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a b s t r a c t

A reconfigurable control approach for continuous-time piecewise affine (PWA) systems subject to
actuator and sensor faults is presented. The approach extends the concept of virtual actuators and
virtual sensors from linear to PWA systems on the basis of the fault-hiding principle that provides the
underlying conceptual idea: the fault is hidden from the nominal controller and the fault effects are
compensated. Sufficient linearmatrix inequality (LMI) conditions for the existence of virtual actuators and
virtual sensors are given that guarantee the recovery of closed-loop stability and the tracking of constant
reference inputs. Since LMIs are efficiently solvable, this solution leads to a tractable computational
algorithm that solves the reconfiguration problem. The approach is proven to be robust against model
uncertainties and inaccurate fault diagnosis, and is evaluated using an example system of interconnected
tanks.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper, a reconfigurable control strategy for continuous-
time piecewise affine systems is presented. Reconfigurable control
is an important technology for building truly autonomous
dependable systems. Reconfigurable control is designed to respond
to severe component faults (such as failures) that would otherwise
break the control loop by restructuring the controller on line
(Blanke, Kinnaert, Lunze, & Staroswiecki, 2006). Fig. 1 shows the
role of control reconfiguration in an active fault-tolerant control
context. The reconfiguration component obtains an estimate f̂
of the fault f from a diagnosis component (fault detection and
isolation, FDI) and changes the controller to match the faulty plant
once the fault has been isolated. Numerous reconfigurable control
methods for linear systems and restricted classes of nonlinear
systemshave been developed, ofwhich a short reviewwill be given
in Section 2.

The method presented here is based on the idea of keeping
the nominal controller in the loop by inserting a reconfiguration
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block between the faulty plant and the nominal controller after a
fault has occurred. The reconfiguration block is chosen to ‘‘hide’’
the fault from the controller and at the same time to ensure that
the faulty plant controlled by the nominal controller together
with the reconfiguration block remains globally input-to-state
stable with respect to reference inputs and disturbances, and
recovers the nominal closed-loop tracking properties. The fault-
hiding approach has previously been developed for linear and
Hammerstein systems and leads to the use of virtual actuators for
the actuator fault case and to virtual sensors for the sensor fault
case (Quevedo, Puig, & Serra, 2007; Richter & Lunze, 2010; Richter,
Schlage, & Lunze, 2007). Until now, the fault-hiding approach was
not available for PWA systems.

Our motivation for studying PWA systems is at least twofold.
Firstly, PWA systems are receiving wide attention due to the fact
that the PWA framework (Sontag, 1981) provides away to describe
dynamic systems exhibiting switching between a multitude of
linear dynamic regimes, see also Carmona, Freire, Ponce, and
Torres (2002), Heemels, de Schutter, and Bemporad (2001) and
Johansson (2003). The switching can be due to piecewise-
linear characteristics such as dead-zone, saturation, hysteresis or
relays. Secondly, PWA systems may result from piecewise linear
approximations of complex nonlinear dynamics (Johansson, 2003).
It has been recognised thatmany standard control-related analysis
and synthesis problems for PWA systems are hard, in fact many
of them are undecidable in the general case (Blondel & Tsitsiklis,
1999, 2000). Therefore, special subclasses of PWA systems are
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Fig. 1. Active fault-tolerant control scheme.

frequently considered in the literature (Camlibel, Heemels, &
Schumacher, 2008; Juloski, Heemels, & Weiland, 2007; Lunze &
Lamnabhi-Lagarrigue, 2009; Pavlov, Pogromsky, van de Wouw,
& Nijmeijer, 2007). This is also true for this paper, where we
address continuous PWA systems with constant input matrix.
The undecidability of many problems for arbitrary PWA systems
motivates the choice for continuous PWA systems. In particular,
the control reconfiguration problem that we aim to solve in
this paper leads to incremental stabilisation problems, which
are unsolved for PWA systems with non-constant input matrix,
see Pavlov et al. (2007) for a discussion and a counterexample.
For the continuous subclass of PWA systems, we will provide a
constructive and robust way of finding reconfigured controllers
after actuator and sensor faults. No methods for reconfigurable
control ofmultimodal PWA systems have been reported to our best
knowledge. Furthermore, several practically important systems
are well modelled with constant input matrix, such as mechanical
systems with one-sided restoring characteristics (Bonsel, Fey,
& Nijmeijer, 2004; van de Wouw, Pavlov, & Nijmeijer, 2006),
mechanical motion systems with friction, (van deWouw & Pavlov,
2008), a controlled pendulum, etc.

In this paper, we extend the fault-hiding approach to reconfig-
urable control from linear to PWA systems and solve the problem
of recovering the nominal closed-loop stability and output track-
ing properties for the faulty system. It is assumedhere that the fault
isolation task has been solved and that the model of the faulty sys-
tem is available to the reconfiguration component.1 The contribu-
tions of this paper are as follows:
1. we design a PWA reconfiguration block satisfying the fault-

hiding principle for PWA systems after actuator and sensor
faults;

2. we describe a systematic computationally tractable approach
to finding stabilising gains in the reconfiguration block that
guarantee the recovery of the nominal tracking properties for
constant reference inputs and constant disturbances;

3. we prove that the approach is robust against model uncertain-
ties and against time-varying disturbances; and

4. we apply the approach to an example.

The presented computational approach relies on sufficient
stability conditions formulated as linear matrix inequalities. The
main results are a characterisation of a reconfigured closed-loop
system that recovers the fault-free closed-loop stability property
and the setpoint tracking properties in the presence of constant

1 Actuators and sensors are increasingly equipped with self-diagnosing capabil-
ities that are communicated to supervisory control levels over digital fieldbus net-
works (Discenzo, Unsworth, Loparo, & Marcy, 1999). It is therefore reasonable to
consider the control reconfiguration problem separately from the fault diagnosis
problem. Furthermore, identification methods for PWA systems can be employed
for the detection and identification of faults and the delivery of a model of the
faulty plant (Ferrari-Trecate, Muselli, Liberati, & Morari, 2003; Juloski, Weiland, &
Heemels, 2005; Nakada, Takaba, & Katayama, 2005; Wen, Wang, Jin, & Ma, 2007).
General overviews of the fault diagnosis problem and solution approaches are avail-
able in Blanke et al. (2006), Gertler (1998), Isermann (2006), and further interesting
ideas are provided in Aßfalg and Allgöwer (2006), Selmic, Polycarpou, and Parisini
(2009), Stoustrup andNiemann (2006),Wolff, Krutina, and Krebs (2008) and Zhang,
Polycarpou, and Parisini (2002).
disturbances (Theorem 4), robustness properties (Theorem 5), and
a corresponding synthesis algorithm (Algorithm 1).

This paper is organised as follows. The literature on recon-
figurable control is discussed in Section 2. Notations, PWA sys-
tems and preliminary stability concepts are briefly introduced in
Section 3. Actuator and sensor faults as well as related reconfig-
uration problems concerning both stability and tracking are de-
fined in Section 4. The solution to the reconfiguration problemwith
stability and tracking recovery for constant inputs and constant
disturbances is described in Section 5. Robustness against model
approximation errors and time-varying disturbances is shown in
Section 6. An example illustrates the applicability of themethod in
Section 7. The paper concludes in Section 8. Technical proofs are
collected in Appendix.

2. Literature discussion

In this section, we discuss recent developments in fault-
tolerant control. A detailed tutorial can be found in Lunze and
Richter (2008) and comprehensive literature surveys are available
in Zhang and Jiang (2003, 2006). Passive fault-tolerant control
works with a fixed fault-tolerant controller that provides robust
properties such as stability or performance for every expected
fault. A passive fault-tolerant control approach for linear systems
based on simultaneous stabilisation is reported in Stoustrup
and Blondel (2004). For nonlinear systems, an approach that
does not explicitly distinguish diagnosis and reconfiguration was
presented in Bonivento, Isidori, Marconi, and Paoli (2004) and
extended in Benosman and Lum (2008), which is based on the
use of a control Lyapunov function. An idea that complements
fault-tolerant control techniques is the development of high-
redundancy actuators that are designed for graceful performance
degradation (Steffen, Davies, Dixon, Goodall, Pearson, & Zolotas,
2008).

Passive fault-tolerant control has limited post-fault perfor-
mance; therefore, active approaches have been developed that
replace the nominal controller with a new controller tailored to
the faulty plant. The synthesis (whether online or offline) is usu-
ally based on perfect model following (Gao & Antsaklis, 1992),
on linear eigenstructure assignment (Ashari, Sedigh, & Yazdan-
panah, 2005), on extensions of the classical linear pseudo-inverse
method (Staroswiecki, Yang, & Jiang, 2006), and on adaptive con-
trol principles (Bodson & Groszkiewicz, 1997; Bošković & Mehra,
2006; Chen & Saif, 2007). Another widely studied method con-
sists in the design of actuator fault compensators, where a fault-
compensation input is superimposed on the nominal control input,
see, for example, Zhang and Qin (2008). In the case of sensor faults,
it is common practice to replace lostmeasurementswith estimates
obtained from a state estimator. This idea has been widely used
and is sometimes called ‘‘sensor masking’’, see, for example, Wu,
Thavamani, Zhang, and Blanke (2006).

Approaches that take into account uncertain diagnosis results
are rare in the literature to date. A probabilistic approach that
accounts formisseddetections and false alarmshas beenpresented
in Mahmoud, Jiang, and Zhang (2003), which comes at the cost
of a high computational complexity that limits the applicability
to offline synthesis and to the usage within controller banks.
Reconfiguration approaches for actuator and sensor faults based
on invariant set theory and controller banks are described in
Martínez, Seron, and de Doná (2008), Ocampo-Martínez, de Doná,
and Seron (2008) and Olaru, de Doná, and Seron (2008). In the
latter approach, it is required that any combination of faulty plants
and fault-case controllers yields a stable reconfigured closed-loop
system. In Seron and de Doná (2009), it is shown in discrete time
that linear virtual actuator-based control reconfiguration can be
well combined with fault isolation. The use of unfalsified control
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for fault-tolerant control is a relatively new area that is still in
its infancy (Ingimundarson & Sánchez Peña, 2008). It provides a
systematic means for selecting one controller from a set of finitely
many candidate controllers. The approach interoperates with any
synthesis method for determining the controllers in the candidate
set. Consequently, unfalsified control could be used as a decision
tool with our new approach if applied offline, although online
applications are the intended use of the approach described in this
paper.

For nonlinear systems, a fault accommodation approach is
described, for example, in Jiang, Staroswiecki, and Cocquempot
(2006). Model predictive control has been used as a basis
for reconfigurable control (Maciejowski & Jones, 2003; Rosich,
Puig, & Quevedo, 2006), and an optimisation technique based
on hybrid automata has been proposed (Tran, Stursberg, &
Engell, 2007). However, these methods require considerable
online computational power. For switched and hybrid systems,
adaptive schemes (Yang, Jiang, Cocquempot, & Staroswiecki,
2006a), observer-based switching schemes based on multiple
Lyapunov functions (Yang, Jiang, & Staroswiecki, 2007), and output
feedback controller redesign (Rodrigues, Theilliol, & Sauter, 2006)
have been developed, however based on additive fault models.
In Yang, Cocquempot, and Jiang (2008), fault-tolerance analysis
based on global passivity is addressed, however without synthesis
procedures. Periodic systems were considered in Yang, Jiang,
and Cocquempot (2009). A hybrid controller approach based on
hybrid automata models and verification techniques has been
described in Parisini and Sacone (1998) and Yang (2000). A
sensor fault accommodation technique based on bond graphs
is available in Yang, Mao, and Jiang (2006b). For PWA systems,
model-predictive control has been proposed for fault-tolerant
control purposes (Ocampo-Martinez&Puig, 2008; Tsuda,Mignone,
Ferrari-Trecate, & Morari, 2001), however in discrete time. Fault-
tolerant control of bimodal continuous-time PWA systems is
addressed in Nayebpanah, Rodrigues, and Zhang (2009).

Of all methods described in the literature, the fault-hiding idea
followed in this paper is closest to the sensor masking idea (Wu
et al., 2006) in the case of sensor faults, and closest to fault
compensators in the case of actuator faults (Zhang & Qin, 2008).
Both references focus on the stability recovery but do not address
the tracking recovery. Furthermore, no reconfigurable control
approach tailored to continuous-time PWA systems with large
numbers of modes has been developed yet that permits us to keep
the nominal controller in the closed-loop system, that explicitly
addresses the regulation of the difference between the nominal
and the reconfigured dynamics, and that studies actuator faults
and sensor faults together. Such an approach is developed in this
paper and evaluated using an example with 22 modes. Partial and
preliminary results of this paper are available in Richter, Heemels,
van de Wouw, and Lunze (2008).

3. Preliminaries

The notation , means equal by definition. Lower case
bold letters denote vectors (x), capital bold letters denote
matrices (A), and script capitals denote spaces (L). Systems are
denoted byΣ1, Σ2, . . . ,where the subscripts distinguish different
systems. The interconnection of two systems through common
input/output variables is denoted by (Σ1, Σ2). R denotes the reals,
and R+ , [0, ∞). We use the Euclidian vector norm ‖ · ‖2, and
by convention, the abbreviated notation ‖ · ‖ always refers to the
Euclidian norm. For 1 ≤ p ≤ ∞, and for a measurable signal
x : R+ → Rn, we say that x ∈ Lp(R+, Rn) if ‖x‖Lp < ∞,

where ‖x‖Lp ,


R+
‖x(t)‖pdt

1/p
for 1 ≤ p < ∞ and ‖x‖L∞

,

ess sup0≤τ≤t ‖x(τ )‖. The space of locally integrable signals is
denoted by Lloc
1 . The notation x ≡ 0 means ∀t : x(t) = 0.

The pseudoinverse of a matrix A satisfying all four Moore–Penrose
conditions (Ben-Israel & Greville, 2003) is denoted by A+. The set
of eigenvalues of a matrix A is denoted by σ(A). The notation A ≺

0 (A ≻ 0) means that the matrix A is negative (positive) definite.
A polyhedron is a set Λ defined by a finite number of strict or
nonstrict linear inequalities (Ziegler, 1998). Its interior is denoted
by int(Λ). The unit step function ρ(α) is defined as ρ(α) = 0 for
α < 0 and ρ(α) = 1 for α ≥ 0.

We base the methods presented in this paper on the well-
known concepts of 0-global uniform stability (Khalil, 2002),
globally uniformly asymptotically stable solutions (Pavlov, van
de Wouw, & Nijmeijer, 2006), input-to-state (practical) stability
(ISS, ISpS) (Sontag, 1989), input-to-output stability (IOS) (Sontag,
2001), and (uniform) convergence (Demidovich, 1967; Pavlov
et al., 2006). Wewill also use interconnection theorems for ISS and
IOS systems and corresponding small-gain theorems (Jiang, Teel, &
Praly, 1994).

Uniform convergence2 implies the existence of a unique and
bounded on R steady-state solution x̄u, which depends only
on the input signal u. In other words, a uniformly convergent
system ‘‘forgets’’ its initial condition. If the input u to a uniformly
convergent system is periodic with the period T , then its steady-
state solution x̄u is periodic with the period T (Pavlov et al., 2006).
In particular, if the input is constant, then the steady-state solution
is constant. This fact will be used to obtain tracking recovery in
Section 5.

In this paper,we consider nominal systemsΣP that aremodeled
as PWA systems:

ΣP :


ẋ(t) = Aix(t) + ai + Buc(t) + Bdd(t)
for x(t) ∈ Λi, i ∈ {1, . . . , p}

y(t) = Cx(t)
z(t) = Czx(t),

(1)

x(0) = x0, with the state x(t) ∈ Rn, the control input uc(t) ∈

Rm, the disturbance d(t) ∈ Rk, the measured output y(t) ∈ Rr

and the relevant output z(t) ∈ Rq at time t ∈ R+. Ai, i ∈

{1, . . . , p}, forms a family of system matrices, ai, i ∈ {1, . . . , p}
a family of affine terms, B the input matrix and Bd the disturbance
input matrix that defines the structure of disturbance influence.
C is the measurement matrix, and Cz the relevant output matrix.
All matrices are of constant compatible dimensions. Each of the
pairwise disjoint sets Λi corresponds to a mode of the PWA
system (1) in the sense that if x(t) ∈ Λi, then at time t the
system is described by the ith affine system represented by the
tuple (Ai, ai, B, Bd, C, Cz). The setsΛi, i ∈ {1, . . . , p}, are described
by polyhedra such that ∀i ≠ j : int(Λi) ∩ int(Λj) = ∅ andp

i=1 Λi = Rn, and switching is triggeredwhen the state trajectory
crosses a boundary between twopolyhedra. The inputmatrix is not
allowed to be mode-dependent in this model, since we need the
following technical assumption.

Assumption 1. The right-hand side of the system (1) is assumed
to be a continuous function of x, uc and d.

The PWA system (1) is automatically continuous for x ∈ int(Λi),
i ∈ {1, . . . , p}. Discontinuities may occur at the boundaries
between adjacent polyhedra, and consequently, Assumption 1
imposes conditions at the boundaries. Typically, when the PWA
model is obtained as an approximation of a continuous nonlinear
system, this assumption is normally satisfied by construction. Note
that continuity is lost if mode-dependent input matrices Bi are

2 For a formal definition of uniform convergence we refer to Demidovich (1967)
and Pavlov et al. (2006, 2007).
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admitted in the model. Nevertheless, the right-hand side of the
PWA system is typically not smooth. Assumption 1 guarantees that
the system (1) is Lipschitz continuous. For any uc ∈ Lloc

1 (Rm),
d ∈ Lloc

1 (Rk), and x0 ∈ Rn, it has a unique and globally defined
solution that is locally absolutely continuous. Also, sliding modes
cannot occur as solutions of the PWA system (1).

The following proposition, which is central to most of the
subsequent proofs, states prior results on incremental stability, ISS,
and exponential convergence of continuous PWA systems (Pavlov
et al., 2006, 2007).

Proposition 1 (PWA ISS and Convergence). Consider the PWA
system (1)with the right-hand side f (x, uc, d) , Aix+ai+Buc+Bdd
for x ∈ Λi, i ∈ {1, . . . , p}, and suppose that Assumption 1 holds. If
there exists a matrix X ∈ R(n×n), X = X T

≻ 0 that satisfies the LMIs

XAi + AT
i X ≺ 0, i = 1, . . . , p, (2)

then the system (1) is 0-GES for uc, d ≡ 0, globally ISS w.r.t. (uc, d),
and there exists β > 0 such that for any two points x1, x2 ∈ Rn the
algebraic inequality

(x1 − x2)TX (f (x1, uc, d) − f (x2, uc, d))

≤ −β(x1 − x2)TX(x1 − x2) (3)

holds, meaning that the system is quadratically incrementally stable.3
The number β > 0 depends only on the matrix X . Furthermore, the
system (1) is globally exponentially convergent.

The system (1) is operated in feedback interconnection with a
PWA nominal controller ΣC of the form (1),

uc(t) = ΣC (r(t), y(t), xc0), (4)

with the reference signal r and the controller initial condition xc0 ∈

Rnc . Note that the nominal closed-loop system (ΣP , ΣC ) is also
a PWA system (see Johansson (2003)). The following assumption
for the nominal (fault-free) closed-loop system will be in place
for solving the reconfigurable control problem for stabilisation and
tracking.

Assumption 2 (Stabilising and tracking nominal control). The
feedback interconnection (ΣP , ΣC ) of the nominal PWA system (1)
with bounded intermittentmeasurement noise ny (y(t) = Cx(t)+
ny(t) where limt→∞ ny(t) = 0) and the nominal controller (4)
is ISS w.r.t. the input (r, d, ny) and IOS w.r.t. the input (r, d, ny)
and the output (x, uc). Furthermore, constant reference commands
r(t) = r̄ρ(t), r̄ ∈ Rq, are asymptotically tracked to precision
K ≥ 0 in the presence of constant disturbances d(t) = d̄ρ(t),
d̄ ∈ Rk and intermittent measurement noise ny(t) with constant
steady-state control input ūc ∈ Rm in the sense that for all x0, xc0
d(t) = d̄ρ(t), r(t) = r̄ρ(t)


⇒


lim sup
t→∞

‖r(t) − z(t)‖ ≤ K

lim
t→∞

uc(t) = ūc .

The previous assumption is realistic in many cases, since ap-
proaches for the tracking control of PWA systems have recently
been reported (Pavlov et al., 2006; van de Wouw & Pavlov, 2008).
These approaches can be used to satisfy Assumption 2. The re-
jection of intermittent measurement noise is not restrictive and
needed in several of the subsequent proofs.

3 Incremental stability refers to the stability of solutions with respect to each
other; see Angeli (2002) for an exact definition of incremental stability as well as
Lyapunov-characterisations thereof. ISS results for locally Lipschitz systems were
published in Sontag (1995).
4. Reconfiguration problem

4.1. Model of the faulty plant

A fault f in actuators and sensors is modeled as a change of the
corresponding input and output matrices of the system (1).

Definition 1 (Actuator and Sensor Faults). An actuator fault is an
instantaneous change at time tf < 0 of the nominal input
matrix B ∈ R(n×m) and the nominal affine terms ai to the faulty
input matrix Bf ∈ R(n×m) and the faulty affine terms af ,i of
the same dimensions. A sensor fault is an instantaneous change
of the nominal measurement matrix C ∈ R(r×n) to the faulty
measurement matrix Cf ∈ R(r×n) of the same dimensions.

In particular, the blockage of actuators with the indices J in
given positions uk, k ∈ J , is modeled by means of a changed affine
term:

af ,i = ai +
−
k∈J

bkuk, i ∈ {1, . . . , p} (5)

and corresponding zero columns in the matrix Bf . In this paper,
we assume that faults appear abruptly and persist once they have
occurred. Without loss of generality, all signal dimensions remain
constant after faults. The nominalmodelmust completely describe
all redundant components of the plant, and failures typically
reduce the rank of the system parameter matrices.

Typical technological examples for faults are stuck valves, failed
motors, or failed sensors. The above fault definition includes partial
component degradation and complete failures, and every single
fault may affect more than one component. As an example, a
single actuator degradation might be modeled by scaling the
corresponding input matrix column, whereas a complete single
actuator failure requires setting the respective column to zero.
However, our fault model allows for arbitrary changes in the input
and measurement matrices.4 The fault event abruptly changes the
nominal PWA system (1) to the faulty PWA system:

ΣPf :


ẋf (t) = Aixf (t) + af ,i + Bf uf (t) + Bdd(t)

for xf (t) ∈ Λi, i ∈ {1, . . . , p}
yf (t) = Cf xf (t)
zf (t) = Czxf (t),

(6)

xf (0) = x0, where the matrices Bf , Cf and the vectors af ,i
reflect the fault, whereas all other matrices remain unchanged.
Since the behaviour of the faulty system differs from the nominal
behaviour, all signals except the disturbance are distinguished
from the nominal case by means of subscript f . It is clear from Eq.
(5) that continuity is preserved under the considered faults, also
under blockage. It is thus not restrictive to assume the following.

Assumption 3. The right-hand side of the faulty system (6) is
assumed to be a continuous function of xf , uf and d.

The nominal controller (4) with y = yf and uc = uf is generally
not suitable for controlling the faulty plant (6). In particular, in
the case of actuator or sensor failures at time tf , typically some

4 Additive faultmodels represent an alternative to themultiplicative faultmodels
used here. However, the class of severe faults such as component failure is better
represented by multiplicative models as used here, see Niemann and Stoustrup
(2005). In Niemann and Stoustrup (2005), it was pointed out that additive faults
can never destabilise a stable linear closed-loop system, whereas actuator or sensor
failures can very well destabilise the loop for an open-loop unstable plant in reality.
This consideration shows that additive faultmodels do not capture the entire nature
of severe faults.
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Fig. 2. State of the system undergoing fault, diagnosis, and reconfiguration.

state variables of ΣPf operate in open loop. It is assumed that a
fault diagnosis component provides the model of the faulty PWA
plant (6) at time tD, where tD > tf . Without loss of generality,
the reconfiguration step is assumed to happen at time t = 0
(otherwise apply a time shift), and thus tf < tD < 0. The initial
conditions of the nominal system (1) and faulty system (6) refer
to time t = 0 and thus represent the system state after the fault
occurrence at the time where the reconfiguration takes place.

Fig. 2 emphasises that the system state starts deviating from
its nominal trajectory as soon as the fault occurs at time tf
(dashed curve). This deviation is unavoidable and brings the
system to the state x0 at reconfiguration time. At time t = 0
starting from the state x0, the system can either be governed
by nominal dynamics (solid curve, corresponding to system
repair or ideal reconfiguration) or by reconfigured dynamics with
somewhat degraded performance (dotted curve). In the case of
reconfiguration, the goal is to limit the performance degradation
in the sense of recovering certain properties such as stability,
disturbance rejection, and tracking.

4.2. Fault-hiding approach

The reconfiguration problem consists in finding a new con-
troller ΣCr based on the model (6) such that the reconfigured
closed-loop system (ΣPf , ΣCr) shown in Fig. 3(c) satisfies the orig-
inal control goals as well as possible. In terms of Fig. 2, the dot-
ted curve should be as close as possible to the solid curve in the
time interval [0, ∞), minimising the difference x∆. The new con-
troller may use all available elements of the control input uf and
all elements of the measured output yf , also those ignored by the
nominal controller. This reconfiguration problem is equivalent to
a closed-loop model-matching problem, which we will, however,
not solve directly. Instead, we impose a special structure on the
new controller ΣCr = (ΣR, ΣC ), which is split into the original
nominal controller ΣC and a reconfiguration block ΣR.

The reconfiguration block ΣR takes as inputs the control
signal uc from the nominal controller and the output yf from
the faulty plant. It produces as outputs the translated control
signal uf for the faulty plant and the corrected output yc for the
nominal controller. The reconfiguration block also depends on
an internal initial condition ζ0. Its inner structure will be based
on a model for the difference x∆ between system trajectories
generated by nominal dynamics and system trajectories generated
by reconfigured dynamics, with detailed definitions given below
in Section 5. Together with the faulty plant (6), the reconfiguration
block ΣR forms the reconfigured plant ΣPr = (ΣPf , ΣR) to which
the nominal controller (4) is connected by means of the signal pair
(uc, yc) (see Fig. 3c).

The following goal makes sure that the original controller
‘‘sees’’ the fault-free plant behaviour when attached to the
reconfigured plant. It enables keeping the nominal controller as
a part of the overall reconfigured closed-loop system, and it will
be instrumental in guaranteeing the stability of the reconfigured
closed-loop system, formalised in Problem 1 below.

Definition 2 (Weak Fault-Hiding Goal). The reconfigured plant ΣPr
= (ΣPf , ΣR) satisfies the weak fault-hiding goal, if for zero
disturbance (d ≡ 0) it follows that

∀x0, ∃ζ0 such that ∀t ∈ R+, ∀uc(t) ∈ Lloc
1 : y(t) − yc(t) = 0.

In words, for every plant initial condition, there must exist a
matching reconfiguration block initial condition such that the
reconfigured plant behaviour equals the fault-free plant behaviour
in the absence of disturbances. We speak of ‘‘weak’’ fault-hiding
because the initial condition ζ0 of the reconfiguration block
depends on the initial condition x0 of the faulty plant. We will use
this goal in Section 5.

This approach, which is called the fault-hiding approach, offers
the following advantages.
• The design of the reconfiguration block ΣR is independent of

the controller and therefore usable with any nominal controller
(for instance, different people taking shifts in operating a
plant). The reconfiguration block can be inserted into existing
control schemeswithout having to touch thenominal controller
(acceptance for replacing working control schemes is low in
many industries).

• The fault-hiding strategy opens the way for minimum-invasive
alterations of the loop. If the controller is automatic and the
fault affects small parts of the plant only, then large parts of the
nominal controller are still valid and should be kept instead of
performing a complete redesign, whichmay be costly and time-
consuming.

• If the nominal controller is a human operator, e.g. a pilot,
then the fault-hiding approach reduces the difficulty of dealing
with a faulty system, because the reconfigured system behaves
like the nominal system. As a consequence, it reduces training
efforts for large numbers of fault scenarios and stress during
fault situations.

The reconfiguration block will be designed such that the fault
is not visible for (in other words, hidden from) the nominal
controller. Furthermore, the following additional closed-loop
objectives are added to the synthesis.

4.3. Reconfiguration objectives

From a control point of view, it is of interest to at least recover
the ISS and setpoint tracking properties for the reconfigured
closed-loop system (ΣPf , ΣR, ΣC ) as formulated in Assumption 2,
where ΣPf is described by (6). Recall that z is the output of
(ΣP , ΣC ) and zf is the output of (ΣPf , ΣR, ΣC ). Indeed, we wish
to solve the following problem.

Problem 1 (Stability and Setpoint Tracking Recovery). Consider the
nominal controller (4), the nominal PWA system (1), and the faulty
PWA system (6). Find a reconfiguration block ΣR such that
• {(ΣP , ΣC ) ISS w.r.t. (r, d)} ⇒ {(ΣPf , ΣR, ΣC ) ISS w.r.t. (r, d)},

and
• for all x0 ∈ Rn, xc0 ∈ Rnc and for d(t) = d̄ρ(t), d̄ ∈ Rk, and

r(t) = r̄ρ(t), r̄ ∈ Rq, it holds that {lim supt→∞ ‖r(t)−z(t)‖ ≤

K} ⇒ {lim supt→∞ ‖r(t)− zf (t)‖ ≤ K} for any initialisation ζ0
of ΣR.

In other words, we wish to recover the nominal stability
and steady-state setpoint tracking properties. The solution to
Problem 1 is given in the next section.

5. Stability and setpoint tracking recovering reconfiguration
method

5.1. Reconfiguration block

In this section, the realisation of the reconfiguration block ΣR
is described. We first address the recovery from sensor faults and
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a b c

Fig. 3. (a) Nominal closed-loop system, (b) reconfigured closed-loop system with new controller, (c) reconfigured closed-loop system for fault-hiding.
assume in this section that an exogenous system

ḋ(t) = 0 (7)

with unknown initial condition d(0) = d0 generates the constant
disturbance d(t) = d0 ∀t ≥ 0. The approach consists in the
estimation d̂ of the disturbance d. The estimate d̂ is used as an
input to the virtual sensor, and we obtain the extended PWA virtual
sensor

Σ̄S :


˙̂xf (t) = (Ai − LCf )x̂f (t) + af ,i + Bf uf (t) + Lyf (t)

+ Bd d̂(t) for x̂f ∈ Λi, i ∈ {1, . . . , p}
˙̂d(t) = Ld


yf (t) − Cf x̂f (t)


ŷc(t) = Pyf (t) + (C − PCf )x̂f (t)

(8)

(Fig. 4) with the initial conditions x̂f (0) = x̂f ,0, d̂(0) = d̂0
and the free parameters L, Ld, and P . The extended virtual sensor
is an extension of the PWA virtual sensor introduced in Richter
et al. (2008), where the disturbance estimator and the throughput
gain P ∈ R(r×r) have been added. One useful choice of P is an
identity matrix modified by setting every row corresponding to a
faulty sensor to zero. Consequently, the faulty measurement yf is
transformed into an estimate ŷc of the fictitious truemeasurement
Cxf (obtainedwithout sensor faults), whereP admits the parts of yf
unaffected by faults, and the correction term (C − PCf )x̂f adds the
information gained in the state estimation process. If only sensor
faults but no actuator faults are present, then the extended PWA
virtual sensor (8) is the complete reconfiguration block and its
output ŷc is directly connected to the nominal controller.

The state estimation error e and the disturbance estimation
error ed are defined as

e(t) , x̂f (t) − xf (t) (9)

ed(t) , d̂(t) − d(t) (10)

with unknown initial conditions e(0) = x̂f ,0 − x0 and ed(0) =

d̂0 − d0. The extended system (8) is rewritten in terms of the
extended observation error ē and the extended state x̄

ē(t) =


e(t)
ed(t)


, x̄(t) =


xf (t)
d(t)


(11)

as the following observation error dynamics

Σ̄e : ˙̄e(t) = k̄e (ē(t) + x̄(t)) − k̄e (x̄(t)) , (12)

where ē(0) = ē0 , (e(0)T ed(0)T )T and

k̄e


ξ
η


, (Āe,i − L̄C̄f )


ξ
η


+ āf ,i for ξ ∈ Λi,

i ∈ {1, . . . , p}
(13)

Āe,i ,


Ai Bd
0 0


, āf ,i ,


af ,i
0


, L̄ ,


L
Ld


,

C̄f ,

Cf 0


. (14)
Fig. 4. Extended PWA reconfiguration block in the reconfigured closed-loop
system.

The relevant free parameters L and Ld of the extended PWA virtual
sensor will be designed so that the extended estimation error
dynamics Σ̄e is stabilised. Note that the disturbance d is not a
genuine input to (12).

We next introduce the part of the reconfiguration block
necessary for the recovery from actuator faults. The solution
taken in this paper consists in extending the PWA virtual
actuator (Richter et al., 2008) with added integrator states xI ∈ Rq

representing an internal model of the reference input. The number
of integrators is chosen tomatch the number of components of the
output z . This idea results in an extended PWA virtual actuator

Σ̄A :



˙̃x(t) = Ajx̃(t) + aj + Buc(t) + Bd d̂(t)
for x̃ ∈ Λj, j ∈ {1, . . . , p}

ẋI(t) = Czx∆(t)
yc(t) = ŷc(t) + Cx∆(t)
uf (t) = Mx∆(t) + MIxI(t) + B+

f a∆,j
for x̃ ∈ Λj, j ∈ {1, . . . , p}

(15)

with the initial conditions x̃(0) = x̂f ,0, xI(0) = 0 as shown in
Fig. 4, where

x∆(t) , x̃(t) − x̂f (t), a∆,j , aj − af ,j, (16)

where M and MI are free parameters, and where B+

f is the
pseudoinverse of the input matrix of the faulty plant (6). The
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affine input B+

f a∆,j is introduced to compensate the bias caused
by the difference between the affine terms of the nominal and the
faulty plant, which arises, for example, from blocking actuators
as discussed before. Consider now the blockage of some actuators
whose column indices in the matrix B are collected in the index
set J . In accordance with Eq. (5), the difference (16) between the
nominal and faulty affine term

a∆ =

−
k∈J

bkuk (17)

is not mode-dependent. The desired compensation is successful if
and only if the condition

a∆ ∈ im Bf (18)

is satisfied. We introduce satisfaction of this condition as an
assumption, but note that the stability recovery does not depend
on its satisfaction, and the methods presented here are also useful
if this condition is violated (see also Remark 2 below).

Assumption 4. The faulty PWA system (6) satisfies Condition (18).

Using the function

k̄∆


ξ
η


,


Āa,j − B̄f M̄

 ξ
η


+ āf ,j for ξ ∈ Λj,

j ∈ {1, . . . , p},
(19)

where

Āa,j ,


Aj 0
Cz 0


, āf ,j ,


af ,j
0


, B̄f ,


Bf
0


,

M̄ ,

M MI


, (20)

and Assumption 4, it is straightforward to obtain the following
combined dynamics of the extended difference system:

Σ̄∆ :


ẋ∆(t)
ẋI(t)


= k̄∆


x̃(t)
xI(t)


− k̄∆


x̃(t) − x∆(t)

0


+


Buc(t) + LCf e(t)

0


. (21)

It is first shown that the reconfiguration block (8), (15) in
combination with the faulty plant (6) achieves the weak fault-
hiding goal.

Theorem 1 (Weak Fault-Hiding). The reconfigured plant (6), (8),
(15) satisfies the weak fault-hiding goal.

Proof. Based on Assumption 4, the relevant part of the reconfig-
ured plant model is given by the equations (index k such that
x̃(t) ∈ Λk)

˙̃x(t)
˙̄e(t)
ẋ∆(t)
ẋI(t)

 =


Akx̃(t) + ak + Bd d̂(t)

k̄e (ē(t) + x̄(t)) − k̄e (x̄(t))
k∆(x̃(t)) − k∆(x̃(t) − x∆(t)) + LCf e(t)

Czx∆(t)


+

B
0
B
0

 uc(t), (22a)

yc(t) =

C −PC̄f 0 0

 x̃(t)
ē(t)
x∆(t)
xI(t)

 ,

 x̃(0)
ē(0)
x∆(0)
xI(0)

 =

x̂f ,0
ē0
0
0

 , (22b)
where k∆(ξ) , (Aj − BfM)ξ + af ,j for ξ ∈ Λj, j ∈ {1, . . . , p}.
Weak fault-hiding (Definition 2) is achieved by the matching
initialisation x̂f ,0 = x0, d̂0 = 0 which implies that ē0 = 0 for
d(t) = 0 ∀t ∈ R+, and d̂(t) ≡ 0. The nominal controller is
attached to the reference system

ΣP̃ :


˙̃x(t) = Ajx̃(t) + aj + Buc(t) + Bd d̂(t)

for x̃ ∈ Λj, j ∈ {1, . . . , p}

governed by nominal dynamics. The reference state x̃ is decoupled
from the observation error ē and the difference state x∆ for d̂0 =

0 since d0 = 0. The output yc depends on x̃ and ē, where the
observation error ē is autonomous and from d ≡ 0 and d̂(0) = 0
it follows that ē ≡ 0. �

The latter matching initialisation x̂f ,0 = x0 is in general
practically not achievable, because x0 is not completely measured.
Furthermore, the disturbance does not appear in the output yc .
However, stability recovery as described in the next section is
achieved for arbitrary initialisation and considerable mismatch in
disturbance behaviour.

5.2. Problem reformulation

In this section, we characterise the tracking part of Problem 1
in alternative form. In words, we address the question how to en-
sure that the reconfigured closed-loop system (ΣPf , Σ̄S, Σ̄A, ΣC )
tracks reference trajectories r with stable dynamics based on As-
sumption 2.

The relevant output z is defined in Eq. (1). We study under
which conditions on the free gains L, Ld, P , M , and MI , we can
conclude that the corresponding output zf of the faulty system
defined in Eq. (6) asymptotically tracks the reference input to the
same precision K ≥ 0 as in the nominal case:
lim sup
t→∞

‖ez(t)‖ , lim sup
t→∞

‖r(t) − zf (t)‖

= lim sup
t→∞

‖r(t) − Czxf (t)‖ ≤ K .

From the definition (9) and (16) of the observation error e and the
difference system state x∆ respectively, one obtains the equivalent
goal
lim sup
t→∞

‖ez(t)‖ = lim sup
t→∞

‖r(t) − Cz x̃(t) + Cz(x∆(t)

+ e(t))‖ ≤ K , (23)
where it is known from Assumption 2 that lim supt→∞ ‖r(t) −

Cz x̃(t)‖ ≤ K if limt→∞ ē(t) = 0. It is thus desired that
lim supt→∞ Cz(x∆(t) + e(t)) = 0 holds. Observing that e and
x∆ are driven by different inputs d and uc , achieving the special
case Cze(∞) = −Czx∆(∞), is unrealistic in most cases. We thus
focus on separately decoupling Cze from d, which is implied by the
previous requirement that limt→∞ ē(t) = 0, as well as decoupling
Czx∆ from uc and obtain the following sufficient conditions for
solving Problem 1:
lim
t→∞

ē(t) = 0 (24)

lim
t→∞

Czx∆(t) = 0. (25)

We will focus on decoupling the extended observation error from
the disturbance by means of disturbance estimation for the case
where the constant disturbance is generated by an appropriate
exo-system (Section 5.3) to achieve (24), and the output-relevant
difference system is decoupled from the input uc to achieve (25).
It remains to justify that the state x̃ is indeed governed by
completely nominal dynamics, and that the observation error
and difference system introduced by the reconfiguration block
preserve the claimed properties. The formal justification of this
intuitively sketched solution approach is given in the proof of
Theorem 4 below.
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5.3. Main results on stability and tracking recovery

The following theorem provides the recovery from sensor
faults by solving the problem of stable and convergent state and
disturbance estimation for constant disturbance.

Theorem 2 (Disturbance-decoupled observation). Consider the
faulty PWA system (6), suppose that Assumptions 1 and 3 hold, and
suppose that the disturbance is constant (ḋ(t) = 0). If there exist ma-
trices X̄s ∈ R(n+k)×(n+k) and Ȳs ∈ R(n+k)×(r+k) that satisfy the LMIs

X̄s = X̄ T
s ≻ 0 (26a)

X̄sĀe,i + ĀT
e,iX̄s − ȲsC̄f − C̄ T

f Ȳ
T
s ≺ 0, i = 1, . . . , p (26b)

then the system (8) with L̄ , X̄−1
s Ȳs is a state and disturbance

observer for the faulty system (6). The extended observation error ē
defined in Eq. (11) satisfies the relation

‖ē(t)‖ ≤ ce−at
‖ē(0)‖, t ∈ [0, ∞), (27)

where the real numbers c > 0 and a > 0 depend only on X̄s and Ȳs.

Proof. See Appendix. �

The conditions (26) ensure that the extended PWA virtual
sensor (8) estimates both the constant disturbance and the system
state in spite of the unknown discrete system mode. The gain
P does not affect stability, but may be used, for example, to
throughput the non-faulty measurements (P = I).

Remark 1 (Occasional setpoint changes). In practice, this virtual
sensor scheme will still work appropriately for piecewise constant
disturbance with infrequent discontinuous changes. Disturbance
jumpsmay then be interpreted as changes of the observation error
initial condition. ‘‘Infrequent’’ means that the disturbance should
remain constant for several integer multiples of 1/a, where a is
defined in Eq. (27). The robustness against stronger variations of
the disturbance is discussed in Section 6 below.

The following theorem provides the recovery from actuator
faults by the stable output regulation problem for the output-
relevant difference system.

Theorem 3 (Extended difference system ISS). Consider the faulty
PWA system (6) and suppose that Assumptions 1, 3 and 4 are satisfied.
If there exist matrices X̄a ∈ R(n+q)×(n+q) and Ȳa ∈ R(m×(n+q)) that
satisfy the linear matrix inequalities

X̄a = X̄ T
a ≻ 0 (28a)

Āa,jX̄a + X̄aĀT
a,j − B̄f Ȳa − Ȳ T

a B̄
T
f ≺ 0, j = 1, . . . , p, (28b)

then the extended difference system (21) of the extended virtual
actuator (15)with M̄ , ȲaX̄−1

a is 0-GES for uc, e ≡ 0. Moreover, any
solution of the unforced difference system (21) (i.e. with uc, e ≡ 0 but
arbitrary x̃) satisfies the relation

‖x∆(t)‖ + ‖xI(t)‖ ≤ ce−at (‖x∆(0)‖ + ‖xI(0)‖) , (29)

where the real numbers c > 0 and a > 0 depend only on X̄a and
Ȳa. In other words, the difference state x∆ asymptotically converges
to the origin: limt→∞ x∆(t) = 0 for zero inputs. Furthermore,
the extended difference system is ISS w.r.t. the input (uc, e). If the
steady-state control input uc is constant and limt→∞ e(t) = 0, then
limt→∞ Czx∆(t) = 0.

Proof. See Appendix. �
Note that formally, x̃ is also an external input to the
extended difference system, but the obtained properties are valid
independently of x̃. Combining the results of Theorems 1–3, we
obtain the following main result on recovery of stability and
tracking for the reconfigured closed-loop system, which provides
the solution to Problem 1.

Theorem 4 (Reconfigured closed-loop stability and tracking recov-
ery). Suppose that Assumptions 1–4 as well as the LMIs (26)
and (28) are satisfied. Then, the reconfigured closed-loop system
(ΣPf , Σ̄S, Σ̄A, ΣC ) consisting of the controller (4), the faulty PWA sys-
tem (6), the extended PWA virtual sensor (8), and the extended PWA
virtual actuator (15) is globally ISS w.r.t. the input (r, d). Moreover,
the output zf asymptotically tracks any constant reference r(t) =

r̄ρ(t) for any constant disturbance d(t) = d̄ρ(t) to nominal preci-
sion K in the sense that lim supt→∞ ‖r(t)− zf (t)‖ ≤ K for all initial
conditions x0, x̂f ,0, and xc,0.

Proof. See Appendix. �

Both extensions that together provide stability and tracking are
based on the internal model principle. Namely, models of exo-
systems creating the admissible disturbance and reference inputs
have been embedded in the reconfiguration block (8), (15).

Remark 2 (Actuator Blockage). The violation of Assumption 4 is
not problematic. If the actuator blockage cannot be statically
compensated, the extended difference system (21) is augmented
by an additional term:

Σ̄∆ :


ẋ∆(t)
ẋI(t)


= k̄∆


x̃(t)
xI(t)


− k̄∆


x̃(t) − x∆(t)

0


+


Buc(t) + LCf e(t)

0


+


(I − Bf B+

f )a∆g(t)
0


,

where g(t) = 1, which acts like a constant additive input on the
extended difference system. As asserted in Theorem 4, the output
Cz converges to zero for constant steady-state control input. The
added term is constant andmay be considered as an addition to the
constant steady-state control input uc . In other words, its effect on
the output is compensated by the remaining control inputs due to
the extension by integrators. The compensation is only successful
if in every mode, the steady-state gain allows fault-compensation
at the output, and if the actuation range is sufficiently large.

5.4. Control reconfiguration algorithm

The design procedure for the reconfiguration block for recover-
ing stability and tracking is summarised in Algorithm 1. The steps
1–4 describe the nominal closed-loop operation before any faults
occur. Once faults are detected and isolated in step 5, the virtual
sensor and virtual actuator design activates in steps 6–11, where
the gains L, Ld ,M , andMI are designed (the gain P is arbitrary). Af-
ter completed gain calculations, the reconfigured closed-loop sys-
tem is executed in step 12.

If the relevant LMIs are infeasible, then a stabilising virtual
sensor and virtual actuator scheme might exist, but it cannot be
found using the sufficient stability conditions presented in this
paper. This problem appears to be fundamentally unavoidable,
since the problem of deciding whether all trajectories of a given
PWA system are bounded is undecidable (Blondel & Tsitsiklis,
2000). In practice, objective reconfiguration may complement
control reconfiguration, for example by removing rows from the
output matrix Cz according to a priority list until feasible solutions
are found.

At first glance, it might seem that a reduction of the con-
servatism might be achievable by seeking continuous piecewise
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Algorithm 1 Tracking PWA virtual actuator and sensor synthesis
Require: PWA model Ai, ai, B, Bd , C , Cz for i ∈ {1, . . . , p}, initial time

t0 < 0, guessed initial condition x̂f ,0
1: Initialise the nominal closed-loop system (1), (4), (8), (15), with Cf =

C , Bf = B, af ,i = ai, L = 0, Ld = 0, P = I ,M = 0, MI = 0, x(t0) = x0,
xc(t0) = xc0, x̂f (t0) = x̂f ,0, d̂(t0) = 0, x̃(t0) = x̂f ,0, xI(t0) = 0.

2: Solve LMI (26) with Cf = C and compute a stabilising virtual sensor
gain L̄ , X̄−1

s Ȳs, update extended PWA virtual sensor (8)
3: repeat
4: Run nominal closed-loop system
5: until actuator or sensor fault f isolated
6: Construct fault model af ,i, Bf , Cf and update the extended PWA virtual

sensor (8) and the extended virtual actuator (15)
7: Solve LMIs (26) and (28) for X̄s, Ȳs, X̄a, Ȳa
8: Compute L̄ , X̄−1

s Ȳs and M̄ , ȲaX̄−1
a

9: Update extended PWA virtual sensor (8) with L̄, and arbitrary P
10: Wait for virtual sensor to converge for specified time interval
11: Update PWA virtual actuator (15) with M̄ and initialise x̃(tr ) = x̂(tr )
12: Run reconfigured closed-loop system (4), (6), (8), (15)
Result: Globally ISS reconfigured closed-loop system that tracks constant

reference inputs in spite of constant disturbances.

quadratic Lyapunov functions instead of common quadratic Lya-
punov functions as in Johansson and Rantzer (1998) and Lin and
Antsaklis (2009). However, we note that in those works, sufficient
conditions for stability (and stabilisation) in terms of the existence
of piecewise quadratic Lyapunov functions have been obtained for
equilibria of PWA systems. In the approach presented in this pa-
per, we require the stability of time-varying solutions of certain
PWA systems (such as the observation error and difference sys-
tems), and we study such stability properties using the concepts
of convergence/incremental stability. To our knowledge, no such
characterisation of incremental stability or convergence for PWA
systems in terms of piecewise quadratic Lyapunov functions exists
to date. The derivation of such a theory seems to be far from trivial.

6. Robustness analysis

In the previous sections, it has been tacitly assumed that
the nominal and faulty plants are accurately modeled as PWA
systems, and moreover, that the disturbance is constant. This
section relaxes these assumptions and studies the robustness of
the reconfiguration scheme against model approximation errors
and time-varying disturbance. Both issues are serious in practice.
For the following analysis, we assume that the faulty nonlinear
system is an input-affine system of the form

ΣPf ,NL :

ẋf (t) = f (xf (t)) + Bf uf (t) + Bdd(t) (30)

with f continuous, whereas the PWA virtual sensor (8) is based
on the PWA model (6). The difference between the input-affine
model (30) and the PWA model (6),

ε(xf ) = f (xf ) − Aixf − af ,i for xf ∈ Λi, i ∈ {1, . . . , p}, (31)

represents the unknown nonlinear approximation error. The
disturbance is now assumed to be time-varying and generated by
the exo-system

Σd :

ḋ(t) = ϱ(t), d(0) = d0, (32)

where the disturbance variation rate is modelled through ϱ. Using
the model approximation error (31), the input-affine system (30)
is re-written as a perturbed PWA system:

ΣPf ,NL :


ẋf (t) = Aixf (t) + af ,i + Bf uf (t) + Bdd(t) + ε(xf (t))
for xf (t) ∈ Λi, i ∈ {1, . . . , p}.

It is assumed that the model approximation error ε is uniformly
bounded, which is always achievable on a compact subset X of
state space by sufficient refinement of the state-space partition
that underlies the PWA system model, and it is likewise assumed
that the disturbance variation rate ϱ is globally bounded:

∃E such that ∀xf ∈ X ⊂ Rn
: ‖ε(xf )‖ ≤ E (33)

∃F such that ∀t ∈ R : ‖ϱ(t)‖ ≤ F . (34)

In order to obtain robustness for the reconfigured closed-loop
system, Assumption 2 is replaced by the following assumption
about robustness of the nominal control scheme.

Assumption 5 (Robust stabilising and tracking nominal control).The
feedback interconnection (ΣP , ΣC ) of the nominal PWA system (1)
with bounded measurement noise ny (y(t) = Cx(t) + ny(t))
and the nominal controller (4) is ISS w.r.t. the input (r, d, ny) and
IOS w.r.t. the input (r, d, ny) and the output (x, uc). Furthermore,
constant reference commands r(t) = r̄ρ(t), r̄ ∈ Rq, are asymp-
totically tracked to precision K ′

≥ 0 in the presence of time-
varying disturbances d(t) and measurement noise ny(t) (y(t) =

Cx(t) + ny(t) with the property limt→∞ ny(t) ≠ 0) with constant
steady-state control input ūc ∈ Rm in the sense that for all x0, xc0
{d(t)according to (32), r(t) = r̄ρ(t)}

⇒


lim sup
t→∞

‖r(t) − z(t)‖ ≤ K ′

lim
t→∞

uc(t) = ūc .

Note that due to the time-varying disturbance and the persistent
measurement noise, the tracking precision K ′ is typically larger
than the nominal tracking precision of Assumption 2. The
magnitude of K ′ will typically depend on the variation bound E on
‖ϱ‖ as well as on a bound on measurement noise ‖ny‖.

The inclusion of the model approximation error and the time-
varying disturbance leads to the following new dynamics for the
extended observation error:

Σ̄e :

˙̄e(t) = k̄e(x̄(t) + ē(t)) − k̄e(x̄(t)) − ε̄(xf (t)) − ϱ̄(t), (35)

where

ε̄(xf (t)) ,


ε(xf (t))

0


, ϱ̄(t) =


0

ϱ(t)


,

and the extended observation error ē, the extended state x̄, and the
function k̄e(·) as in Eqs. (11) and (13).

Theorem 5 (Robustness against model approximation error and
time-varying disturbance). Consider the faulty nonlinear system (30)
reconfigured bymeans of the extended PWA virtual sensor (8) and the
extended PWA virtual actuator (15), and suppose that Assumptions 1,
3 and 5 aswell as the LMIs (26) and (28) are satisfied. The reconfigured
closed-loop system (ΣPf ,NL, Σ̄S, Σ̄A, ΣC ) is ISpS w.r.t. the input
(r, ϱ). Moreover, if the reference input and the steady-state control
input are constant, and if the nominal closed-loop system tracks the
reference to precision K ′, then the reconfigured closed-loop system
tracks the reference input to degraded precision K ′

+ c · E + d · F ,
where c, d > 0.

Proof. See Appendix. �

This result shows that the reconfigured closed-loop stability
and tracking recovery properties are not suddenly lost if assump-
tions regardingmodel knowledge and constant disturbance inputs
are violated. Rather, the tracking accuracy degrades gradually as
the model error and the disturbance variation increase. Due to the
visibility of the observation error at the output yc , the controller
may reject the disturbance induced by the model approximation
error, as the example in Section 7 below will demonstrate.

In addition, it can be shown that the reconfigured closed-
loop system is small-gain robust against fault diagnosis uncer-
tainty (Richter, Heemels, van de Wouw, & Lunze, 2010). The
analysis is omitted due to lack of space.
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7. Example application

A successful application of Algorithm 1 to the model of a two-
tank system is presented in this section. The plant consists of tanks
T1 and T2 of cross-sectional area 0.0177 m2 with levels h1 and h2,
respectively inm. The tanks are interconnected by a lower valve uL
and an upper valve uU , where T1 is filled via pump uP and disturbed
by unmodelled outflow d in ml/s. With the state x = (h1, h2)

T

and the input vector u = (uP , uL, uU)T , the plant is approximately
described by the model (1) with the parameters

B = 10−3

8.1 −2.9 −3.4
0 2.9 3.4


, Bd = 10−5


5.64
0


,

Bf = 10−3

8.1 0 −0.68
0 0 0.68


, C =


1 0
0 1


,

Cf =


0 0
0 1


,

where the mode-dependent model parameters (Ai, ai, i =

1, . . . , 22) are available from Richter et al. (2010) and the gains
include suitable unit conversions where applicable. The fault-
free tanks system is controlled by two linear decentralised
proportional-integral feedback controllers and a constant input:

uP(t)
uL(t)
uU(t)


=


50 · (r1(t) − y1(t)) + 4 ·

∫ t

0
(r1(τ ) − y1(τ ))dτ

50 · (r2(t) − y2(t)) + 4 ·

∫ t

0
(r2(τ ) − y2(τ ))dτ

0.8

 .

The controlled quantities are the levels h1, h2, for which the
control aims are firstly stability, and secondly regulation to a given
setpoint. The considered faults are an abrupt and non-transient
blockage of the level sensor for h1 (f1 : yf ,1(t) = 0.3 for t > tf 1) at
time tf 1 = 60 s, an abrupt and non-transient failure of the lower
valve, and gain reduction for the upper valve (f2 : uf ,L(t) = 0 for
t > tf 2, uf ,U(t) = 0.2uU(t) for t > tf 2) at fault time tf 2 = 80 s. The
plant is excited by reference steps r1(t) = 0.15 m for t ≤ 30 s
and r1(t) = 0.45 m for t > 30 s for the level h1 as well as
r2(t) = 0.05 m for t ≤ 100 s and r2(t) = 0.08 m for t > 100 s for
the level h2. The steps drive the process through a large operating
range, and thus realistically describe a startup procedure. A non-
modelled outflow from tank T1 starting at 65 s is represented as
a disturbance d, where d(t) = 0 ml/s for 0 s ≤ t < 65 s, and
d(t) = −20ml/s for 65 s≤ t ≤ 300 s. Note that the fault breaks the
loop at several points and the reconfigurationmethodmust change
the control loop structure to meet the control objectives.

Fig. 5 shows the behaviour of the reconfigured closed-loop
system with a periodic reference input r2 with peak-to-peak
amplitude 0.015 m and period T = 40 s. The plant is represented
by a detailed nonlinear model instead of the PWA model that
is used in the reconfiguration blocks, so as to demonstrate the
robustness of our method with respect to model uncertainties
and time-varying disturbance. Times t ∈ [0, tf 1] correspond to
the steps 1–4 of Algorithm 1. The application of steps 5–11 of
Algorithm 1 result in L, Ld at t = 60 s M , MI at t = 80 s as follows
(where P = 0):

L =


0 334.7
0 34.4


, Ld =


0 6.9


,

M =

114.6 116.4
0 0

−6.6 1350


, MI =

167.1 168
0 0
1.4 1977


.

Each gain computation phase took about 6 s using MATLAB 7 on a
Pentium D 2.8 GHz with 1GB RAM using YALMIP (Löfberg, 2004)
and Sedumi 1.05 (Sturm, 1999).
Fig. 5. Robust behaviour of the disturbed reconfigured closed-loop system with
periodic excitation (faulty plant represented by detailed nonlinear model).

The actuator blockage of uL is compensated by uU , as the figure
clearly shows. It is clearly visible that the tank levels and the
control inputs are periodic with the same period. The observation
error e (not shown) tends to zero, while the difference system
x∆ (not shown) does not stay at the origin, but is periodically
perturbed by the control input uc . Nevertheless, the difference is
small, less than or equal to one millimeter. Consequently, practical
tracking is achieved also for periodic reference inputs in this
case, and in spite of considerable modelling error: the detailed
nonlinear model is of the form ẋ = f (x) + g(x)uc (Blanke
et al., 2006), whereas the state-dependent input gain g must be
approximated by a constant gain in the class of PWA models
considered in this paper. The disturbance estimate is affected by
the model uncertainties, but its mean (−15.6 ml/s) is reasonably
close to the true disturbance (−20 ml/s). Additional experiments
not presented here have shown that linear reconfiguration blocks
are not capable to achieve stabilising reconfiguration during this
transient startup operation. This observation highlights the value
of PWA model-based control reconfiguration.

In summary, this example has demonstrated the value of our
method for complex PWA systems, and its usefulness in the
presence of considerable model uncertainty and time-varying
disturbances. Due to space limitations, reports on an example
with larger state-space dimension have to be deferred to a future
publication.

8. Conclusions

A novel approach to the reconfigurable control of piecewise
affine systems was presented, which works by placing a reconfig-
uration block between the faulty plant and the nominal controller.
This idea is a generalisation of the fault-hiding framework from
linear systems towards piecewise affine systems. The main prob-
lems that had to be overcome in this generalisation arose from
the fact that in piecewise affine systems, the superposition prin-
ciple is lost and the separation principle does not hold in the same
way as in the linear case. Therefore, the proposed solutions re-
quired a completely new design perspective for reconfiguration
block. The gains of the reconfiguration block are designed based
on feasible solutions to a set of linear matrix inequalities, which
are efficiently solvable (Algorithm 1). The feasibility of these LMIs
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implies a reconfigured closed-loop system that recovers input-to-
state stability and setpoint tracking properties (Theorem4). The ro-
bustness of the approach with respect to model uncertainties and
non-constant disturbances in the sense of input-to-state stability
(Theorem 5) was shown. Finally, we demonstrated the strength
and robustness of the reconfiguration solution in the startup pro-
cedure of an example.

Experimental trials of the approach presented in this paper on
a large-scale thermofluid process that has been used previously to
evaluate linear fault-hiding approaches (Richter et al., 2007) are
currently underway. As an outlook, the explicit consideration of
actuator saturations and state constraints, which are frequently
present in technical systems, is a relevant topic for future
extension. A reduction of the conservatism resulting from the
use of common quadratic Lyapunov functions would be desirable.
However, the problem is extremely challenging as it requires
a general characterisation of incremental stability properties in
terms of piecewise quadratic Lyapunov functions, which is at
present an open problem.
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Appendix. Proofs

Proof of Theorem 2. Noting that the function (13) is continuous,
we construct a Lyapunov function V (ē) =

1
2 ē

T X̄sē. Proposition 1
implies that

V̇ (ē) = ēT X̄s ˙̄e = ēT X̄s(k̄e(x̄ + ē) − k̄e(x̄)) ≤ −aēT X̄sē,
a > 0,

(A.1)

which immediately implies the inequality (27). The inequality (A.1)
follows from Proposition 1 if the extended system satisfies

X̄s(Āe,i − L̄C̄f ) + (Āe,i − L̄C̄f )
T X̄s ≺ 0, i = 1, . . . , p,

which is equivalent to the LMIs (26) after introduction of the new
variable Ȳs = X̄sL̄. �

Proof of Theorem 3. Noting that the function (19) is continuous,
we construct a Lyapunov function V ((xT∆, xTI )

T ) =
1
2


xT∆ xTI


X̄−1
a

xT∆ xTI
T , and use Proposition 1 to obtain the following

properties of its derivative

V̇ ((xT∆, xTI )
T ) =


xT∆ xTI


X̄−1
a


k̄∆(x̃, xI) − k̄∆(x̃ − x∆, 0)

+


Buc + LCf e

0


≤ −a


x∆

xI

T

X̄−1
a


x∆

xI


+


x∆

xI

T

X̄−1
a


Buc + LCf e

0


for some a > 0, which is readily transformed into a Lyapunov
characterisation of ISS with respect to the input (uc, e). The latter
inequality follows from Proposition 1 if the extended difference
system satisfies the inequality

X̄−1
a (Āa,j − B̄f M̄) + (Āa,j − B̄f M̄)T X̄−1

a ≺ 0, j = 1, . . . , p,

which is equivalent to the LMIs (28) after multiplication of the
LMI with X̄a from left and right and introduction of the new
variable Ȳa = M̄X̄a. We have thus proven that the extended
difference system (21) is ISS w.r.t. the input (uc, e) if the given
LMIs are satisfied. It remains to be proven that limt→∞ Czx∆(t) =

0 as uc becomes constant in steady state. This property is
proven by showing that the extended difference system (21)
is exponentially convergent, and thus a constant steady-state
input implies a constant steady-state solution for the extended
difference system. Consider a candidate Lyapunov function V for
exponential convergence:

V =

(x∆,2 − x∆,1)

T (xI,2 − xI,1)T

P

x∆,2 − x∆,1
xI,2 − xI,1


.

Along solutions of (21) the time derivative of V satisfies

V̇ =

(x∆,2 − x∆,1)

T (xI,2 − xI,1)T

P ·


k̄∆


x̃

xI,2


− k̄∆


x̃

xI,1


− k̄∆


x̃ − x∆,2

0


+ k̄∆


x̃ − x∆,1

0


Using twice the fact that the function k̄∆ satisfies the inequality (3),
one obtains that there exists an a > 0 such that

V̇ ≤ −a

0T (xI,2 − xI,1)T


P


0
xI,2 − xI,1


− a


(x∆,2 − x∆,1)

T0T  P x∆,2 − x∆,1
0


. (A.2)

Since P = PT
≻ 0, it follows that P has the structure P̄ =

P11 0
0 P22


≻ 0 from the partition P =


P11 P12
P12 P22


. Hence, Eq.

(A.2) gives

V̇ ≤ −a

(x∆,2 − x∆,1)

T (xI,2 − xI,1)T

P

x∆,2 − x∆,1
xI,2 − xI,1


.

Therefore, the extended difference system (21) is uniformly
exponentially convergent and its solutions converge to a unique
steady-state solution, which is constant if the control input is
constant (Pavlov et al., 2006, Property 2.23). From Theorem 2,
limt→∞ ē = 0 for ḋ = 0. Due to Assumption 2, limt→∞ uc(t) =

ūc is true, so uc becomes constant in the limit and (x∆, xI)
converges to a constant steady-state solution due to Pavlov et al.
(2006, Property 2.25). According to (15), xI constant and x∆

constant together imply that Czx∆ = 0, and it follows that
limt→∞ Czx∆(t) = 0, as claimed. The boundedness of solutions of
the extended difference system in the case of non-constant inputs
is guaranteed by its ISS property. �

Proof of Theorem 4. The interconnection (Σ̄e, Σ̄∆) is proven to
be ISS with respect to the input (uc, x̃, d) using Theorems 2
and 3 as follows. It was shown in Theorem 2 that ‖ē(t)‖ ≤

ce−at
‖ē(0)‖ for t ≥ 0. In other words, the ISS gain of the

system Σ̄e from (x∆, x̃) to ē is zero. The system Σ̄∆ has finite
ISS gain from its inputs uc, x̃ and e to (x∆, xI). Moreover, the
IOS gain (see Jiang et al., 1994) from x̃ to x∆ is zero. From the
ISS small-gain theorem (Khalil, 2002, Theorem 5.6) and the IOS
small gain theorem (Jiang et al., 1994, Theorem 2.1), it follows
that the feedback interconnection (Σ̄e, Σ̄∆) is ISS w.r.t. the input
(uc, x̃, d), hence also IOSw.r.t. the outputs (e, x∆). An explicit proof
based on elementary manipulations of comparison functions is
straightforward to obtain.

Next, the ISS property for the reconfigured extended closed-
loop system (ΣPf , Σ̄S, Σ̄A, ΣC ) must be verified, which is graphi-
cally shown in Fig. 6. In particular, the feedback signal ē = (eT , eTd)

T

exponentially converges to zero by Theorem 2. The state variable
xI in Σ̄∆ is not part of a feedback interconnection. However, the
state observation error e and the disturbance observation error ed
are in feedback interconnection with ΣP̃ . We note that by Theo-
rem 2, the signal ed exponentially converges to zero for arbitrary
inputs uc , x̃. Therefore, the IOS gain of the system (Σ̄e, Σ̄∆) from
the input (uc, x̃) to the output (e, ed) is zero and it follows from the
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Fig. 6. Transformed extended closed-loop system (4), (6), (8), (15).

Fig. 7. Transformed extended reconfigured closed-loop system (4), (6), (8), (15)
with model approximation error.

IOS small-gain theorem (Jiang et al., 1994, Theorem 2.1) and from
Assumption 2 that the reconfigured closed-loop system is ISS. Note
that Assumption 2 is applicable to (ΣP̃ , ΣC ) since limt→∞ ē(t) = 0
holds and (ΣP̃ , ΣC ) is assumed to be ISS w.r.t. ē. Therefore, it has
been shown that Problem 1 is solved with respect to stability re-
covery.

It remains to be verified that Problem 1 is also solved with
respect to setpoint tracking recovery. In Section 5.2, it has been
shown that the reconfigured closed-loop system tracks constant
setpoints to precision K provided that the nominal closed-loop
system tracks them to this precision, and provided that the
extended observation error ē vanishes and difference systems
state x∆ seen through the output matrix Cz vanishes. According
to Fig. 6, the system (ΣP̃ , ΣC ) is governed by nominal dynamics
except for the observation errors e and ed that perturb the nominal
closed-loop system in the formof intermittentmeasurement noise,
since limt→∞ e(t) = 0 and limt→∞ ed(t) = 0. Consequently,
Assumption 2 also applies to the system (ΣP̃ , ΣC ) and the
complete solution to Problem 1 is provided. �

Proof of Theorem 5. Noting that the function k̄e in (13) is
continuous, a Lyapunov function V (ē) =

1
2 ē

TXē is constructed for
the system (35). The satisfaction of LMI (26) implies according to
Proposition 1 that there exists b > 0 and θ ∈ (0, 1) such that

V̇ (ē) = ēTX ˙̄e = ēTX

k̄e(x̄ + ē) − k̄e(x̄) − ε̄(xf ) − ϱ̄


≤ −(1 − θ)b‖ē‖2

− θb‖ē‖2
+ ‖ē‖ · ‖X‖E

+ ‖ē‖ · ‖X‖ · ‖ϱ‖, b > 0, θ ∈ (0, 1)

≤ −(1 − θ)b‖ē‖2 if ‖ē‖ >
‖X‖

θb
(E + F)

which is a Lyapunov characterisation of the ISpS property (Jiang
et al., 1994). In the presence of disturbance variation, the extended
observation error converges to a ball proportional in size to the
bound on the disturbance variation


‖X‖

θb (E + F)
λmax(X)

λmin(X)


.

With this result for the ISpS of the observation error, the
remaining proof of closed-loop ISpS follows closely the reasoning
of the proof of Theorem 4, which is not repeated here. The proof
is based on the observation that the model error ε only affects the
observation error, but neither the difference system, nor the ISS
small-gain properties of the interconnection (Σe, Σ∆) (Fig. 7).

The reduced tracking precision follows from the consider-
ation that the observation error is bounded by a constant
proportional to the model error bound E, that the bounded ob-
servation error induces a bounded difference system state whose
bound is also proportional to the model error bound E, and
the fact that the steady-state tracking error satisfies the relation
lim supt→∞ ‖ez(t)‖ = lim supt→∞ ‖r(t) − Cz x̃(t) + Cz(x∆(t) +

e(t))‖, where lim supt→∞ ‖r(t) − Cz x̃(t)‖ ≤ K ′ from Assump-
tion 5, limt→∞ ‖Cze(t)‖ ≤ c(E + F) for c = ‖X‖/(θb), and
limt→∞ ‖Czx∆(t)‖ ≤ c · d · (E + F) where d is the ultimate
gain of Σ̄∆ w.r.t. the input e and the output x∆, and therefore
lim supt→∞ ‖ez(t)‖ ≤ K ′

+ c · d · (E + F). Note that e and ed act as
persistent measurement disturbances on the system ΣP̃ . �
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