected by time-varying input delays
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that is suitable for stabilizing controller synthesis. Interestingly,
in Cloosterman, van de Wouw, Heemels and Nijmeijer (2006) it
was shown that time-varying input delays may destabilize sys-
tems that cannot be destabilized by constant delays of a similar
size. This indicates that time-varying input delays must be taken
into account in the controller synthesis procedure. Unfortunately,
even for linear systemdynamics, closing the control loop via a com-
munication network subject to time-varying input delays yields a
nonlinear appearance of the delay in the closed-loop discrete-time
dynamics,which hampers the implementation ofmost classical ro-
bust controller synthesis methods.
Recently, an increasingly popular solution to this problem was

obtained by over-approximating the delay-induced nonlinearity
with a polytopic inclusion, see Cloosterman et al. (2006); Cloost-
erman, van de Wouw, Heemels and Nijmeijer (2007, 2009), Hetel,
Daafouz, and Iung (2006) and Olaru and Niculescu (2008). The
advantage of this approach is that the resulting closed-loop dy-
namics becomes a polytopic difference inclusion for which effi-
cient stabilizing controller design techniques exist. This technical
communique proposes a novel approach for finding a poly-
topic over-approximation of the delay-induced nonlinearity aris-
ing from time-varying delays, based on the Cayley–Hamilton
theorem. The novel method is compared with existing ones in
terms of conservativeness and scalability. Furthermore, suitability
of the resulting models for controller synthesis is illustrated us-
ing the control schemeof Kothare, Balakrishnan andMorari (1996),
which can handle polytopic difference inclusions.

http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
mailto:r.h.gielen@tue.nl
mailto:sorin.olaru@supelec.fr
mailto:m.lazar@tue.nl
mailto:w.p.m.h.heemels@tue.nl
mailto:n.v.d.wouw@tue.nl
mailto:silviu.niculescu@lss.supelec.fr
http://dx.doi.org/10.1016/j.automatica.2010.01.002


616 R.H. Gielen et al. / Automatica 46 (2010) 615–619
1.1. Basic notation and definitions

LetR,R+,Z,Z+ andC denote the field of real numbers, the set
of non-negative reals, the set of integers, the set of non-negative
integers and the field of complex numbers, respectively. For every
subsetΠ of R we define RΠ := {k ∈ R | k ∈ Π} and ZΠ := {k ∈
Z | k ∈ Π}. A polyhedron, or a polyhedral set, inRn is a set obtained
as the intersection of a finite number of open and/or closed half-
spaces. A polytope is a closed and bounded polyhedron. Let Co(·)
denote the convex hull. For two arbitrary matrices A, B ∈ Rn×n,
let Span(A, B) := {µ1A + µ2B | µ1, µ2 ∈ R} and let [A]i,j
denote the ijth entry of A. For two arbitrary sets S,P ⊆ Rn, let
S ⊕ P := {x + y|x ∈ S, y ∈ P } denote their Minkowski addition
and let S × P := {(x, y)|x ∈ S, y ∈ P } denote their Cartesian
product.

2. Problem formulation

Consider the continuous-time system with input delay

ẋ(t) = Acx(t)+ Bcu(t),
u(t) = uk, ∀t ∈ [tk + τk, tk+1 + τk+1),

(1)

where Ac ∈ Rn×n, Bc ∈ Rn×m, x(t) ∈ Rn is the system state
and u(t) ∈ Rm is the system input at time t ∈ R+. uk ∈ Rm is
the control action generated at time t = tk and we assume that
u(t) ∈ Rm is known for all t ∈ [0, τ0). Furthermore, tk = kTs,
k ∈ Z+, are the sampling instants, Ts ∈ R+ is the sampling
period, τk ∈ R[τ ,τ ] denotes the delay induced by the network at
sample time tk and τ ∈ R[0,τ ], τ ∈ R[τ ,Ts] are the minimal and
maximal possible delays, respectively. Observe that for clarity of
exposition we considered the case when the delay is smaller than
or equal to the sampling time. However, the techniques developed
in this paper apply straightforwardly toNCSmodels involving large
delays, packet dropouts and timing jitter, at the expense of an
increase in complexity. Next, consider the exact discretization of
(1), i.e.

xk+1 = eAcTsxk +
∫ τk

0
eAc (Ts−θ)dθBcuk−1

+

∫ Ts

τk

eAc (Ts−θ)dθBcuk (2)

and let

∆(τk) :=

∫ τk

0
eAc (Ts−θ)dθBc, k ∈ Z+. (3)

Furthermore, by manipulating (2) and introducing a new aug-
mented state vector, i.e. ξk := [x>k u

>

k−1]
>, we obtain

ξk+1 = A(∆(τk))ξk + B(∆(τk))uk, (4)

with A(∆(τk)) :=
[
Ad ∆(τk)
0 0

]
, B(∆(τk)) :=

[
Bd −∆(τk)

Im

]
, Ad = eAcTs

and Bd =
∫ Ts
0 e

Ac (Ts−θ)dθBc . Now (4) is a difference inclusion with
∆(τk) lying in some non-convex subset of Rn×m. The goal is to
construct a set of matrices

∆ := Co({∆l}l∈Z[1,L]), ∆l ∈ Rn×m, (5)

such that ∆(τk) ∈ ∆ for all τk ∈ R[τ ,τ ]. Notice that ∆l are the
vertices (generators) of the convex parameter set∆ and L ∈ Z+ is
the number of generators.
2.1. Existing solutions

We present a brief overview of four existing methods for
finding the generators of the set in (5). In Cloosterman et al.
(2006) an elementwise minimization–maximization is proposed
(referred to by EMM) leading to matrices ∆l that contain all
possible combinations of maxima and minima for all entries of
∆(τk). In Cloosterman et al. (2007, 2009) and Olaru and Niculescu
(2008), methods based on the Jordan normal form (JNF) of the
matrix Ac are proposed. The generators of (5) are obtained by
solving algebraic expressions involving the delay. The foremost
difference between Cloosterman et al. (2007, 2009) (referred to
by JNF1) and Olaru and Niculescu (2008) (referred to by JNF2)
is that in the latter a method is proposed to reduce the number
of generators at the cost of a larger polytope. The fourth method
was proposed in Hetel et al. (2006) (referred to by TA) and makes
use of a Taylor series expansion of (3). The generators of (5) are
obtained by solving a linear system of equalities. The infinite sum
of the Taylor series expansion is approximated by a finite number
of terms p, which is also the number of generators for∆, i.e. L = p.
The remaining terms of the Taylor series expansion are dealt with
via an additional uncertainty block in the model.
It is worth tomention that another class of over-approximation

methods that can be applied to NCS, but is not considered in
this paper, is based on gridding and norm bounding; see, e.g. Suh
(2008).

3. Main result

Consider the Cayley–Hamilton theorem.

Theorem 1 (Cayley (1857)). Let the characteristic polynomial of a
matrix A ∈ Rn×n be denoted by q(λ) := det(λIn − A). Then q(A) =
0. �

The polynomial qm(λ) of lowest degree that satisfies qm(A) = 0
is called the minimal polynomial. Clearly, based on Theorem 1,
the degree of the minimal polynomial is smaller than or equal
to n. Based on the Jordan form, the minimal polynomial can be
derived Usmani (1987) as qm(λ) =

∏p
r=1(λ− λr)

nr , where p ∈ Z+
is the number of distinct eigenvalues of A, λr ∈ C are the distinct
eigenvalues of A, and nr ∈ Z+ is the maximal order of a Jordan
block corresponding to eigenvalue λr . Note that ν :=

∑p
r=1 nr ≤ n.

As for theminimal polynomial it holds that qm(A) = 0, it is possible
to express all powers of A of order ν and higher as a combination
of the first ν powers of A, i.e. for all i ∈ Z≥ν

Ai = ci,0I + · · · + ci,ν−1Aν−1, (6)

for some ci,j ∈ R and j ∈ Z[0,ν−1]. Furthermore, for all i ∈ Z[0,ν−1]
and j ∈ Z[0,ν−1] let ci,j = 1 when i = j and ci,j = 0 when i 6= j. To
obtain a simplified expression for (3), let

fj(Ts − θ) :=
∞∑
i=0

ci,j
i!
(Ts − θ)i, j ∈ Z[0,ν−1]. (7)

Lemma 2. Let gj(τk) :=
∫ τk
0 fj(Ts− θ)dθ and fj(Ts− θ) as defined in

(7) for all j ∈ Z[0,ν−1]. Then

∆(τk) =

ν−1∑
j=0

gj(τk)AjcBc . (8)
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Proof. Starting from (3) and using eAc s :=
∑
∞

i=0
(Ac s)i

i! yields

∆(τk) =
∫ τk
0

∑
∞

i=0
(Ts−θ)i

i! A
i
cBcdθ . Applying (6) and reordering yield

∆(τk) =

∫ τk

0

∞∑
i=0

(Ts − θ)i

i!

ν−1∑
j=0

ci,jAjcBcdθ

=

ν−1∑
j=0

∫ τk

0

∞∑
i=0

ci,j
i!
(Ts − θ)idθAjcBc . �

Given g
j
∈ R and g j ∈ R such that g

j
≤ gj(τk) ≤ g j for all

τk ∈ R[τ ,τ ], one can use (8) to write (3) as a convex combination
of a finite number of matrices ∆l. Let the set Vj := {g j, g j} for all
j ∈ Z[0,ν−1] and let V := V0 × · · · × Vν−1 ∈ Rν . Furthermore, let
vi ∈ V denote the ith element of the set V and let [vi]j denote the
jth element of the vector vi ∈ V .

Theorem 3. For any τk ∈ R[τ ,τ ],∆(τk) satisfies

∆(τk) ∈ Co(∆0, . . . ,∆2ν−1), (9)

where ∆i :=
∑ν−1
j=0 [vi]j+1A

j
cBc for all i ∈ Z[0,2ν−1]. Furthermore, for

any τk ∈ R[τ ,τ ],∆(τk) also satisfies

∆(τk) ∈ Co(ν∆̃0, . . . , ν∆̃2ν−1), (10)

where ∆̃j := g jA
j
cBc , ∆̃j+ν := g jA

j
cBc , ∀j ∈ Z[0,ν−1].

Proof. Let g
j
and g j be given such that g j ≤ gj(τk) ≤ g j for

all τk ∈ R[τ ,τ ] and j ∈ Z[0,ν−1]. From (8) it then follows that
for all j ∈ Z[0,ν−1] there exist µj ∈ R[0,1] so that ∆(τk) =∑ν−1
j=0

(
µjg j + (1− µj)g j

)
AjcBc . Because µj ∈ R[0,1] is itself a

convex combination of 0 and 1 the generators can be obtained
for µj ∈ {0, 1} for all j ∈ Z[0,ν−1]. This leads to the 2ν possible
combinations defined as the generators of the set in (9), thus
proving (9). To prove (10), let g

j
and g j be given such that g j ≤

gj(τk) ≤ g j for all τk ∈ R[τ ,τ ] and j ∈ Z[0,ν−1]. Then, for all
j ∈ Z[0,ν−1] there exists µj ∈ R[0,1] such that

∆(τk) =

ν−1∑
j=0

(
µj

ν
νg
j
+
1− µj
ν

νg j

)
AjcBc

=

ν−1∑
j=0

δjνg jA
j
cBc + δj+ννg jA

j
cBc,

where δj =
µj
ν
and δj+ν =

1−µj
ν
for all j ∈ Z[0,ν−1]. Noticing that∑2ν−1

j=0 δj = 1 concludes the proof. �

Thus, we have obtained two different expressions for the genera-
tors of the convex set defined in (5). The method corresponding to
(9)will be referred to as CH1 and themethod corresponding to (10)
as CH2, to be consistent with the method JNF1 versus JNF2. As the
function gj(τk) is a summation of an infinite number of terms, the
question now rises how to compute the bounds g

j
and g j. We will

present two solutions to this problem.

3.1. A truncation-based approach

Firstly, the sum can be truncated after some p terms, p ∈ Z>0.
The truncated function, i.e.

gpj (τk) :=
∫ τk

0

p−1∑
i=0

ci,j
i!
(Ts − θ)idθ, (11)
is a polynomial. Therefore, gp
j
and gpj can be obtained using

the derivative of (11). Let ∆p denote the polytope obtained via
Theorem 3 using these bounds. Next, we deal with the error due
to truncation of the sum in (7).

Theorem 4. Let ρ :=
3‖Ac‖Ts
p and suppose1 ρ < 1. Then∥∥∥∫ τk0 ∑

∞

i=p
Aic (Ts−θ)

i

i! dθBc
∥∥∥ ≤ ρp

1−ρ τ‖Bc‖.

Proof.∥∥∥∥∥
∫ τk

0

∞∑
i=p

Aic(Ts − θ)
i

i!
dθBc

∥∥∥∥∥ ≤ ∞∑
i=p

∥∥∥∥∫ τk

0

Aic(Ts − θ)
i

i!
dθBc

∥∥∥∥
≤

∞∑
i=p

∥∥∥∥∥AicT is( i3 )
i
τBc

∥∥∥∥∥ ≤ ∞∑
i=p

(
3Ts
i

)i
‖Aic‖τ‖Bc‖ (12a)

≤

∞∑
i=p

(
3‖Ac‖Ts
p

)i
τ‖Bc‖ =

ρp

1− ρ
τ‖Bc‖, (12b)

where the triangle norm inequality and the Cauchy–Schwarz
inequality were used. The lower bound for the factorial, i.e. i! ≥( i
3

)i
, that was used in the denominator of (12a) was established by

induction. �

Using Theorem 4 one can choose the degree of approximation p
for the coefficients in (7) in order to control the overall approxima-
tion error. Moreover, one can correct the polytope∆p accordingly
to guarantee that all values ∆(τk) can take for τk ∈ R[τ ,τ ] are in-
cluded in the pth order over-approximation.

Lemma 5. Let B ⊂ Rn×m denote the closed unit ball in Rn×m,
B∆
:= B ∩ Span(A0cBc, . . . , A

ν−1
c Bc) and ε :=

ρp

1−ρ τ‖Bc‖. Then

∆(τk) ∈ ∆
p
⊕ εB∆, ∀τk ∈ R[τ ,τ ]. (13)

Proof. Eq. (3) yields that

∆(τk) =

∫ τk

0

p−1∑
i=0

Aic(Ts − θ)
i

i!
dθBc

+

∫ τk

0

∞∑
i=p

Aic(Ts − θ)
i

i!
dθBc . (14)

Using (11) instead of gj(τk) one can, analogous to Lemma 2, rewrite
the first term of (14) into (8). Analogous to Theorem 3, with the
bounds gp

j
∈ R and gpj ∈ R such that gp

j
≤ gpj (τk) ≤ g

p
j for all

τk ∈ R[τ ,τ ] one can obtain the polytopic over-approximation ∆p
for the first term of (14). Then, by Theorem 4 and the definition of
ε, from (14) it follows that (13) holds. �
Notice that the polytope ∆p ⊕ εB∆ has in general more

generators than the original polytope. Next, we propose a way to
avoid this increase in the number of generators. The matrix space
Rn×m is isomorph to the vector space Rnm, hence we define the
correspondences B∆

↔ B∆
v ∈ Rnm and ∆p ↔ ∆pv ∈ Rnm. Let

∆pv := {x ∈ R
nm
|H∆px ≤ h∆p}, let Ω(B∆

v ) be the set of generators
of B∆

v , let wi ∈ Ω(B
∆
v ) for i ∈ Z[0,N−1] denote the generators. An

optimum translation δ∗v ∈ Rnm and scaling factor α∗ ∈ R>0 can be
obtained by solving the optimization problem

min
α,δv

α (15)

subject to: αh∆p + H∆pδv ≥ H∆pwi, ∀i ∈ Z[0,N−1].

1 Note that p can always be chosen such that ρ < 1.
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(a) EMM. (b) Light grey JNF1, dark grey JNF2. (c) Light grey CH1, dark grey CH2.

(d) TA.

Fig. 1. Different polytopic approximations: Along the axes are the values of [∆l]1,1 and [∆l]2,1 for l = 1, . . . , L, in black all the possible realizations of∆(τk).
Notice that there exists a unique δv corresponding to the optimum
α∗ in (15), which is denoted by δ∗v . Letting δ

∗
v ↔ δ∗ ∈ Rn×m

the set δ∗ ⊕ α∗∆p is such that εB∆
⊆ δ∗ ⊕ α∗∆p. Replacing

εB∆ with δ∗⊕ α∗∆p in (13) preserves the complexity of the over-
approximation and yields ∆(τk) ∈ δ∗ ⊕ (1 + α∗)∆p, for all τk ∈
R[τ ,τ ].
Next, we present the second method to obtain the bounds g

j
and g j.

3.2. An algebraic approach

The functions gj(τk) can be derived exactly on the basis of the
(real) Jordan form Usmani (1987). Using the real Jordan form of Ac
it can be shown Cloosterman et al. (2009) that

∆(τk) =

∫ τk

0
eAc (Ts−θ)dθBc =

ν∑
l=1

αl(τk)SlBc, (16)

where Sl ∈ Rn×n, l ∈ Z[1,ν]. Furthermore, the functions αl(τk)
correspond to the eigenvalues of Ac and are of the form∫ τk
0 (Ts − θ)l̂−1eλr (Ts−θ)dθ , l̂ = 1, . . . , nr in case λr ∈ R and∫ τk
0 (Ts−θ)

l̂−1ear (Ts−θ) cos(br(Ts−θ))dθ and
∫ τk
0 (Ts−θ)

l̂−1ear (Ts−θ)

sin(br(Ts − θ))dθ , l̂ = 1, . . . , nr for complex pairs of eigenvalues
λr = ar ± ibr ∈ C.
By minimality of the minimal polynomial the matrices A0c , . . . ,

Aν−1c are linearly independent in Rn×n, while by inspecting
eAc (Ts−θ) = Q−1eJ(Ts−θ)Q , where Ac = Q−1JQ with J the real Jordan
form of Ac , it follows that S1, . . . , Sν are linearly independent as
well and span the same linear space inRn×n asA0c , . . . , A

ν−1
c . Hence,

there is a unique invertible matrix T ∈ Rν×ν such that Sl =∑ν−1
j=0 [T ]j+1,lA

j
c , l ∈ Z[1,ν]. Substituting this in (16) yields

∆(τk) =

ν∑
l=1

αl(τk)

ν−1∑
j=0

[T ]j+1,lAjcBc .
Based on (8) it holds that gj(τk) =
∑ν
l=1 αl(τk)[T ]j+1,l, j ∈ Z[0,ν−1]

and thus, we computed the functions gj(τk) exactly. The lower and
upper bounds g

j
:= minτk∈R[τ ,τ ] gj(τk) and g j := maxτk∈R[τ ,τ ] gj(τk)

can be computed directly from their explicit expressions.

Remark 6. All methods discussed in this paper are inherently
related to calculating the matrix exponential. As such, different
ways to calculate the matrix exponential (Moler & van Loan, 2003)
might prove to be a fruitful starting point for further research. �

4. Illustrative example

We present an assessment of all modeling methods considered
in this paperwith a focus on the suitability for stabilizing controller
synthesis. Consider the system[
ẋ1(t)
ẋ2(t)

]
=

[
1 −1.2
4 6

] [
x1(t)
x2(t)

]
+

[
0
−1

]
u(t), (17)

and the parameters Ts = 0.1, τ = 0 and τ = 0.075. The approx-
imation order chosen for TA was p = 10. Recall that p defines the
order of the Taylor approximation used and consequently also the
number of generators L.
By applying all six methods to the system under study one ob-

tains six polytopes, which are plotted in Fig. 1. Notice that the
accuracy of the methods EMM, CH1, CH2 and TA is of the same
order of magnitude. However, for JNF1 and JNF2 the polytope is
much larger, note the different axes (the horizontal axis in partic-
ular). Table 1 shows the number of generators for each method.
Next, we consider the problem of controller synthesis. The

model (4) in combination with the polytopic over-approximations
JNF1, JNF2, TA, CH1 and CH2 is used to find a time-varying control
law of the form uk = Kkξk. The controller minimizes a cost
function of the form Jk =

∑
∞

i=0 ξ
>

k+iQ ξk+i + u
>

k+iRuk+i, where Q
and R are positive definite and symmetric matrices. Furthermore,
a Lyapunov function of the form V (k, ξk) = ξ>k Pkξk is employed
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Fig. 2. Simulation of the same controller synthesis scheme for three different models.
Table 1
Complexity of the polytopic over-approximation per method.

Method: EMM JNF1 JNF2 TA CH1 CH2

# gens.: 2nm 2ν 2ν p 2ν 2ν

to guarantee closed-loop asymptotic stability. The optimal state
feedback and corresponding Lyapunov function are obtained on-
line, for each measured state, as a solution to a semi-definite
programming problem (Kothare et al., 1996).
In Fig. 2 we plot the results of a simulation for the system under

observation. Themethod CH2 performsworse than its variant CH1,
thus indicating the price paid for reducing computational com-
plexity at the cost of over-approximating. In the simulations cor-
responding to JNF1 and JNF2 no robustly stabilizing controller and
corresponding time-varying quadratic Lyapunov function could be
obtained. This indicates that in general, over-approximating the
nonlinearity can lead to infeasibility of controller synthesis. The
latter observation stresses the need for tight over-approximation
techniques and less conservative synthesis methods. The inter-
ested reader is referred to Gielen and Lazar (2009) for recent
advances in stabilizing controller synthesis for systems with time-
varying delays.

5. Conclusions

In this note we presented a novel method for modeling
networked control systems (NCS) with time-varying input delays
as a polytopic difference inclusion. The novelty consists of using
the Cayley–Hamilton theorem to obtain the polytopic difference
inclusion that contains all possible realizations of the nonlinear
terms induced by delays. The developed method was compared
with existing ones on the aspects of conservativeness, scalability
and suitability for controller synthesis.
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