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a b s t r a c t

In this paper we develop a prescriptive framework for the stabilising controller design based on
approximate discrete-time models for nonlinear Networked Control Systems (NCSs) with time-varying
sampling intervals, large time-varying delays and packet dropouts. As opposed to emulation-based
approaches where the effects of sampling-and-hold and delays are ignored in the phase of controller
design, we propose an approach in which the controller design is based on approximate discrete-time
models constructed for a set of nominal (non-zero) sampling intervals and nominal delays while taking
into account sampling-and-hold effects. Subsequently, sufficient conditions for the global exponential
stability of the closed-loop NCS are provided.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Networked control systems (NCSs) are control systems inwhich
sensor data and control commands are being communicated over a
wired or wireless communication network. The recent increase of
interest in NCSs is motivated by the many benefits they offer such
as ease of maintenance and installation, large flexibility and low
cost. Moreover, NCSs are applied in a broad range of systems, such
as mobile sensor networks, remote surgery, automated highway
systems and unmanned aerial vehicles. However, many challenges
still need to be facedbefore all the advantages of networked control
systems can be exploited to their full extent. One of themajor chal-
lenges is related to guaranteeing the robustness of stability (and
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performance) of the control system in the face of imperfections
and constraints imposed by the communication network, such as
variable sampling/transmission intervals, variable communication
delays and packet dropouts caused by the unreliability of the net-
work, so-called communication constraints caused by the sharing
of the network by multiple nodes and quantization-related errors.

Most of the work on NCSs has been focussing on the
stability analysis of linear NCSs, in which different approaches
towards the modelling and stability analysis have been developed.
In Gao, Chen, and Lam (2008), Naghshtabrizi, Hespanha, and
Teel (2010) and van de Wouw, Naghshtabrizi, Cloosterman,
and Hespanha (2010) a continuous-time modelling approach is
taken leading to NCS models in terms of (impulsive) delay-
differential equations (DDEs) and stability analysis results based
on the Razumikhin and Lyapunov–Krasovskii functional methods.
Discrete-time approaches, based on the exact discretisation of
the linear plant (typically on the sampling instants) have been
developed in Cloosterman et al. (2010, 2009), Fujioka (2009),
Garcia-Rivera and Barreiro (2007), Hetel, Daafouz, and Iung (2006),
Sala (2005), van de Wouw et al. (2010) and Zhang, Branicky, and
Phillips (2001); Zhang, Shi, Chen, and Huang (2005) and many
others.

Results on the stability analysis and controller design for
nonlinear NCSs have also been obtained in the literature. In Yu,
Wang, and Chu (2005), Cao, Zhong, and Hu (2008) a continuous-
time approach leading to NCS models in terms of DDEs and
a stability analysis based on Lyapunov–Krasovskii functionals
is pursued for certain classes of nonlinear systems. Results
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on the stabilisation of nonlinear systems with limited-capacity
communication channels (i.e. quantisation-related issues) have
been reported in Liberzon and Hespanha (2005), Savkin and Cheng
(2007). Model predictive control strategies for nonlinear NCSs can
be found in e.g. Munoz de la Pena and Christofides (2008) and Liu,
Munoz de la Pena, Christofides, and Davis (2009). In Heemels, Teel,
van deWouw, andNesić (2010), Nesić and Teel (2004a) andWalsh,
Belidman, and Bushnell (2001) a comprehensive emulation-based
framework for the stability analysis of nonlinear NCSs has been
developed, where the control design is based on the continuous-
time plant, ignoring the effect of sampling-and-hold and the
network, and stability analysis is performed on the basis of a hybrid
systemsmodel of theNCS. These results consider network-induced
effects such as time-varying sampling intervals, delays, packet
dropouts, communication constraints and quantisation; however,
the results are limited to the case of delays smaller than the
sampling interval.

Results on discrete-time approaches for nonlinear NCSs are
rare. Some extensions of the discrete-time approach for sampled-
data systems as developed in Nesić and Teel (2004b) and Nesić,
Teel, and Kokotovic (1999) towards NCS-related problem settings
have been pursued in Polushin and Marquez (2004, 2008). In
Polushin and Marquez (2004), an extension towards multi-rate
sampled-data systems is proposed. In Polushin and Marquez
(2008), results for NCSs with time-varying sampling intervals
and delays for a specific predictive control scheme and matching
protocol are presented. However, in these results the delays are
always assumed to be a multiple of the sampling interval and
delays are artificially elongated to match a ‘worst-case’ delay.

In this paper, we consider the problem setting of a nonlinear
system being controlled by a digitally implemented (discrete-
time) nonlinear controller over a communication network. In
particular, we develop a prescriptive framework for the stabilising
controller design based on approximate discrete-time models
for NCSs with time-varying sampling intervals, potentially large
(i.e. larger than the sampling interval) and time-varying delays,
not being limited to multiples of the sampling interval, and packet
dropouts. Although an emulation-based approach is powerful in
its simplicity since, in the phase of controller design, one ignores
sampled-data and network effects, an approach towards stability
analysis and controller design based on approximate discrete-
time models may exhibit several advantages over an emulation-
based approach. Firstly, in the emulation approach one typically
designs the controller for the case of fast sampling (and no delay)
and subsequently investigates the robustness of the resulting
closed-loop NCS with respect to uncertainties in the sampling
intervals (and delays), see Heemels et al. (2010) and Nesić and Teel
(2004a). In the context of networked control one generally faces
the situation in which sampling intervals exhibit some level of
jitter (uncertainty) around a nominal (non-zero) sampling interval
and the delays exhibit some uncertainty around a nominal delay.
It appeals to our intuition, which is supported by earlier results
for nonlinear sampled-data systems in Laila, Nesic, and Astolfi
(2006), Nesić and Teel (2004b) and Nesić et al. (1999) that it is
beneficial to design a discrete-time controller based on a nominal
(non-zero) sampling interval and a nominal delay. Secondly, it
has been shown in Laila et al. (2006) and Nesić et al. (1999) for
the case of nonlinear sampled-data systems with fixed sampling
intervals (and no delays) that controllers based on approximate
discrete-timemodels may provide superior performance (in terms
of the domain of attraction and convergence speed) compared to
emulation-based controllers. Finally, we would like to note that,
for the case of linear NCSs, it has been shown in Donkers, Heemels,
Hetel, van de Wouw, and Steinbuch (2011), that the discrete-
time approach may provide less conservative bounds on sampling
intervals and delays.
Fig. 1. Schematic of the networked control system.

The main contribution of this paper can be summarised as
follows. We extend the results of Nesić et al. (1999) and Nesić
and Teel (2004b) on the stabilisation of nonlinear sampled-data
systems based on approximate discrete-time models to the case
with time-varying and uncertain sampling intervals and delays.
Based on such an extension, we develop a prescriptive framework
for the design of robustly stabilising discrete-time controllers for
nonlinear NCSs with time-varying sampling intervals, large time-
varying delays and packet dropouts. In this sense it also extends
results on the discrete-time approach for linear NCSs with such
network-induced uncertainties, as developed in Cloosterman et al.
(2010, 2009), Fujioka (2009), Garcia-Rivera and Barreiro (2007),
Hetel et al. (2006), Sala (2005), van de Wouw et al. (2010) and
Zhang et al. (2001, 2005) and exploiting exact discretisations of the
sampled-data NCS dynamics, to the realm of nonlinear systems.

The outline of the paper is as follows. In Section 2, an (approx-
imate) discrete-time modelling approach for nonlinear NCSs will
be discussed. Based on the resulting approximate discrete-time
models and discrete-time controllers designed to stabilise these
approximate models, we propose sufficient conditions for the
global exponential stability of the closed-loop sampled-dataNCS in
Section 3. The results are illustrated by means of an example in
Section 4. Finally, concluding remarks are given in Section 5. The
proofs can be found in Appendix A.

The following notational conventions will be used in this
paper. R denotes the field of all real numbers and N denotes
all nonnegative integers. By | · | we denote the Euclidean norm.
A function α: [0,∞) → [0,∞) is said to be of class-K if it is
continuous, zero at zero and strictly increasing. It is of class-K∞

if it is of class-K and unbounded. For a locally Lipschitz function
f (x), ∂ f (x) denotes the generalised differential of Clarke.

2. Discrete-time modelling of nonlinear NCSs

Consider a NCS as depicted schematically in Fig. 1. The NCS
consists of a nonlinear continuous-time plant

ẋ = f (x, u), (1)

where f (0, 0) = 0 and f is globally Lipschitz in x and u, x ∈ Rn

is the state and u ∈ Rm is the continuous-time control input,
and a discrete-time static time-invariant controller, which are
connected over a communication network that induces delays (τ sc
and τ ca). The state measurements of the plant are being sampled
by a time-driven sampler at the sampling instants sk, k ∈ N, with
s0 = 0. The related sampling intervals hk = sk+1 − sk are time-
varying and satisfy hk ∈


h, h


, k ∈ N, with 0 < h ≤ h.

We denote xk := x(sk). Moreover, uk denotes the discrete-time
controller command corresponding to xk. In the model, both the
varying computation time (τ ck ), needed to evaluate the controller,
and the time-varying network-induced delays, i.e. the sensor-to-
controller delay (τ sck ) and the controller-to-actuator delay (τ cak ),
are taken into account. As stated above, the sensor acts in a
time-driven fashion and we assume that both the controller and
the actuator act in an event-driven fashion (i.e. they respond
instantaneously to newly arrived data). Under these assumptions
and given the fact that the controller is static and time-invariant, all
three delays can be captured by a single delay τk := τ sck + τ ck + τ cak
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Fig. 2. Graphical illustration of tkj .

(Zhang et al., 2001). Furthermore, we model the occurrence of
message rejection, i.e. the effect that older data is neglected
becausemore recent control data is available before the older data.
We assume that the time-varying delays are bounded according to
τk ∈


τ , τ


, k ∈ N, with 0 ≤ τ ≤ τ . Note that the delays may

be both smaller and larger than the sampling interval. Define d :=

⌊τ/h⌋, the largest integer smaller than or equal to τ/h and d :=

⌈
τ
h ⌉, the smallest integer larger than or equal to τ/h. Finally, the

zero-order-hold (ZOH) function (in Fig. 1) is applied to transform
the discrete-time control inputs uk, k ∈ N, to a continuous-time
control input u(t) = uk∗(t), where k∗(t) := max{k ∈ N|sk + τk ≤

t}. More explicitly, in the sampling interval [sk, sk+1), u(t) can be
described by

u(t) = uk+j−d for t ∈ [sk + tkj , sk + tkj+1), (2)

where the actuation update instants tkj ∈ [0, hk] are defined as, see
Cloosterman et al. (2010):

tkj = min

max

0, τk+j−d −

k−1
l=k+j−d

hl

 ,
max

0, τk+j−d+1 −

k−1
l=k+j+1−d

hl

 ,
. . . ,max


0, τk−d −

k−1
l=k−d

hl


, hk

 (3)

with tkj ≤ tkj+1 and j ∈ {0, 1, . . . , d − d}. Moreover, 0 = tk0 ≤

tk1 ≤ · · · ≤ tk
d−d

≤ tk
d−d+1

:= hk. See Fig. 2 for a graphical explana-

tion of the meaning of the control update instants tkj . Note that the
expression for the continuous-time control input in (2) and (3) ac-
counts for possible out-of-order packet arrivals andmessage rejec-
tion. Let us define the vectorψk

j =

τk−d+j τk−d+j+1 · · · τk−d hk−d+j

hk−d+j+1 · · · hk
T

containing all past delays and sampling in-
tervals defining tkj , i.e. we can write (3) as tkj = tkj (ψ

k
j ). Note

that ψk
j ∈ Ψj :=


τ , τ

d−d−j+1
×

h, h

d−j+1
for all k ∈ N and

j ∈ {0, 1, . . . , d − d}.

Remark 1. Packet dropouts can be directly incorporated in the
abovemodel aswell, see Cloosterman et al. (2010) for themodified
expressions for tkj in the case of packet dropouts (replacing (3))
assuming that there exists a bound on the maximal number of
subsequent packet dropouts.

Next, let us consider the exact discretisation of (1)–(3) at the
sampling instants sk:
xk+1 = xk +

 sk+1

sk
f (x(s), u(s))ds

= xk +

d−d
j=0

 sk+tkj+1

sk+tkj

f (x(s), uk+j−d)ds

=: F e
θk
(xk, ūk, uk) (4)

with θk :=


hk tk1 tk2 · · · tkd−d

T
∈ Rd−d+1, k ∈ N, the vec-

tor of uncertainty parameters consisting of the sampling interval hk
and the control update instantswithin the interval [sk, sk+1]. More-

over, ūk :=


uT
k−1 uT

k−2 · · · , uT
k−d

T
represents a vector contain-

ing past control inputs. The uncertain parameter vector θk is taken
from the uncertainty setΘ with

Θ = Θ(h, h, τ , τ ) = {θ ∈ Rd−d+1
|h ∈ [h, h], tj ∈ [t j, t j],

1 ≤ j ≤ d − d, 0 ≤ t1 ≤ · · · ≤ td−d ≤ h}, (5)

where t j and t j denote the minimum and maximum values of tkj ,
j = 1, 2, . . . , d − d, respectively, given by

t j = min
ψj∈Ψj

tj(ψj), and t j = max
ψj∈Ψj

tj(ψj), (6)

for 1 ≤ j < d − d. Explicit expressions for t j and t j are given in
Cloosterman et al. (2010): t j = min{τ − dh, h} for j = d − d,
t j = 0 for 1 ≤ j < d − d, and t j = min{τ − (d − j)h, h} for
1 ≤ j ≤ d − d. Additionally, tk0 := 0 and tk

d−d+1
:= hk, which

implies tk
d−d+1

∈ [h, h], k ∈ N.
Let us now introduce the extended (augmented) state vector

ξk :=


xTk uT

k−1 uT
k−2 · · · uT

k−d

T
=

xTk ūT

k

T
∈ Rn+dm.

Then, the exact discrete-time plant model can be written as:

ξk+1 =


xTk+1 uT

k uT
k−1 · · · uT

k−d+1

T
=


F e
θk
T
(xk, ūk, uk) uT

k uT
k−1 · · · uT

k−d+1

T
=: F̄ e

θk
(ξk, uk). (7)

In general, we can not explicitly compute the exact discrete-
time model as in (7) since the plant is nonlinear. In order to
design a stabilising discrete-time controller, we construct an
approximate discrete-time plant model (using a discretisation
scheme) based on anominal choice θ∗ for the uncertain parameters
θk given by θ∗

=

h∗ t∗1 t∗2 · · · t∗d−d

T
∈ Θ ⊂ Rd−d+1,

where h∗
∈


h, h


is a nominal sampling interval and t∗j ∈

t j, t j

, j ∈


1, 2, . . . , d − d


, are nominal control update instants.

Note that arbitrarily choosing the nominal parameter vector θ∗
=

h∗ t∗1 t∗2 . . . t∗d−d

T
∈ Θ ⊂ Rd−d+1, such that h∗

∈

h, h


and t∗j ∈


t j, t j


, j ∈


1, 2, . . . , d − d


, may lead to sequences

of control update instants that, when repeated for each sampling
interval, represent unfeasible sequences of control updates for the
real NCS. Therefore, we will choose θ∗ in a particular way. Let us
define

θ∗
:=

h∗ t∗1 t∗2 . . . t∗d−d

T
∈ Rd−d+1 (8)

with h∗ > 0 chosen arbitrarily and

t∗j :=


0, j ∈


0, 1, . . . , d − d∗

− 1


τ ∗
− d∗h∗, j = d − d∗

h∗, j ∈

d − d∗

+ 1, . . . , d − d + 1

,

(9)
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Fig. 3. Graphical interpretation of t∗j .

where τ ∗
= η(h∗) ∈ [dh∗, dh∗

], in which η(·) expresses some
continuous function from the nominal sampling interval h∗ to
the nominal delay τ ∗, and d∗

:= ⌊τ ∗/h∗
⌋. Note that θ∗ now only

depends on two nominal parameters; namely h∗ and τ ∗
= η(h∗).

Hence, the nominal control update instants t∗j correspond to this
nominal sampling interval h∗ and nominal delay τ ∗, see Fig. 3.

By exploiting a discretisation scheme2 we can now formu-
late the approximate discrete-time plant model as: xk+1 =

F a
θ∗(xk, ūk, uk), which leads to

ξk+1 =


F a
θ∗

T
(xk, ūk, uk) uT

k uT
k−1 · · · uT

k−d+1

T
=: F̄ a

θ∗(ξk, uk) (10)

and corresponds to the nominal parameter vector θ∗ defined in (8)
and (9). Next, we design a controller of the form

uk = uθ∗(ξk) (11)

to stabilise the nominal approximate discrete-time plant model
(10) for a nominal distribution of the (past) control inputs over
the sampling interval [sk, sk+1) corresponding to the nominal
parameter vector θ∗ defined in (8) and (9). In fact, since θ∗ only
depends on h∗ and τ ∗, uθ∗(ξ) in (11) represents a controller that is
designed to stabilise the system for the nominal sampling interval
h∗ and nominal delay τ ∗. Let us now define the set of possible
nominal parameters θ∗:

Θ∗

0 = Θ∗

0 (h
∗
, d, d, η(·))

=


θ∗

∈ Rd−d+1
|h∗

∈ (0, h
∗
],

t∗j := 0, for j ∈

0, 1, . . . , d − d∗

− 1

,

t∗j := τ ∗
− d∗h∗, for j = d − d∗,

t∗j := h∗, for j ∈

d − d∗

+ 1, . . . , d − d + 1

,

with τ ∗
= η(h∗)


(12)

with η(h∗) ∈ [dh∗, dh∗
] ∀h∗

∈ (0, h
∗
], where h

∗
represents the

maximal nominal sampling interval for which we aim to design
stabilising controllers (stabilising the approximate discrete-time
plant (10)).

The problem considered in the paper can now be formulated
as follows. Given a nonlinear plant and a (family of) discrete-time
controller(s), parametrised by and designed for a range of nominal
sampling intervals h∗ and nominal delays τ ∗

= η(h∗), we aim to
provide sufficient conditions for the robust stability of the resulting
sampled-data NCS in the face of (time-varying) uncertainties in
the sampling interval and delays. In other words for each nominal

2 Conditions on the approximate discrete-time plantmodel and, hence, implicitly
on the discretisation scheme used to construct it, will be formulated later in
Assumption 3.
parameter θ∗ (related to a pair (h∗, τ ∗)) we aim to determine
the bounds h, h, τ and τ for which robust stability of the exact
discrete-time closed-loop system (7), (11) (and of the sampled-
data NCS (1)–(3), (11)) can be guaranteed. In order to tackle this
problem, we will require, in Section 3, the approximate discrete-
time plantmodel F̄ a

θ∗(ξ , u),3 the controller uθ∗(ξ) and the resulting
approximate discrete-time closed-loop system F̄ a

θ∗(ξ , uθ∗(ξ)) to
exhibit certain properties for θ∗

∈ Θ∗
⊆ Θ∗

0 that will be used
to guarantee certain stability properties for the exact uncertain
discrete-time closed-loop system F̄ e

θ (ξ , uθ∗(ξ)) as in (7) and the
sampled-data NCS (1)–(3), (11).

3. Global exponential stability of the NCS

In Section 3.1, we present a Lyapunov characterisation of GES
for a class of uncertain discrete-timenonlinear systems.We exploit
such a characterisation in formulating conditions under which
the closed-loop sampled-data system (1)–(3), (11) is globally
exponentially stable (GES) in Section 3.2.

3.1. Lyapunov characterisation of global exponential stability

Here, we formulate a Lyapunov-based characterisation of
global exponential stability for a parametrised family of un-
certain discrete-time nonlinear closed-loop systems ξk+1 =

Fθk(ξk, uθ∗(ξk)), θk ∈ Θ(θ∗), k ∈ N, θ∗
∈ Θ∗

⊆ Θ∗

0 , with
Fθ (0, 0) = 0,∀θ ∈ Θ(θ∗) and uθ∗(0) = 0, for all θ∗

∈ Θ∗, based
on a Lyapunov function Vθ∗(ξk) that is parametrised by a nominal
parameter vector θ∗

∈ Θ∗
⊆ Θ∗

0 , with Θ∗

0 as in (12). For the re-
sults presented in Theorem 1, the meaning of θ , θ∗,Θ∗,Θ∗

0 andΘ
is as set forth in Section 2. For the sake of brevity, we writeΘ(θ∗)
instead ofΘ(h(θ∗), h(θ∗), τ (θ∗), τ (θ∗)).

Theorem 1. Consider a parametrised family of uncertain discrete-
time systems (parametrised by θ∗)

ξk+1 = Fθk(ξk, uθ∗(ξk)), θk ∈ Θ(θ∗), ∀k ∈ N, (13)

with θ∗
∈ Θ∗

⊆ Θ∗

0 , Θ
∗

0 as in (12) and Θ(θ∗) as defined in (5),
where h, h, τ and τ may depend on θ∗ and 0 < h < h∗

≤ h,
0 ≤ τ ≤ τ ∗

≤ τ . If there exist a family of Lyapunov functions
Vθ∗(ξ), with θ∗

∈ Θ∗, and ai > 0, i = 1, 2, 3, such that the following
conditions hold for some 1 ≤ p < ∞:

a1|ξ |p ≤ Vθ∗(ξ) ≤ a2|ξ |p and
Vθ∗(Fθ (ξ , uθ∗(ξ)))− Vθ∗(ξ)

h
≤ −a3|ξ |p,

(14)

for all ξ ∈ Rn+dm, θ ∈ Θ(θ∗), θ∗
∈ Θ∗, then there exist c, λ > 0

such that the solutions of the family of systems (13) satisfy |ξk| ≤

c|ξ0|e−λsk ≤ c|ξ0|e−λkh, ∀k ∈ N, ∀ξ0 ∈ Rn+dm and for all θ∗
∈ Θ∗.

In other words, the family of systems (13) is globally exponentially
stable, uniformly for all θ∗

∈ Θ∗ and θk ∈ Θ(θ∗), ∀k ∈ N.

Proof. The proof is a slight adaptation of the proof of Proposition
1.2 in Laila et al. (2006). �

3.2. Sufficient conditions for GES

Let us adopt the following assumptions for a set of nominal
parameters Θ∗ satisfying Θ∗

⊆ Θ∗

0 (h
∗
, d, d, η(·)) with Θ∗

0 (h
∗
,

d, d, η(·)) as in (12) for given h
∗
, d, d and η(·).

3 For the sake of brevity, we call F̄(ξ , u) a plant model by which we indicate the
discrete-time dynamics ξk+1 = F̄(ξk, uk).
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Assumption 1. There exist a parametrised family of functions
Vθ∗(ξ), a parametrised family of controllers uθ∗(ξ), and ai > 0,
i = 1, 2, 3, such that the following inequalities hold for some
1 ≤ p < ∞:

Vθ∗(F̄ a
θ∗(ξ , uθ∗(ξ)))− Vθ∗(ξ)

h∗
≤ −a3|ξ |p,

a1|ξ |p ≤ Vθ∗(ξ) ≤ a2|ξ |p, ∀ξ ∈ Rn+dm, ∀θ∗
∈ Θ∗.

(15)

This assumption requires that the control law uθ∗(ξ) globally
exponentially stabilises, uniformly for all θ∗

∈ Θ∗, the approximate
discrete-time plant (10) (formulated for the nominal parameter set
θ∗), see Theorem 1. Note that this assumption does not guarantee
the stability of the exact closed-loop plant model (7), (11) for time-
varying θk ∈ Θ (not even for fixed θk ∈ Θ∗).

Assumption 2. The parametrised family of functions Vθ∗(ξ) is
locally Lipschitz and satisfies the following condition uniformly
over θ∗

∈ Θ∗: there exists an Lv > 0, such that supζ∈∂Vθ∗ (ξ) |ζ | ≤

Lv|ξ |p−1, ∀ξ ∈ Rn+dm, and ∀θ∗
∈ Θ∗, with p in accordance with

Assumption 1.

Assumption 3. The parametrised family of approximate nominal
discrete-time plant models F̄ a

θ∗(ξ , u) is one-step consistent with
the parametrised family of exact nominal discrete-time plant
models F̄ e

θ∗(ξ , u) uniformly over θ∗
∈ Θ∗, i.e. there exists ρ̂ ∈ K∞

such that |F̄ a
θ∗(ξ , u) − F̄ e

θ∗(ξ , u)| ≤ h∗ρ̂(h∗) (|ξ | + |u|) , ∀ξ ∈

Rn+dm, u ∈ Rm and ∀θ∗
∈ Θ∗.

The notion of consistency is commonly used in the numerical
analysis literature, see e.g. Stuart and Humphries (1996), to
address the closeness of solutions of families of models (obtained
by numerical integration). Moreover, the notion of one-step
consistency has been used before in the scope of the stabilisation of
nonlinear sampled-data systems based on approximate discrete-
time models (Nesić & Teel, 2004b; Nesić et al., 1999). One-step
consistent integration schemes with which approximate discrete-
time plant models satisfying Assumption 3 are available, see van
de Wouw, Nesic, and Heemels (2010).

Assumption 4. The right-hand side f (x, u) of the continuous-
time plant model is globally Lipschitz, i.e. there exists Lf > 0
such that |f (x1, u1) − f (x2, u2)| ≤ Lf (|x1 − x2| + |u1 − u2|) ,
∀x1, x2 ∈ Rn, u1, u2 ∈ Rm.

Assumption 5. The parametrised family of discrete-time control
laws uθ∗(ξ) is linearly bounded uniformly over θ∗

∈ Θ∗, i.e. there
exists Lu > 0, such that |uθ∗(ξ)| ≤ Lu|ξ |, ∀ξ ∈ Rn+dm, and ∀θ∗

∈ Θ∗.

We note that these assumptions are natural extensions of the
assumptions used in the scope of the stabilisation of nonlinear
sampled-data systems (with constant sampling intervals and
no delays), see Nesić et al. (1999). Assumption 3 bounds the
difference between the approximate and exact nominal discrete-
time plant models. Assumption 4 is typically needed to bound
the intersample behaviour, which, in turn, is needed to bound
the difference between the nominal and uncertain exact discrete-
time plant models. Moreover, the satisfaction of Assumption 1
guarantees GES of the approximate discrete-time plant model,
for any fixed θ∗

∈ Θ∗, and avoids non-uniform bounds on the
overshoot and non-uniform convergence rates for the solutions
of the approximate nominal discrete-time plant model, whereas
Assumption 5 avoids non-uniform bounds on the controls. Finally,
Assumption 2 guarantees continuity of the Lyapunov function.
It has been shown in Nesić and Teel (2004b); Nesić et al.
(1999) that if Assumptions 1, 2 and 5 are not satisfied then the
approximate closed-loop discrete-time system does not exhibit
sufficient robustness to account for the mismatch between the
approximate and exact discrete-time models.

Based on these assumptions we can formulate sufficient
conditions under which the closed-loop uncertain exact discrete-
time system (7), (11) is GES. Hereto, consider the following
definition:

La :=


2 + Lu + (1 + max(1, Lu)) (eLf h − 1)


+ h∗ρ̂(h∗) (1 + Lu) . (16)

Theorem 2. Consider the exact discrete-time plant model (7) with
θk ∈ Rd−d+1,∀k ∈ N. Moreover, consider the discrete-time
controller (11), parametrised by θ∗

∈ Θ∗

0 (h
∗
, d, d, η(·)), and the set

Θ∗

0 (h
∗
, d, d, η(·)) of nominal parameter vectors as in (12) for given

h
∗
, d, d and η(·). Furthermore, consider lower and upper bounds on

the sampling interval and delay such that 0 < h < h∗
≤ h,

0 ≤ τ ≤ τ ∗
= η(h∗) ≤ τ , ⌊τ/h⌋ = d and ⌈τ/h⌉ = d.

If Assumptions 1–5 are satisfied for Θ∗
= {θ∗}, for some θ∗

∈ Θ∗

0 (h
∗
, d, d, η(·)), and if there exists 0 < β < 1 such that the

inequality (17)

Lv (La)p−1

h∗


h∗ρ̂(h∗) (1 + Lu)+ ρθ


h∗,Mh,Mt1 , . . . ,Mtd−d


≤ (1 − β)a3 (17)

is satisfied where the function ρ̂ follows from Assumption 3 and ρθ is
defined in (18)

ρθ


h∗,Mh,Mt1 , . . . ,Mtd−d


:= eLf h

∗

(1 + max(1, Lu))

eLf Mh − 1



+ 2Lf max(1, Lu)
d−d
j=1

Mtj

 (18)

with Mh := maxh∈[h,h] |h − h∗
|, Mtj := max

tj∈

t j,t j

 |tj − t∗j |, j =

1, 2, . . . , d − d, and t j and t j defined in (6), then the closed-loop
uncertain exact discrete-time system (7), (11) is globally exponentially
stable for θk ∈ Θ(h, h, τ , τ ),∀k ∈ N, withΘ(h, h, τ , τ ) as in (5).

Proof. The proof is given in Appendix A.1. �

This theorem can be interpreted as follows. If Assumptions 1–5
hold for a fixed θ∗

∈ Θ∗ (i.e. for a fixed nominal sampling interval
h∗ and nominal delay τ ∗) and condition (17) is satisfied for that
fixed θ∗, then system (7), (11) is GES for θk ∈ Θ(h, h, τ , τ ),∀k ∈ N
(i.e. for hk ∈


h, h


and τk ∈


τ , τ


, ∀k ∈ N). Note that the

condition in (17) involves two distinct terms:

(i) Lv (La)p−1 ρ̂(h∗) (1 + Lu), which reflects the effect of approx-
imately discretising the nonlinear plant using a nominal pa-
rameter vector θ∗ (i.e. corresponding to a nominal sampling
interval h∗ and a nominal delay τ ∗);

(ii) Lv(La)p−1

h∗ ρθ


h∗,Mh,Mt1 , . . . ,Mtd−d


, which reflects the effect

of the uncertainty in the sampling interval and delay.

Moreover, a3 in the right-hand side of (17) can be interpreted as
a margin of stability of the approximate nominal discrete-time
closed-loop system, see Assumption 1, which should dominate the
effects under points (i), (ii) above.



N. van de Wouw et al. / Automatica 48 (2012) 1144–1153 1149
For the application of Theorem 2, only a single Lyapunov
function Vθ∗(ξ) and a single controller uθ∗(ξ) need to be found,
which is a relatively simple task. Note, however, that for a priori
fixed θ∗ there is no guarantee that condition (17) will be satisfied,
because the discretisation error (expressed by the term under
point (i) above) may be too large. If condition (17) is not satisfied
one has to resort to designing a Lyapunov function Vθ∗(ξ) and a
controller uθ∗(ξ) for a smaller nominal sampling interval h∗ (and
corresponding θ∗) and, subsequently, checking whether condition
(17) is satisfied. Although this approach is beneficial in the sense
that one only needs the existence of a Lyapunov function and
controller for a fixed θ∗, itmay lead to an iterative designprocedure
for Lyapunov functions and controllers. Therefore, in Theorem 3
we formulate conditions under which we can always choose the
nominal sampling interval h∗, the uncertainty on the sampling
interval h − h and the uncertainty on the delay τ − τ sufficiently
small such that (17) is satisfied.

Theorem 3. Consider the exact discrete-time plant model (7) with
θk ∈ Rd−d+1,∀k ∈ N. Moreover, consider the discrete-time controller
(11), parametrised by θ∗

∈ Θ∗

0 (h
∗
, d, d, η(·)), and the set Θ∗

0 (h
∗
,

d, d, η(·)) of nominal parameter vectors as in (12) for given h
∗
, d,

d and η(·). Furthermore, consider lower and upper bounds on the
sampling interval and delay such that 0 < h(θ∗) < h∗

≤ h(θ∗),
0 ≤ τ(θ∗) ≤ τ ∗

= η(h∗) ≤ τ(θ∗), ⌊τ(θ∗)/h(θ∗)⌋ = d and
⌈τ(θ∗)/h(θ∗)⌉ = d for all θ∗

∈ Θ∗

0 (h
∗
, d, d, η(·)).

If Assumptions 1–5 are satisfied for Θ∗
= Θ∗

0 (h
∗
, d, d, η(·)),

then there exists an h∗
max ≤ h

∗
such that for all h∗

∈

0, h∗

max


,

there exist h(θ∗), h(θ∗), τ(θ∗), τ(θ∗), with h(θ∗) < h(θ∗), τ(θ∗) <
τ(θ∗), and 0 < β < 1 satisfying (17). Consequently, the family of
closed-loop uncertain exact discrete-time systems (7), (11) is globally
exponentially stable for all θ∗

∈ Θ∗

0 (h
∗
max, d, d, η(·)) and for θk ∈

Θ(h(θ∗), h(θ∗), τ (θ∗), τ (θ∗)),∀k ∈ N, withΘ(h, h, τ , τ ) as in (5).

Proof. The proof is given in Appendix A.2. �

In Theorem 3, we require that Assumptions 1–3 and 5 hold for
all θ∗

∈ Θ∗

0 (h
∗
, d, d, η(·)). Hereto, in turn, we need to design

a parametrised family of controllers uθ∗(ξ) and construct a
parametrised family of Lyapunov functions Vθ∗(ξ). When exploit-
ing Theorem 3, one typically computes h(θ∗), h(θ∗), τ(θ∗), τ(θ∗)

using (17) for each fixed θ∗
∈ Θ∗

0 (h
∗
max, d, d, η(·)). Note that, even

for each fixed θ∗, different combinations of h(θ∗), h(θ∗), τ(θ∗),
τ(θ∗)may satisfy (17), whichmay be used to investigate trade-offs
between time-varying delays and time-varying sampling intervals.

Remark 2. We foresee that the condition on the global exponen-
tial stability of the approximate discrete-time closed-loop system
in Assumption 1 can be relaxed to a requirement of global uniform
asymptotic stability and that the global conditions in Assump-
tions 2–5 may be relaxed to conditions on compact sets, thereby
enlarging the class of systemwhich canbe studied. However, under
such relaxed conditions we only expect to guarantee semi-global
practical asymptotic stability (as opposed to GES) of the closed-
loop NCS.

Finally, let us remark that, using the results in Nesić, Teel,
and Sontag (1999), we can conclude that, under the conditions of
Theorems 2 and 3, also the closed-loop sampled-data NCS (1)–(3),
(11) is globally exponentially stable.

4. Illustrative example

Let us consider a NCS as depicted in Fig. 1 with a class of scalar
nonlinear continuous-time plants of the form

ẋ = f (x)+ u, (19)
Fig. 4. Bounds τ/h∗ on the uncertainty of the delay for controllers (20)–(22) for
Lfx = 0.82.

where x ∈ R, u ∈ R, and f (x) is globally Lipschitz with Lipschitz
constant Lfx. Consequently, the right-hand side of (19) satisfies
Assumption 4 with Lf = max(1, Lfx).

We consider the case in which the sampling interval h is con-
stant and the uncertain time-varying network-induced delays sat-
isfy τk ∈ [0, τ ], for all k ∈ N, with τ ≤ h. Here we choose
τ ∗

= 0 and h∗
= h and use an Euler-type discretisation scheme

to construct the following family of approximate discrete-time
plant models in terms of the extended state ξk =


ξ 1k ξ 2k

T
=

xk uk−1
T , which yields ξk+1 =


ξ 1k + h∗(f (ξ 1k )+ uk), uk

T
=: F̄ a

h∗(ξk, uk). We note that this family of approximate
discrete-time models satisfies Assumption 3 with h∗ρ̂(h∗) =
Lfx
Lf


eLf h

∗

− 1 − Lf h∗

. Moreover, consider the following controllers

uk = −f (xk)− xk (20)

uk = −f (xk)− xk − h∗xk (21)

uk = −f (xk)−


1 −

√
1 − 4h∗


2h∗

xk, for h∗
≤

1
4
, (22)

where the first controller is independent of h∗ and can be
regarded as an emulation-based controller, whereas the other
two controllers are clearly parametrised by the nominal sampling
interval h∗. Consider the following family of Lyapunov functions:
V (ξ) = |ξ 1| + α|u(ξ 1) − ξ 2| + h∗α|ξ 2|, with α > 0. This
family of Lyapunov functions satisfies Assumption 2 with Lv =
√
2max(1 + αLu, α(1 + h∗)), which is bounded for bounded Lu,

α and h
∗
. The evolution of this family of Lyapunov functions along

solutions of the family of closed-loop approximate discrete-time
plant models, induced by the three controllers (20)–(22), can be

shown to satisfy
V (F̄ah∗ (ξk,uk))−V (ξk)

h∗ ≤ −α|ξk| with,
• for controller (20): α = 1/(1 + 2Lu) for 0 < h∗

≤ 1 and
α = ( 2

h∗ − 1)/(1 + 2Lu) for 1 < h∗ < 2;
• for controller (21): α = (1 + h∗)/(1 + 2Lu + h∗Lu) for 0 <

h∗
≤

1
2 (

√
5 − 1) and α = ( 2

h∗ − 1 − h∗)/(1 + 2Lu + h∗Lu) for
1
2 (

√
5 − 1) ≤ h∗

≤ 1;
• for controller (22): α =

1−
√
1−4h∗

2h∗+Lu(2h∗+1−
√
1−4h∗)

for 0 < h∗
≤

1
4 .

Consequently, we can conclude that, for all three controllers,
Assumption 1 is satisfied with a1 = α, a2 = Lv and a3 = α.
Now, Theorem 3 (and in particular condition (17)) can be used to
show for which uncertainty level of the delay τ(h∗), depending
on h∗, the exact closed-loop discrete-time NCS is GES. For Lfx =

0.82, these results are depicted in Fig. 4. The estimated uncertainty
bound on the delay depends on many factors, such as the (family
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of) controller(s) designed, the family of Lyapunov functions used,
the particular choice for the nominal delay and nominal sampling
interval, etc., all of which will influence the results presented
in Fig. 4. The advantage of the framework for stability analysis
proposed in this paper is exactly the fact that one may consider
and compare a wide range of controllers (both emulation-based
controllers and controllers designed for a (non-zero) nominal
sampling interval and delay), in terms of both robustness for
network-induced uncertainties and performance.

5. Conclusions

This paper presents results on the stability analysis of nonlinear
Networked Control Systems (NCSs) with time-varying sampling
intervals, time-varying delays and packet dropouts. As opposed
to emulation-based approaches where the effects of sampling-
and-hold and delays are ignored in the phase of controller design,
we propose a prescriptive framework for controller design based
on approximate discrete-time models constructed for a nominal
(non-zero) sampling interval and a nominal delay. Subsequently,
sufficient conditions for the global exponential stability of the
closed-loop uncertain NCS are provided.

Appendix. Proofs

A.1. Proof of Theorem 2

Let us study the evolution of the candidate Lyapunov function
Vθ∗(ξ) along solutions of the closed-loop uncertain exact discrete-
time system (7), (11):

∆Vk :=
Vθ∗(F̄ e

θk
(ξk, uθ∗(ξk)))− Vθ∗(ξk)

h
. (A.1)

Below, we exploit the mean value theorem to obtain Vθ∗(x) −

Vθ∗(y) ∈ ∂V T
θ∗(z)(x − y) for some z = σ x + (1 − σ)y, σ ∈

[0, 1]. Hence, Vθ∗(x) − Vθ∗(y) ≤ supζ∈∂Vθ∗ (z) |ζ ||x − y|. Using
Assumption 2, we obtain Vθ∗(x) − Vθ∗(y) ≤ Lv|z|p−1

|x − y|, z =

σ x + (1 − σ)y, σ ∈ [0, 1]. Exploiting the fact that |z| = |σ x +

(1 − σ)y| ≤ σ |x| + (1 − σ)|y| ≤ max(|x|, |y|), we obtain that
Vθ∗(x)− Vθ∗(y) ≤ Lv(max(|x|, |y|))p−1

|x− y|. Using Assumption 1
and the latter inequality in (A.1) gives

∆Vk ≤ −a3
h∗

h
|ξk|

p

+
Lv
h


max(|F̄ e

θk
(ξk, uθ∗(ξk))|, |F̄ a

θ∗(ξk, uθ∗(ξk))|)
p−1

× |F̄ e
θk
(ξk, uθ∗(ξk))− F̄ a

θ∗(ξk, uθ∗(ξk))|. (A.2)

For notational convenience we will drop the arguments of
F̄ e
θk

and F̄ a
θ∗ from now on. Let us first investigate the term

max(|F̄ e
θk

|, |F̄ a
θ∗ |)

p−1
in (A.2). By the definitions of F̄ e

θk
and F̄ a

θ∗ in
(7) and (10), respectively, and Assumption 5 we have that

|F̄ e
θk

| ≤ |F e
θk

| + |ξk| + |uk| ≤ |F e
θk

| + (1 + Lu)|ξk|,

|F̄ a
θ∗ | ≤ |F a

θ∗ | + |ξk| + |uk| ≤ |F a
θ∗ | + (1 + Lu)|ξk|. (A.3)

Now, |F e
θk

| can be upperbounded as follows:

|F e
θk

| = |xk+1| ≤ |xk| +

d−d
j=0

 sk+tkj+1

sk+tkj

|f (x(s), uk+j−d)|ds. (A.4)

Using Assumption 4 and the Gronwall–Bellman inequality we
obtain:
|F e
θk

| ≤ |xk| + Lf
d−d
j=0

 sk+tkj+1

sk+tkj


|x(s)| + |uk+j−d|


ds

≤ |xk| +

d−d
j=0


eLf t

k
j+1 − eLf t

k
j


×


|xk| + max

i∈{0,...,d−d}


|uk+i−d|


. (A.5)

Let us now use the fact that |xk|+maxi∈{0,...,d−d}(|uk+i−d|) ≤ |xk|+

max(|ūk|, |uk|) and the fact that
d−d

j=0 (e
Lf tkj+1 −eLf t

k
j ) = eLf hk −1 ≤

eLf h − 1 to obtain |F e
θk

| ≤ |ξk| +

eLf h − 1


(|ξk| + max(|ξk|, |uk|)),

where we also used that |xk| ≤ |ξk| and |ūk| ≤ |ξk|. Using
Assumption 5, we obtain that

|F e
θk

| ≤


1 + (1 + max(1, Lu))


eLf h − 1


|ξk|. (A.6)

Combining (A.3) and (A.6) and using the definition Le :=

2+ Lu +

(1 + max(1, Lu)) (eLf h − 1)

yields

|F̄ e
θk

| ≤ Le|ξk|. (A.7)

Next, |F̄ a
θ∗ | can be upperbounded using Assumptions 3 and 5:

|F̄ a
θ∗ − F̄ e

θ∗ | ≤ h∗ρ̂(h∗) (1 + Lu) |ξk|

⇒ |F̄ a
θ∗ | ≤


Le + h∗ρ̂(h∗) (1 + Lu)


|ξk|

= La|ξk|, (A.8)

where we used (A.7), the fact that h∗
≤ h and the definition of La

in (16). Combining (A.7) and (A.7), the term

max(|F̄ e

θk
|, |F̄ a

θ∗ |)
p−1

in (A.2) can be upperbounded as follows:
max(|F̄ e

θk
|, |F̄ a

θ∗ |)
p−1

≤ (La)p−1
|ξk|

p−1, (A.9)

where we used that La ≥ Le. Next, we investigate the term |F̄ e
θk

−

F̄ a
θ∗ | in (A.2) in more detail:

|F̄ e
θk

− F̄ a
θ∗ | ≤ |F̄ e

θk
− F̄ e

θ∗ | + |F̄ e
θ∗ − F̄ a

θ∗ |. (A.10)

Using Assumptions 3 and 5, the second term in the right-hand side
of (A.10) can be upperbounded as follows:

|F̄ e
θ∗ − F̄ a

θ∗ | ≤ h∗ρ̂(h∗) (1 + Lu) |ξk|, (A.11)

∀ξk ∈ Rn+dm. The first term in the right-hand side of (A.10)
reflects the difference in the exact discrete-time plant induced by
the difference between θ∗ and θk. Let u(t) = uk+j−d for t ∈

[sk + tkj , sk + tkj+1), u
∗(t) = uk+j−d for t ∈ [sk + t∗j , sk + t∗j+1) and

x(t), x∗(t) represent the solutions (with initial condition x(sk) =

x∗(sk) = xk) corresponding to the inputs u(t), u∗(t), respectively.
Using these notational conventions and the definition in (7), it can
be shown that the term |F̄ e

θk
− F̄ e

θ∗ | satisfies

|F̄ e
θk

− F̄ e
θ∗ | = |F e

θk
− F e

θ∗ | =
x(sk + hk)− x∗(sk + h∗)

 . (A.12)

Let us consider the case that h∗
≤ hk (the case that h∗ > hk

can be treated in an analogous fashion). In this case, (A.12) can be
written as

|F̄ e
θk

− F̄ e
θ∗ | =

x(sk + hk)− x∗(sk + h∗)


≤
x(sk + h∗)− x∗(sk + h∗)


+
x(sk + hk)− x(sk + h∗)

 . (A.13)
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Using Assumption 4, it can be shown thatx(sk + h∗)− x∗(sk + h∗)


≤

 sk+h∗

sk

f (x(s), u(s))− f (x∗(s), u∗(s))
 ds

≤

 sk+h∗

sk
Lf
x(s)− x∗(s)

+ u(s)− u∗(s)
 ds, (A.14)

andx(sk + hk)− x(sk + h∗)
 ≤

 sk+hk

sk+h∗

f (x(s), u(s))ds


≤

 sk+hk

sk+h∗

Lf (|x(s)| + |u(s)|) ds. (A.15)

Combining (A.13)–(A.15) and by exploiting the integral variant
of the Gronwall–Bellman inequality to rewrite the inequality in
(A.14) and the fact that |u(t)| ≤ maxi∈{0,...,d−d}(|uk+i−d|) for t ∈

[sk, sk + hk) to rewrite the right-hand side of (A.15), we obtain:

|F̄ e
θk

− F̄ e
θ∗ | ≤ Lf

 sk+h∗

sk

u(s)− u∗(s)
 ds

+

 sk+h∗

sk
Lf

 σ

sk

u(s)− u∗(s)
 ds Lf e sk+h∗

σ Lf dr

dσ

+

 sk+hk

sk+h∗

Lf


|x(s)| + max

i∈{0,...,d−d}
(|uk+i−d|)


ds. (A.16)

Exploiting the Gronwall–Bellman inequality again to rewrite the
last term in (A.16) and the fact that sk ≤ σ ≤ sk + h∗ gives

|F̄ e
θk

− F̄ e
θ∗ | ≤ Lf eLf h

∗

 sk+h∗

sk

u(s)− u∗(s)
 ds

+ eLf h
∗

eLf (hk−h∗)

− 1


|xk| + max
i∈{0,...,d−d}

(|uk+i−d|)


. (A.17)

Next, we investigate the term
 sk+h∗

sk
|u(s)− u∗(s)| ds in (A.17).

Since we consider the case that h∗
≤ hk, (2) yields that, for t ∈

[sk, sk + h∗), u(t) =
d−d

j=0 uk+j−d 1
[t̃kj ,t̃

k
j+1]
(t − sk) and u∗(t) =d−d

j=0 uk+j−d1[t∗j ,t
∗
j+1]
(t − sk) with t̃kj = min(h∗, tkj ) and 1[a,b](t)

the indicator function defined by 1[a,b](t) :=


1 for t ∈ [a, b]
0 otherwise .

Consequently, sk+h∗

sk

u(s)− u∗(s)
 ds ≤ max

i∈{0,...,d−d}
(|uk+i−d|)

×

d−d
j=0

 h∗

0

1[t̃kj ,t̃
k
j+1]
(σ )− 1[t∗j ,t

∗
j+1]
(σ )

 dσ . (A.18)

We consider four cases in evaluating the integral
I :=

 h∗

0 |1
[t̃kj ,t̃

k
j+1]
(σ )− 1[t∗j ,t

∗
j+1]
(σ )|dσ in (A.18):

• If t̃kj ≤ t̃kj+1 ≤ t∗j ≤ t∗j+1, then I = (t̃kj+1 − t̃kj ) + (t∗j+1 − t∗j ) ≤

(t∗j − t̃kj )+ (t∗j+1 − t̃kj+1), since t̃kj+1 ≤ t∗j and −t∗j ≤ −t̃kj+1;
• If t̃kj ≤ t∗j < t̃kj+1 ≤ t∗j+1, then I = (t∗j − t̃kj )+ (t∗j+1 − t̃kj+1);
• If t∗j < t̃kj ≤ t∗j+1 ≤ t̃kj+1, then I = (t̃kj − t∗j )+ (t̃kj+1 − t∗j+1);
• If t∗j ≤ t∗j+1 ≤ t̃kj ≤ t̃kj+1, then I = (t∗j+1 − t∗j ) + (t̃kj+1 − t̃kj ) ≤

(t̃kj − t∗j )+ (t̃kj+1 − t∗j+1), since t̃kj ≥ t∗j+1 and −t̃kj ≤ −t∗j+1.
From the above four cases we can conclude that h∗

0

1[t̃kj ,t̃
k
j+1]
(σ )− 1[t∗j ,t

∗
j+1]
(σ )

 dσ
≤ |t̃kj − t∗j | + |t̃kj+1 − t∗j+1|. (A.19)

Moreover, it holds that |t̃kj − t∗j | = |min(h∗, tkj ) − t∗j | =
|h∗

− t∗j | if tkj ≥ h∗

|tkj − t∗j | if tkj < h∗ ≤ |tkj − t∗j | for all j ∈ {0, . . . , d − d}, since

t∗j ≤ h∗, and that |t̃k
d−d+1

− t∗
d−d+1

| = |min(h∗, hk) − h∗
| = 0.

Using this fact in (A.19) gives h∗

0

1[t̃kj ,t̃
k
j+1]
(σ )− 1[t∗j ,t

∗
j+1]
(σ )

 dσ
≤


|tkj − t∗j | + |tkj+1 − t∗j+1| if j ∈ {0, . . . , d − d − 1}
|t̃kj − t∗j | if j = d − d.

(A.20)

Let us now define ∆tkj := tkj − t∗j , j ∈

0, 1, 2, . . . , d − d


. Since

t∗j ∈ [t j, t j] ∀j ∈

1, 2, . . . , d − d


and tkj ∈ [t j, t j] ∀k and j ∈

1, 2, . . . , d − d

, we have that ∆tkj ∈ [−∆t j,∆t j], with ∆t j =

t j − t j, j ∈

1, 2, . . . , d − d


. Substituting (A.20) in (A.18) and

using the definition of∆tkj above, we obtain sk+h∗

sk

u(s)− u∗(s)
 ds ≤ max

i∈{0,...,d−d}
(|uk+i−d|)

×

d−d−1
j=0


|∆tkj | + |∆tkj+1|


+ |∆tkd−d|


= 2 max

i∈{0,...,d−d}
(|uk+i−d|)

d−d
j=1

|∆tkj |, (A.21)

since |∆tk0 | = 0. Using (A.21) in (A.17), we obtain

|F̄ e
θk

− F̄ e
θ∗ | ≤ 2Lf eLf h

∗

max
i∈{0,...,d−d}

(|uk+i−d|)

d−d
j=1

|∆tkj |

+ eLf h
∗

eLf (hk−h∗)

− 1


|xk| + max
i∈{0,...,d−d}

(|uk+i−d|)


. (A.22)

Next, it is exploited that |xk| ≤ |ξk|, |ūk| ≤ |ξk|, Assumption 5
implies that |uk| ≤ Lu|ξk| and maxi∈{0,...,d−d}(|uk+i−d|) =

max(|uk−d|, . . . , |uk−d|) ≤ max(|ūk|, |uk|) to rewrite (A.22) as
follows:

|F̄ e
θk

− F̄ e
θ∗ | ≤ ρθ


h∗,Mh,Mt1 , . . . ,Mtd−d


|ξk| (A.23)

with ρθ

h∗,Mh,Mt1 , . . . ,Mtd−d


defined in (18) and where we

note that (A.23) holds for the case that h∗
≤ hk (treated here in

detail) and the case that h∗ > hk (which can be treated in an
analogous fashion).

Next, we return to the evaluation of the increment ∆Vk of the
candidate Lyapunov function given in (A.2) by using (A.9)–(A.11)
and (A.23):

∆Vk ≤ |ξk|
p


−a3
h∗

h
+

Lv (La)p−1

h
×


h∗ρ̂(h∗) (1 + Lu)

+ ρθ


h∗,Mh,Mt1 , . . . ,Mtd−d


. (A.24)
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The satisfaction of condition (17) in the theorem for some 0 < β <
1 implies that

Lv (La)p−1

h


h∗ρ̂(h∗) (1 + Lu)

+ ρθ


h∗,Mh,Mt1 , . . . ,Mtd−d


≤ (1 − β)a3

h∗

h
(A.25)

since h ≥ h > 0. Substitution of (A.25) in (A.24) gives

∆Vk ≤ −a3β
h∗

h
|ξk|

p. (A.26)

Since h < h∗
≤ h, there exists an 0 ≤ ε < 1 such that h∗

=

εh + (1 − ε)h. Consequently, h∗

h
= εh/h + (1 − ε) ≥ (1 − ε) and

(A.26) gives

∆Vk ≤ −a3β(1 − ε)|ξk|
p. (A.27)

Note that (A.27) with the definition of∆Vk in (A.1) implies that

Vθ∗(F̄ e
θk
(ξk, uθ∗(ξk)))− Vθ∗(ξk)

hk
≤ −a3β(1 − ε)|ξk|

p, (A.28)

∀θk ∈ Θ , since hk ∈

h, h


, ∀k ∈ N. Given the fact that the

function Vθ∗ satisfies the conditions in (14) of Theorem 1 (see
Assumption 1 and (A.28)) we can conclude that the closed-
loop uncertain exact discrete-time system (7), (11) is globally
exponentially stable.

A.2. Proof of Theorem 3

Note that the term Lv(La)p−1

h∗ ρθ


h∗,Mh,Mt1 , . . . ,Mtd−d


in (17)

can always be made arbitrarily small by an appropriate choice of
h − h and τ − τ (i.e. by making the uncertainty intervals [h, h]
and [τ , τ ] sufficiently small). Moreover, using the fact that ρ̂ is a
K∞ function and the fact that Assumptions 1–3 and 5 hold for
all θ∗

∈ Θ∗

0 , where the definition of Θ∗

0 in (12) allows h∗ to be
taken arbitrarily close to zero, the term Lv(La)p−1ρ̂(h∗) (1 + Lu) in
(17) can always be made arbitrarily small by making the nominal
sampling interval h∗ small enough. Consequently, there exists an
h∗
max ≤ h

∗
such that for all h∗

∈

0, h∗

max


, there exist h, h, τ , τ ,

with h < h and τ < τ , and 0 < β < 1 − ε satisfying (17). In turn,
this implies, using (A.24)–(A.27) and the definition of∆Vk in (A.1),
that there exists 0 < β < 1 − ε such that

Vθ∗(F̄ e
θk
(ξk, uθ∗(ξk)))− Vθ∗(ξk)

hk
≤ −a3β|ξk|

p, (A.29)

for all θ∗
∈ Θ∗

0 (h
∗
max, d, d, η(·)) and for all θk ∈ Θ(h(θ∗), h(θ∗),

τ (θ∗), τ (θ∗))∀k ∈ N, whereΘ typically depends on θ∗ since h, h,
τ and τ typically depend on h∗ when guaranteeing the satisfaction
of condition (17). Using Theorem 1, we can now conclude that
the closed-loop exact uncertain discrete-time model is GES for all
θ∗

∈ Θ∗

0 (h
∗
max, d, d, η(·)) and θk ∈ Θ(θ∗)∀k ∈ N.
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