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a b s t r a c t

This paper provides one of the first approaches to the design of decentralized observer-based output-
feedback controllers for linear plants where the controllers, sensors and actuators are connected via
a shared communication network subject to time-varying transmission intervals and delays. Due to
the communication medium being shared, it is impossible to transmit all control commands and
measurement data simultaneously. As a consequence, a protocol is needed to orchestrate what data is
sent over the network at each transmission instant. To effectively deal with the shared communication
medium using observer-based controllers, we adopt a switched observer structure that switches based
on the available measured outputs and a switched controller structure that switches based on available
control inputs at each transmission time. By taking a discrete-time switched linear systemperspective,we
are able to derive a generalmodel that captures all these networked anddecentralized control aspects. The
proposed synthesis method is based on decomposing the closed-loop model into a multi-gain switched
static output-feedback form. This decomposition allows for the formulation of linear matrix inequality
based synthesis conditions which, if satisfied, provide stabilizing observer-based controllers, which are
both decentralized and robust to network effects. A numerical example illustrates the strengths as well
as the limitations of the developed theory.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, there has been an enormous interest in the control
of large-scale networked systems that are physically distributed
over a wide area (Murray, Åström, Boyd, Brockett, & Stein,
2003). Examples of such distributed systems are electrical power
distribution networks (Blaabjerg, Teodorescu, Liserre, & Timbus,
2006), water transportation networks (Cembrano,Wells, Quevedo,
Pérez, & Argelaguet, 2000), industrial factories (Moyne & Tilbury,
2007) and energy collection networks (such aswind farms Johnson
& Thomas, 2009). The purpose of developing control theory in this
large-scale setting is to work towards the goal of a streamlined
design process which consistently results in efficient operation of
these vital systems. Our contribution towards this goal is in the
area of stabilizing controller design. This problem setting hasmany
features that seriously challenge controller design.

The first feature which challenges controller design is that the
controller is decentralized, in the sense that it consists of a num-
ber of local controllers that do not share information. Although a
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centralized controller could alternatively be considered, the
achievable bandwidth associated with using a centralized con-
trol structure would be limited by long delays induced by the
communication between the centralized controller and distant
sensors and actuators over a (wireless) communication network
(Al-Hammouri, Branicky, Liberatore, & Phillips, 2006). The diffi-
culty of decentralized control synthesis lies in the fact that each
local controller has only local information to utilize for control,
which implies that the other local control actions are unknown
and can be perceived as disturbances. This fundamental problem
has received ample attention (Anderson & Moore, 1981; Sandell,
Varaiya, Athans, & Safonov, 1978; Šiljak, 1991), but still many is-
sues are actively researched today. A recent survey (Bakule, 2008)
highlights newly developed techniques to solve this problem in
different settings and recommends that research should consider
interconnected systems which are controlled over realistic com-
munication channels. This forms the exact topic of the presented
paper.

The problem of synthesizing decentralized linear controllers is
often referred to as the ‘information-constrained’ synthesis prob-
lem or the ‘structured’ synthesis problem due to the presence of
zeros in the controller matrices corresponding to the decentral-
ized structure. This synthesis problem is, in general, non-convex.
It was shown in Rotkowitz and Lall (2005) that linear time-
invariant systems which satisfy a property called ‘quadratic
invariance’, with respect to the controller information struc-
ture, allow for convex synthesis of optimal static feedback con-
trollers. For the specific case of block diagonal static state feedback
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control design, (Geromel, Bernussou, & Peres, 1994) discovered
that through a change of variable, linear matrix inequality (LMI)
synthesis conditions could be formulated which guarantee robust
stability. However, in the decentralized (block diagonal) dynamic
output-feedback setting, the (robust) controller synthesis problem
is far more complex (Stanković, Stipanović, & Šiljak, 2007).

The second feature which challenges controller design comes
from the fact thatwhen considering control of a large-scale system,
it would be unreasonable to assume that all states are measured.
Therefore an output-based controller is needed. This paper will,
in fact, consider an observer-based control setup, which offers the
additional advantage of reducing the number of sensors needed.
The latter aspect alleviates the demands on the communication
network design. However, it has been shown that, in general, it is
hard to obtain decentralized observers providing state estimates
converging to the ‘true’ states (Šiljak, 1991). In Stanković et al.
(2007) and Zhu and Pagilla (2007), synthesis conditions for robust
decentralized observer-based control with respect to unknown
nonlinear subsystem coupling, which is sector bounded and state-
dependent, were presented. In both papers, a decoupled quadratic
Lyapunov function candidate was used to derive stabilizing gains
that could be synthesized by transforming a linear minimization
problem subject to a bilinear matrix inequality (BMI) into a
two-step linear minimization problem subject to LMIs. It was
also mentioned in Stanković et al. (2007) that in the simpler
setting of the subsystem coupling matrices being linear and
known, as is the setting in the current paper, the robust synthesis
conditions are still obtained by convexifying the overlying problem
of linear minimization subject to a BMI. Finally, we point out
that all the aforementioned decentralized results, excluding the
notable exception of Rotkowitz and Lall (2005) which includes
communication delays, consider the communication channels
between sensors, actuators and controllers to be ideal.

The third featurewhich challenges controller design arises from
the fact that the implementation of a decentralized control strategy
may not be economically feasible without a way to inexpensively
connect the sensors, actuators and controllers. Indeed, the advan-
tages of using a wired/wireless network compared to dedicated
point-to-point (wired) connections between all sensors, con-
trollers and actuators are inexpensive and easily modifiable com-
munication links. However, the drawback is that the control
system is susceptible to undesirable (possibly destabilizing) side-
effects such as time-varying transmission intervals, time-varying
delays, packet dropouts, quantization and a shared communica-
tion medium (the latter implying that not all information can be
sent over the network at once). Clearly, the decentralized observer-
based controller needs to have certain robustness properties with
respect to these effects. For modeling simplicity, we only con-
sider time-varying transmission intervals and the communication
medium to be shared in this work, although extensions includ-
ing the other side effects can be envisioned within the presented
framework. In fact, the extension to including time-varying delays
will be discussed explicitly in Remark 3.7.

In the Networked Control System (NCS) literature, there are
many existing results on stability analysis which consider lin-
ear static controllers (Cloosterman, van de Wouw, Heemels,
& Nijmeijer, 2009; Fujioka, 2008; Garcia-Rivera & Barreiro,
2007; Naghshtabrizi, Hespanha, & Teel, 2008; van de Wouw,
Naghshtabrizi, Cloosterman, & Hespanha, 2009), linear dynamic
controllers (Donkers, Heemels, van de Wouw, & Hetel, 2011;
Walsh, Ye, & Bushnell, 2002), nonlinear dynamic controllers
(Bauer, Maas, & Heemels, 2012; Heemels, Teel, van de Wouw, &
Nešić, 2010; Nešić & Teel, 2004) and observer-based controllers
(Montestruque & Antsaklis, 2004). However, results on controller
synthesis for NCSs are rare (Hespanha, Naghshtabrizi, & Xu, 2007).
LMI conditions for synthesis of state feedback (Cloosterman et al.,
2010) and static output-feedback (Hao & Zhao, 2010) only became
available recently. For general linear dynamic controller synthesis,
(Dačić & Nešić, 2007) considered the simultaneous design of the
protocol, without considering time-varying transmission intervals
or delays, and resulted in a linearized BMI algorithm. General lin-
ear dynamic controller synthesis conditions were also formulated
inGao,Meng, Chen, and Lam (2010),where theNCS included quan-
tization, delay and packet dropout but without a shared commu-
nication medium, which resulted in LMI conditions only when a
specific design variable (ϵ in Gao et al. (2010)) is fixed. Synthesis
conditions for observer gains that stabilize the state estimation
error (but not the state of the plant itself) in the presence of a
shared communication medium were given in Dačić and Nešić
(2008). The inclusion of varying transmission intervals were re-
cently presented in Postoyan and Nešić (2010). In Zhang and
Hristu-Varsakelis (2006), Gramian-based tools were used to syn-
thesize observer-based gains that stabilize the closed-loop in the
presence of a shared communicationmediumbut they did not con-
sider time-varying transmission intervals nor delays. Conditions
for observer-based controller synthesis in the presence of time-
varying delay, time-varying transmission intervals, and dropouts
were given in Naghshtabrizi and Hespanha (2005). The synthe-
sis conditions were derived by changing a non-convex feasibility
problem into a linear minimization problem via a linear cone com-
plementarity algorithm. It is worth mentioning that all the afore-
mentioned NCS results consider the centralized controller problem
setting.

To summarize, we note that although a decentralized observer-
based control structure is reasonable to use in practice, its de-
sign is extremely complex due to the fact that we simultaneously
face the issues of (i) a decentralized control structure, (ii) limited
measurement information and (iii) communication side-effects. In
this context, the contribution of this paper is twofold: firstly, a
model describing the controller decentralization and the commu-
nication side-effects is derived, and, secondly, the most significant
contribution is LMI-based synthesis conditions for decentralized
switched observer-based controllers and decentralized switched
static feedback controllers,which are robust to communication im-
perfections. For the simpler case of static output feedback, we refer
the reader to Bauer, Donkers, van de Wouw, and Heemels (2012).

1.1. Nomenclature

The following notationwill be used. diag(A1, . . . , AN) denotes a
block-diagonal matrix with the matrices A1, . . . , AN on the diago-
nal and A⊤

∈ Rm×n denotes the transpose of the matrix A ∈ Rn×m.
For a vector x ∈ Rn, ∥x∥ :=

√
x⊤x denotes its Euclidean norm. We

denote by ∥A∥ :=


λmax(A⊤A) the spectral norm of a matrix A,
which is the square-root of themaximum eigenvalue of thematrix
A⊤A. For brevity, we sometimes write symmetric matrices of the
form


A B
B⊤ C


as


A B
⋆ C


. For a matrix A ∈ Rn×m and two subsets

I ⊆ {1, . . . , n} and J ⊆ {1, . . . ,m}, the (I, J)-submatrix of A is de-
fined as (A)I,J := (aij)i∈I,j∈J. In case I = {1, . . . , n}, we also write
(A)•,J.

2. The model and problem definition

We consider a collection of coupled continuous-time linear
subsystems P1, . . . , PN given by

Pi :



ẋi(t) = Aixi(t) + Biûi(t)

+

N
j=1
j≠i


Ai,jxj(t) + Bi,jûj(t)


,

yi(t) = Cixi(t) +

N
j=1
j≠i

Ci,jxj(t),

(1)
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Fig. 1. Decentralized NCS.

for i ∈ {1, . . . ,N}, where xi ∈ Rnxi , ûi ∈ Rnui , and yi ∈ Rnyi

are the subsystem state, input and output vectors, respectively.
The subsystem interaction matrices, Ai,j, Bi,j, Ci,j, i ≠ j, represent
how subsystem j affects subsystem i via state, input and output
coupling, respectively. We consider this collection of subsystems
to be disjoint, i.e. in the sense of Šiljak (1991), that is the entire
collection can be compactly written as

P :


ẋ(t) = Ax(t) + Bû(t),
y(t) = Cx(t), (2)

with state x = [x⊤

1 , x⊤

2 , . . . , x⊤

N ]
⊤

∈ Rnx , control input û = [û⊤

1 ,

û⊤

2 , . . . , û⊤

N ]
⊤

∈ Rnu and measured output y = [y⊤

1 , y⊤

2 , . . . , y⊤

N ]
⊤

∈ Rny . The matrix A is defined as

A :=


A1 A1,2 · · · A1,N

A2,1 A2
...

...
. . .

AN,1 · · · AN


and the matrices B and C in (2) are defined similarly. The objective
of this paper is to present an approach for synthesis of a controller
for system (2) that has the following features: (i) discrete-
time (desirable for networked sampled-data implementation); (ii)
decentralized; (iii) output-based; (iv) robustly stabilizes the origin
of system (2) despite the uncertain time-varying transmission
intervals hk ∈ [h, h]; (v) operates in the presence of a shared
communication medium: not all measured outputs and control
inputs can be communicated simultaneously and a protocol
schedules which information is sent at the transmission instants.

Due to these design features, we consider a decentralized con-
trol structure consisting of N local controllers Ci, i ∈ {1, . . . ,N},
which communicatewith the sensors and actuators of the plant via
a shared network. The decentralized control structure we consider
‘parallels’ the chosen plant decomposition as in (1). This is depicted
in Fig. 1, where the ith controller receives measurements from and
sends control commands to the ith subsystem only.

In the next sections, we will provide additional information
regarding the setup in Fig. 1 by discussing the consequences of
the design features of the controller in more detail. In particular, in
Section 2.1, a description of the network imperfections is provided
forwhich the controller has to be robust. In Section 2.2, a switching
observer-based control structurewill be presented thatwill switch
based on the received measurement information and, finally, in
Sections 2.3 and 2.4, a closed-loop model suitable for controller
synthesis is derived incorporating the aforementioned aspects.

2.1. Network description

Communication between sensors, actuators and controllers
will take place via a shared network, see Fig. 1. Here, we will
consider two network effects: namely, time-varying transmission
intervals and a shared communication medium, where the latter
imposes the need for a scheduling protocol to determine what
measurement and control command data is transmitted at each
transmission instant. In Remark 3.7, wewill also explain how time-
varying delays can be incorporated in a straightforward manner.

Assuming that the transmission intervals hk = tk+1 − tk are
contained in [h, h] for some 0 < h ≤ h, i.e. hk ∈ [h, h] for all k ∈ N
and a zero-order-hold assumption on the inputs û, meaning that

û(t) = ûk for all t ∈ [tk, tk+1), k ∈ N, (3)
the exact discrete-time equivalent of (2) is

Phk :


xk+1 = Āhkxk + B̄hk ûk,
yk = Cxk,

(4)

where Āhk := eAhk and B̄hk :=
 hk
0 eAsdsB. In (4), xk := x(tk), yk :=

y(tk), with tk the transmission instants, and ûk is the discrete-time
control action available at the plant at t = tk.

Since the plant and controller are communicating through a
network with a shared communication medium, the actual input
of the plant ûk ∈ Rnu is not equal to the controller output uk
and the actual input of the controller ŷk ∈ Rny is not equal to
the sampled plant output yk. Instead, ûk and ŷk are ‘networked’
versions of uk and yk, respectively. In Section 2.2,wewill detail how
the controller output uk will be determined based on ŷk (see Fig. 1).

To explain the effect of the shared communication medium
and thus the difference between ŷk and yk, and ûk and uk, k ∈

N, realize that the plant has ny sensors and nu actuators. In fact,
the actuators and sensors are grouped into N̄ nodes, where, in
principle, it is allowed that a node can contain both sensors and
actuators. The set of actuator and sensor indices corresponding to
node l ∈ {1, . . . , N̄} are denoted by
J̄ul ⊆ {1, . . . , nu}, J̄yl ⊆ {1, . . . , ny},

respectively.
At each transmission instant, only one node obtains access to

the network and transmits its corresponding u and/or y values.
Only the transmitted values will be updated, while all other
values remain unchanged. This constrained data exchange can be
expressed as

ûk = Γ u
σk
uk + (I − Γ u

σk
)ûk−1, (5a)

ŷk = Γ y
σk
yk + (I − Γ y

σk
)ŷk−1, (5b)

where the value of σk ∈ {1, . . . , N̄} indicates which node is given
access to the network at the transmission instant k ∈ N, and
Γ u
l ∈ Rnu×nu and Γ

y
l ∈ Rny×ny , for l ∈ {1, . . . , N̄}, are diagonal

matrices where

(Γ u
l )i,i :=


1, if i ∈ J̄ul ,
0, otherwise,

(Γ
y
l )i,i :=


1, if i ∈ J̄yl ,
0, otherwise.

The mechanisms determining σk at transmission instant tk are
known as protocols. In this paper, we focus on the general class of
periodic protocols (Donkers et al., 2011; Hong, 1995), which are
characterized by
σk+Ñ = σk, for all k ∈ N, (6a)

{σk|1 ≤ k ≤ Ñ} ⊇ {1, . . . , N̄}, (6b)

where Ñ ≥ N̄ and Ñ ∈ N is the period of the protocol. Note that
{σk|1 ≤ k ≤ Ñ} ⊇ {1, . . . , N̄} means that every node is addressed
at least once in every period of the protocol. This condition is very
natural as nodes that are never used do not need to be defined. The
well-known Round Robin protocol (Walsh et al., 2002) belongs to
this class of periodic protocols, which is characterized by (6) and
Ñ = N̄ . Implementation of such a protocol can be accomplished by
using the channel access method known as (multi-channel) time
division multiple access (TDMA).
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Remark 2.1. A commonly studied (dynamic) protocol in the NCS
literature is the Try-Once-Discard (TOD) protocol, which was
introduced in Walsh et al. (2002) and recently studied in Dačić
and Nešić (2007), Donkers et al. (2011) and Heemels et al. (2010).
Although analysis of this protocol has shown improvement in
the level of robustness with respect to network-induced effects
(compared with periodic protocols), designing an output-based
controller using a dynamic protocol is extremely challenging, even
in the centralized setting, see, e.g., Dačić and Nešić (2007) in which
constant transmission intervals have been considered. Considering
the additional challenges that decentralization introduces into the
NCS setting, in this paper, we choose to focus on periodic protocols
for which an LMI-based design procedure will be offered.

To characterize the decentralized NCS, we need to determine
the sets of actuators and sensors that are associated with node l ∈
{1, . . . , N̄} and belong to subsystem i ∈ {1, . . . ,N}. To achieve this
we canuse the structure present in the disjoint decomposition. Due
to the fact that we consider the decomposition of (2) to be disjoint,
as given in (1), we have that the input vector ûk, output vector
yk and state vector xk are ordered such that the sets of indices
corresponding to actuators ûk, sensors yk, and states xk belonging
to subsystem i are defined as

Jui :=


i−1
j=0

nuj + 1,
i−1
j=0

nuj + 2, . . . ,
i

j=0

nuj


,

Jyi :=


i−1
j=0

nyj + 1,
i−1
j=0

nyj + 2, . . . ,
i

j=0

nyj


,

Jxi :=


i−1
j=0

nxj + 1,
i−1
j=0

nxj + 2, . . . ,
i

j=0

nxj


,

respectively, for i ∈ {1, . . . ,N}, where nu0 = ny0 = nx0 := 0
and nui , nyi and nxi denote the number of actuators, sensors and
states, respectively, belonging to subsystem i ∈ {1, . . . ,N}. With
these sets defined, we have that the set J̄ul ∩ Jui consists exactly of
the indices of the actuators which are associated with node l and
belong to subsystem i. A similar interpretation holds for J̄yl ∩ Jyi
regarding the indices of the sensors. We say that subsystem i is
associated with node l if J̄ul ∩ Jui ≠ ∅ or J̄yl ∩ Jyi ≠ ∅, meaning, that
at least one sensor or actuator in node l belongs to subsystem i.

2.2. Decentralized networked observer-based controllers

In this paper, we will use decentralized observer-based con-
trollers in the sense that for each subsystem of the plant we have
one observer-based controller which does not exchange informa-
tion, see Fig. 1. Therefore, the individual observers have no infor-
mation about externally coupled states, inputs, or outputs.

To obtain approximate discrete-time subsystem models for
usage in the observer, we discretize (2) with a suitably chosen
constant transmission interval h⋆ and then discard the subsystem
coupling matrices (as the observers to be designed cannot use
information about either the external coupling or the time-varying
nature of the sampling interval). The resulting discrete-time plant
model for the ith subsystem is then

Ph⋆,i :


x̌k+1,i = Āh⋆,ix̌k,i + B̄h⋆,iûk,i,
y̌k,i = Cix̌k,i,

(7)

for i ∈ {1, . . . ,N}, where h⋆ is a constant transmission interval,
x̌k,i ∈ Rnxi , ûk,i := ûi(tk) ∈ Rnui and y̌k,i ∈ Rnyi are the state,
input and output vectors, respectively, of the ith approximate
discrete-time model at discrete time k ∈ N, and Āh⋆,i := (Āh⋆)Jxi ,J

x
i

and B̄h⋆,i := (B̄h⋆)Jxi ,J
u
i
where Āh⋆ and B̄h⋆ have been defined
below (4). The observer-based controllerswill use the approximate
discrete-time subsystemmodels (7) that are based on the constant
transmission interval h⋆, while the exact discrete-time model
(4) corresponds to an uncertain and time-varying transmission
interval hk, which in general is not equal to h⋆. Hence, the variation
in the transmission interval will act as a disturbance on the state
estimation error dynamics as the observermodel does not coincide
with the true model. Clearly, the coupling terms are neglected in
(7) which contributes to a further difference between the models
(7) and the true model (4). Given h⋆, the designed observer and
controller gains have to be designed in order to counteract these
differences. Ways on how to determine a suitable h⋆ will be
discussed at the end of Section 4.1.

Using (7) as the ith (approximate) subsystem model, we
propose the ith observer-based controller to be of the form

Cσk,i :

x̃k+1,i = Āh⋆,ix̃k,i + B̄h⋆,iûk,i
+ Lσk,iΓ

y
σk,i

(ŷk,i − Cix̃k,i),
uk,i = Kσk,ix̃k,i,

(8)

for i ∈ {1, . . . ,N}, where x̃k,i ∈ Rnxi , ŷk,i ∈ Rnyi and uk,i ∈ Rnui are
the state estimate, input, and output vectors of the ith observer-
based controller at the discrete time k ∈ N, respectively. The
matrices Γ u

l,i := (Γ u
l )Jui ,J

u
i
, Γ

y
l,i := (Γ

y
l )Jyi ,J

y
i
, Ll,i ∈ Rnxi×nyi and

Kl,i ∈ Rnui×nxi are defined for i ∈ {1, . . . ,N}, l ∈ {1, . . . , N̄}, where
Ll,i and Kl,i are the observer and controller gains, respectively.
Hence, we adopt a switched observer and controller structure
(notice the σk-dependence of Lσk,i and Kσk,i in (8)) to deal with the
communication medium being shared. The presence of Γ

y
σk,i

in (8)
is used so that the standard output injection is only applied to the
newly received measurements. If no measurements are received
from subsystem i at transmission time tk (i.e. Γ y

σk,i
= 0) then (8)

reduces to a standard model-based prediction step (according to
the model in (7)).

Similar to the plant, the dynamics of all the controllers (8) can
be described by a single discrete-time system, which will consist
of block diagonal matrices due to the decoupled nature of the
controllers:

Cσk :


x̃k+1 = ĀDx̃k + B̄Dûk + LσkΓ

y
σk

(ŷk − CDx̃k)
uk = Kσk x̃k,

(9)

where ĀD := diag(Āh⋆,1, Āh⋆,2, . . . , Āh⋆,N), B̄D and CD defined
similarly, and the observer gains

Ll = diag(Ll,1, Ll,2, . . . , Ll,N), for l ∈ {1, . . . , N̄}, (10a)

Kl = diag(Kl,1, Kl,2, . . . , Kl,N), for l ∈ {1, . . . , N̄}. (10b)

2.3. Closed-loop model

To derive an expression for the closed-loop dynamics, we will
adopt the state vector

x̄k = [e⊤

k x⊤

k û⊤

k−1 ŷ⊤

k−1]
⊤

∈ Rn,

where ek denotes the state estimation error defined as ek := x̃k −

xk, k ∈ N, and n = 2nx +nu +ny. Combining (4), (5) and (9) results
in the overall closed-loop system

x̄k+1 = Ãσk,hk x̄k, (11)

where Ãl,h is given by (12), l ∈ {1, . . . , N̄}, and h ∈ [h, h]. In
deriving (12) note that Γ y

σk
(I − Γ y

σk
) = 0 was used. The closed-

loop system (11) is a discrete-time switched linear parameter-
varying (SLPV) system where the switching, as given by σk, is due
to the communication medium being shared and the parameter
uncertainty is caused by the uncertainty in the transmission
interval hk ∈ [h, h]. Ãl,h is given in (12) (Box I).
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2)
Ãl,h :=


ĀD − LlΓ

y
l CD + (B̄D − B̄h)Γ

u
l Kl (ĀD − Āh) − LlΓ

y
l (CD − C) + (B̄D − B̄h)Γ

u
l Kl (B̄D − B̄h)(I − Γ u

l ) 0

B̄hΓ
u
l Kl Āh + B̄hΓ

u
l Kl B̄h(I − Γ u

l ) 0
Γ u
l Kl Γ u

l Kl (I − Γ u
l ) 0

0 Γ
y
l C 0 (I − Γ

y
l )

 (1

Box I.
2.4. Polytopic overapproximation

In the previous section, we obtained a decentralized NCSmodel
in the form of a switched uncertain system. However, the form as
in (11) and (12) is not convenient to develop efficient techniques
for analysis or synthesis due to the nonlinear dependence of Ãσk,hk
in (12) on the uncertain parameter hk, as observed before, see e.g.
Heemels et al. (2010). To make the system amenable for analysis
or synthesis, a procedure is borrowed fromDonkers et al. (2011) to
overapproximate system (11) and (12) by a polytopic system with
norm-bounded additive uncertainty, i.e.

x̄k+1 =

M
m=1

αm
k


Fσk,m + Gm∆kHσk


x̄k, (13)

where Fl,m ∈ Rn×n, Gm ∈ Rn×2nx , Hl ∈ R2nx×n, for l ∈ {1, . . . , N̄}

and m ∈ {1, . . . ,M}, with M the number of vertices of the
polytope. The vector αk = [α1

k . . . αM
k ]

⊤
∈ �, for all k ∈ N, is

time-varying with

� =


α ∈ RM

 M
m=1

αm
= 1 and αm

≥ 0,

form ∈ {1, . . . ,M}


(14)

and ∆k ∈ 1, for all k ∈ N, with the additive uncertainty set
1 ⊆ R2nx×2nx given by

1 =

diag(∆1, . . . , ∆2Q ) | ∆q+jQ

∈ Rnλq×nλq ,

∥∆q+jQ
∥ ≤ 1, q ∈ {1, . . . ,Q }, j ∈ {0, 1}


, (15)

where nλq × nλq , q ∈ {1, . . . ,Q }, are the dimensions of the qth
real Jordan block (Horn & Johnson, 1985) of A and Q is the number
of real Jordan blocks of A. System (13) is an overapproximation of
system (11) in the sense that for all l ∈ {1, . . . , N̄}, it holds that
Ãl,h | h ∈ [h, h]


⊆


M

m=1

αm 
Fl,m + Gm1Hl


| α ∈ �, ∆ ∈ 1


. (16)

Due to this inclusion, stability of (13) for all αk ∈ � and ∆k ∈

1, k ∈ N, implies stability of (11) for all hk ∈ [h, h]. Althoughmany
overapproximation techniques are available, see e.g. the survey
(Heemels et al., 2010), herewe employ a gridding-based procedure
based on Donkers et al. (2011) to overapproximate system (11),
such that (16) holds. This choice is motivated by the favorable
properties that this method possesses, see Heemels et al. (2010).
Below we briefly summarize the main ideas on how to construct
such a polytopic overapproximation in an effort to concisely
introduce the relevant notation required later to formulate the
main synthesis results.

To construct an overapproximation of (11) in the form (13) us-
ing a gridding-based approach, a set of grid points {h̃1, . . . , h̃M},
where h̃m ∈ [h, h],m ∈ {1, . . . ,M}, must be chosen. The choice
of grid points directly influences the tightness of the overapproxi-
mation. There are procedures in the literaturewhich determine the
set of grid points {h̃1, . . . , h̃M} by iteratively placing each grid point
at the location of the worst-case approximation error, thus, itera-
tively tightening the overapproximation. For the sake of brevitywe
do not provide the procedure here but instead refer the reader to
Donkers et al. (2011) for details. Following a procedure similar to
that of Donkers et al. (2011) leads to an overapproximation (13) of
(11) satisfying (16), with

Fl,m := Ãl,h̃m

for l ∈ {1, . . . , N̄} andm ∈ {1, . . . ,M} and, with B given in (2), we
define

Hl :=


0 T−1 0 0

T−1BΓ u
l Kl T−1BΓ u

l Kl T−1B(I − Γ u
l ) 0


, (17)

for l ∈ {1, . . . , N̄} and

Gm :=

−T −T
T T
0 0
0 0

Um, (18)

for m ∈ {1, . . . ,M}. The matrix T is given by the real Jordan
form decomposition (Horn & Johnson, 1985) of the matrix A, as in
(2), i.e. A := TΛT−1, where T is an invertible matrix and Λ =

diag(Λ1, . . . , ΛQ ) with Λq ∈ Rnλq×nλq , q ∈ {1, . . . ,Q }, the qth
real Jordan block of A. Additionally,

Um := diag(δA
1,mI1, . . . , δ

A
Q ,mIQ , δE

1,mI1, . . . , δ
E
Q ,mIQ ) (19)

where Iq is the nλq ×nλq identitymatrix (i.e. the size of Iq is equal to
the size of the qth real Jordan block of A, which is also equal to the
size of ∆q in (15)) and δq,m is the worst case approximation error
for each real Jordan block, Λq, q ∈ {1, . . . ,Q } and for each grid
pointm ∈ {1, . . . ,M}. See Donkers et al. (2011) for details on how
to compute δq,m.

We care to stress that the most appealing aspect of this par-
ticular overapproximation technique is the fact that it introduces
arbitrarily little conservatism when employed in (quadratic-type)
Lyapunov-based stability analysis (see Donkers et al., 2011 Theo-
rem V.1), while having direct control over the complexity of the
overapproximation through the number of grid points.

Remark 2.2. The stability analysis problem, i.e. determining
whether the system (11) and (12) with given controller gains
Kl, Ll, l ∈ {1, . . . , N̄}, is uniformly globally exponentially stable
(UGES) for a given scheduling protocol, as in (6), and given bounds
on the transmission interval, i.e. hk ∈ [h, h] for all k ∈ N, can be
addressed by using the overapproximated model (13) combined
with the proposed LMI conditions in Donkers et al. (2011). The
focus of the current paper is on the more challenging problem of
controller synthesis, see Section 3.

Remark 2.3. Using reasoning similar as in Nešić, Teel, and Sontag
(1999), it can be shown that UGES of the discrete-time model
(11) and (12) with a protocol satisfying (6) implies UGES of the
sampled-data NCS (2), (3), (5) and (9), with the same protocol and
including the intersample behavior.
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3. Controller synthesis

In the previous sections, we derived a model describing an
LTI plant interconnected with a decentralized switched observer-
based output-feedback controller by a communication network. In
this section, we will present the main contribution of this paper
consisting of LMI-based conditions for designing the decentralized
controller and observer gains Kl and Ll, respectively, in (9) by using
the overapproximated model (13).

For reasons of transparency, we choose to divide the presenta-
tion of our solution into two sections. In Section 3.1, LMI conditions
which can be used to synthesize stabilizing controllers are derived
for the casewhen the subsystems are restricted to communicate in
a serial fashion (i.e. only one subsystem is allowed to communicate
at each transmission instant). Then, in Section 3.2, the foundation
laid in Section 3.1 is built upon to derive LMI conditionswhich syn-
thesize stabilizing controllers for the more general case when the
subsystems can communicate (also) in parallel (i.e. multiple sub-
systems are allowed to communicate at each transmission instant).

3.1. Serial subsystem communication

In this section, we will adopt the network assumption pre-
sented below. Next to the transparency reason already given be-
fore, a second reason to treat the case corresponding to this
assumption separately, is that it represents a relevant subclass of
the synthesis problem. In Section 3.2, details are provided regard-
ing how this assumption can be removed.

Assumption 3.1. All sensors or actuators associated with a node
must be members of the same subsystem, i.e. for each node l ∈

{1, . . . , N̄}, there exists a subsystem i ∈ {1, . . . ,N} such that
J̄ul ⊆ Jui and J̄yl ⊆ Jyi .

Remark 3.2. Due to Assumption 3.1, only one subsystem can
communicate (a part of) its corresponding signals at each
transmission time. Indeed, when node l ∈ {1, . . . , N̄} attains
access to the network, only one (corresponding) subsystem i ∈

{1, . . . ,N} can communicate over the network and, hence, one
gain Kl,i and one gain Ll,i, as in (10), influence the closed loop
dynamics given by either (11) or (16) (due to the presence of Γ y

σk
in

(9) and the fact that ûk, given in (5), is the input to the plant). As a
consequence, someof the gainsKl,i and Ll,i, which are defined for all
i ∈ {1, . . . ,N}, have no influencewhen node l ∈ {1, . . . , N̄} attains
access (in fact all of them that do not correspond to node lwill have
no influence). We care to stress that we explicitly account for this
fact in the synthesis theorems in Section 3. Moreover, we choose
to keep the more general definitions, as in (10), since we provide
explicit details on how to remove Assumption 3.1 in Section 3.2
(meaning that possibly all of the gains Kl,i and Ll,i, i ∈ {1, . . . ,N},
influence the closed-loop dynamics when node l communicates).

Before we can use the overapproximated model (13) for
synthesis, an essential step must be taken so that the model
(13) can be rewritten in a form which is suitable for controller
synthesis. The essential step in achieving LMI-based synthesis
conditions is reformulating (12) such that the design variables are
non-structuredmatrices, instead of the structured (block diagonal)
matrices Kσk and Lσk , as in (10), respectively, that are currently
present. To achieve this, we first introduce the set of state indices
belonging to subsystems associated with node l as

J̄xl ⊆ {1, . . . , nx}.

Due to Assumption 3.1, only one subsystem i is associated with
node l and, hence, J̄xl is the set of the state indices corresponding
to the subsystem i that is associated with node l (i.e. if i is the
subsystem associated with node l then J̄xl = Jxi ). With these sets
defined, we introduce

Υ u
l :=


(Γ u

l )•,J̄ul
, if l ∈ Lu,

0, otherwise,
(20a)

Υ
y
l :=


(Γ

y
l )

•,J̄yl
, if l ∈ Ly,

0, otherwise,
(20b)

Υ x
l := (Ix)•,J̄xl

, (20c)

for l ∈ {1, . . . , N̄}, where Ix ∈ Rnx×nx is the identity matrix and

Lu := {l ∈ {1, . . . , N̄} | J̄ul ≠ ∅}, (21a)

Ly := {l ∈ {1, . . . , N̄} | J̄yl ≠ ∅}, (21b)

are the sets of node indices that contain at least one actuator or
sensor, respectively. Note that Υ u

l and Υ
y
l are simply matrices

consisting of the non-zero columns of Γ u
l and Γ

y
l , respectively.

Finally, we define

K̄l :=


(Kl)J̄ul ,J̄

x
l
, if l ∈ Lu,

0, otherwise,
(22a)

L̄l :=


(Ll)J̄xl ,J̄

y
l
, if l ∈ Ly,

0, otherwise,
(22b)

for l ∈ {1, . . . , N̄}. Notice that K̄l and L̄l consist of all the non-
restricted elements of Γ u

l Kl and LlΓ
y
l , respectively. With these

matrices defined and Assumption 3.1 adopted, we have that the
following equations hold

Γ u
l Kl = Υ u

l K̄lΥ
x⊤
l , LlΓ

y
l = Υ x

l L̄lΥ
y⊤
l . (23)

Now, (23) allows the closed-loop matrix Ãσk,hk in (12) to be
expressed in terms of the non-structured matrices K̄σk and L̄σk
instead of the structured (block diagonal) matrices Kσk and Lσk .
The benefit of this is that the synthesis problem for decentralized
control, which naturally imposes ‘structural’ constraints, can now
be formulated as a ‘non-structured synthesis’ problem when
Assumption 3.1 is adopted. To help convey (20), (22) and (23),
we will explicitly define these matrices for the example given in
Section 4.

Recall that after employment of the overapproximation tech-
nique described in Section 2.4, we now have a system of the form
(13), where the matrices Fl,m = Ãl,h̃m are given by (12) with
h ∈ {h̃1, . . . , h̃m} and the matrices Hl and Gm are given in (17)
and (18), respectively. Using (23), we can decompose Fl,m and Hl
in the following way

Fl,m = Al,m + Bl,mK̄lEl − DlL̄lCl, (24a)

Hl = Il + JlK̄lEl, (24b)

where

Al,m :=


ĀD ĀD − Āh̃m (B̄D − B̄h̃m)(I − Γ u

l ) 0
0 Āh̃m B̄h̃m(I − Γ u

l ) 0
0 0 I − Γ u

l 0
0 Γ

y
l C 0 I − Γ

y
l

 , (25a)

Bl,m :=


(B̄D − B̄h̃m)Υ u

l
B̄h̃mΥ u

l
Υ u

l
0

 , El :=

Υ x⊤

l Υ x⊤
l 0 0


, (25b)

Dl :=

Υ x
l
0
0
0

 , Cl :=

Υ

y⊤
l CD Υ

y⊤
l (CD − C) 0 0


, (25c)
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Il :=


0 T−1 0 0
0 0 T−1B(I − Γ u

l ) 0


,

Jl :=


0

T−1BΥ u
l


.

(25d)

Now we are ready to state our main result. Notice that (13)
with (24) describes a discrete-time switched linear parameter-
varying (SLPV) systemwith norm-bounded uncertainty. No results
are available in the literature to synthesize the controller gains K̄l
and L̄l, at present. However, LMI-based synthesis conditions can
be obtained by generalizing the results in Daafouz, Riedinger, and
Iung (2002) and De Souza and Trofino (2000) in three directions.
In particular, the first extension is the accommodation of norm-
bounded uncertainty Gm1Hσk in (13), where ∆ ∈ 1, and the
second extension is that the switching sequence (6) that we
consider is ordered (periodic in this case), whereas (Daafouz et al.,
2002) considered the case of arbitrary switching. Finally, the
third extension is generalizing the set of LMI-based conditions in
Daafouz et al. (2002) so that solutions for the multi-gain switched
static output-feedback problem can be included. Although the
required extensions of the ideas in Daafouz et al. (2002) contribute
towards our main result, we would like to emphasize that using
(23) for the formulation of (24) is the foundation upon which
our main result is built. Stabilizing controller and observer gains
Kl and Ll for the NCS given by (11) with hk ∈ [h, h] and a
protocol satisfying (6) can be synthesized according to the
following theorem. In the formulation of the theorem, the matrix
set

R :=


diag(r1I1, . . . , rQ IQ , rQ+1I1, . . . , r2Q IQ )

∈ R2nx×2nx | rq̃ ∈ R, rq̃ > 0, q̃ ∈ {1, 2, . . . , 2Q }


(26)

is used, where, as in (19), Iq is the nλq × nλq identity matrix.

Theorem 3.3. Consider the system (11) and (12) with hk ∈ [h, h],
k ∈ N, and its overapproximation given by (13), (18) and (24). Assume
that Assumption 3.1 holds, the protocol satisfies (6) and any node
l ∈ {1, . . . , N̄} containing at least one sensor, i.e. J̄yl ≠ ∅, consists
of linearly independent sensors, i.e. (C)J̄yl ,•

has full row rank. Suppose
there exist symmetric matrices Pj, matrices Rj,m ∈ R, with R as in (26),
and matrices Gl, Z1,l, Z2,l, X1,l and X2,l where j ∈ {1, . . . , Ñ}, m ∈

{1, . . . ,M}, l ∈ {1, . . . , N̄} such that
Gσj + G⊤

σj
− Pj Ξ1(j,m)⊤ 0 Ξ2(j)⊤

⋆ Pj+1 GmRj,m 0
⋆ ⋆ Rj,m 0
⋆ ⋆ ⋆ Rj,m

 ≻ 0, (27)

for j ∈ {1, . . . , Ñ},m ∈ {1, . . . ,M}, and

X1,lEl = ElGl, for l ∈ Lu, (28a)

X2,lCl = ClGl, for l ∈ Ly, (28b)

for which we define

Ξ1(j,m) := Aσj,mGσj + Bσj,mZ1,σjEσj − DσjZ2,σjCσj ,

Ξ2(j) := IσjGσj + JσjZ1,σjEσj ,

for j ∈ {1, . . . , Ñ},m ∈ {1, . . . ,M}, with PÑ+1 := P1 and the sets
Lu and Ly are defined in (21), respectively. Then the controller gains
Kl, defined by (22), (23) and K̄l = Z1,lX−1

1,l , l ∈ Lu, and the observer
gains, defined by (22), (23) and L̄l = Z2,lX−1

2,l , l ∈ Ly, render the
system (11) and (12), with hk ∈ [h, h], k ∈ N, and the mentioned
periodic protocol, UGES.
Proof. See the Appendix. �

Remark 3.4. The requirement that any node l ∈ {1, . . . , N̄} con-
taining at least one sensor consists of linearly independent sensors,
i.e. (C)J̄yl ,•

has full row rank, is a rather mild condition. Indeed, the
natural situation of C having full row rank is a sufficient condition
for this requirement.

Remark 3.5. Note that Theorem 3.3 provides only sufficient con-
ditions for robustly stabilizing decentralized controller synthe-
sis. Interestingly, these conditions also become necessary when
using quadratic-type node-dependent Lyapunov functions pro-
vided a suitable node-dependent linear state-space transformation
z̄k = T̃ℓx̄k is chosen. This fact can be seen by, first, noting that
the GNB overapproximation technique introduces arbitrarily little
conservatism (at an increasing computational cost) (Donkers et al.,
2011, Theorem V.1) and, second, extending the result in De Souza
and Trofino (2000, Lemma 1) that proves the necessity part for the
simpler case of static feedback of linear discrete-time periodic sys-
tems. However, to the best of the authors’ knowledge, determin-
ing this suitable state-space transformation remains a difficult and
open problem.

3.2. Parallel subsystem communication

In this section, we will generalize the reasoning in Section 3.1
to allow the subsystems to communicate in parallel. Specifically,
we will explain why Assumption 3.1 is included and how it
is possible to remove Assumption 3.1 from Theorem 3.3. If
Assumption 3.1 does not hold, sensors and/or actuators from two
(or more) subsystems are grouped into one node and, hence,
communicate at the same transmission instant. The consequence
of two subsystems communicating is that K̄l and L̄l as defined
in (22) will remain structured, as these gains will then contain
elements that must be equal to zero. Due to these design variables
containing structure, solutions to Theorem 3.3 using (23) will not
be valid. In order to remove Assumption 3.1, (23) needs to be
generalized to

Γ u
l Kl =

N
i=1

Υ u
l,iK̄l,iΥ

x⊤
l,i , LlΓ

y
l =

N
i=1

Υ x
l,iL̄l,iΥ

y⊤
l,i , (29)

where (20) is then generalized to

Υ u
l,i :=


(Γ u

l )•,J̄ul ∩Jui
, if l ∈ Lu,i,

0, otherwise,

Υ
y
l,i :=


(Γ

y
l )

•,J̄yl ∩Jyi
, if l ∈ Ly,i,

0, otherwise,

Υ x
l,i :=


(Ix)•,J̄xl ∩Jxi

, if J̄xl ∩ Jxi ≠ ∅,

0, otherwise,

where (21) is generalized to

Lu,i := {l ∈ {1, . . . , N̄} | J̄ul ∩ Jui ≠ ∅}, (30a)

Ly,i := {l ∈ {1, . . . , N̄} | J̄yl ∩ Jyi ≠ ∅}, (30b)

and, finally, (22) is generalized to

K̄l,i :=


(Kl)J̄ul ∩Jui ,J̄

x
l ∩Jxi

, if l ∈ Lu,i,
0, otherwise,

(31a)

L̄l,i :=


(Ll)J̄xl ∩Jxi ,J̄

y
l ∩Jyi

, if l ∈ Ly,i,
0, otherwise.

(31b)

Notice that, using (29), if multiple subsystems communicate
simultaneously then each non-zero gain K̄l,i and L̄l,i is non-
structured. In the case that Assumption 3.1 is adopted, for each



N.W. Bauer et al. / Automatica 49 (2013) 2074–2086 2081
l ∈ {1, . . . , N̄}, there exists only one i ∈ {1, . . . ,N} where Υ x
l,i ≠

0, and thus (29) simplifies to (23). With (29), we have that (24)
becomes

Fl,m = Al,m +

N
i=1

(Bl,m,iK̄l,iEl,i − Dl,iL̄l,iCl,i), (32a)

Hl = Il +

N
i=1

Jl,iK̄l,iEl,i, (32b)

where Bl,m,i, El,i, Dl,i, Cl,i and Jl,i are of the form Bl,m, El, Dl, Cl
and Jl in (25) with Υ u

l,i, Υ
y
l,i and Υ x

l,i substituted for Υ u
l , Υ

y
l and

Υ x
l , respectively. These extensions lead to the following theorem,

which is a generalization of Theorem 3.3.

Theorem 3.6. Consider the system (11) and (12) with hk ∈ [h, h],
k ∈ N, and its overapproximation given by (13), (18), and (32).
Assume that the protocol satisfies (6) and any node l ∈ {1, . . . , N̄}

containing at least one sensor from subsystem i, i.e. J̄yl ∩Jyi ≠ ∅, consists
of linearly independent subsystem sensors, i.e. (C)J̄yl ∩Jyi ,•

has full row
rank. Suppose there exist symmetric matrices Pj, matrices Rj,m ∈ R,
with R as in (26), and matrices Gl, Z1,l,i, Z2,l,i, X1,l,i and X2,l,i where
i ∈ {1, . . . ,N}, j ∈ {1, . . . , Ñ}, m ∈ {1, . . . ,M}, l ∈ {1, . . . , N̄}

such that (27) holds for j ∈ {1, . . . , Ñ},m ∈ {1, . . . ,M}, and

X1,l,iEl,i = El,iGl, for l ∈ Lu,i, i ∈ {1, . . . ,N}

X2,l,iCl,i = Cl,iGl, for l ∈ Ly,i, i ∈ {1, . . . ,N}

for which we define

Ξ1(j,m) := Aσj,mGσj +

N
i=1

(Bσj,m,iZ1,σj,iEσj,i − Dσj,iZ2,σj,iCσj,i),

Ξ2(j) := IσjGσj +

N
i=1

Jσj,iZ1,σj,iEσj,i,

for j ∈ {1, . . . , Ñ},m ∈ {1, . . . ,M}, with PÑ+1 := P1 and the sets
Lu,i and Ly,i, i ∈ {1, . . . ,N}, are defined in (30), respectively. Then
the controller gains Kl, defined by (29), (31) and K̄l,i = Z1,l,iX−1

1,l,i, l ∈

Lu,i, i ∈ {1, . . . ,N}, and the observer gains, defined by (29), (31) and
L̄l,i = Z2,l,iX−1

2,l,i, l ∈ Ly,i, i ∈ {1, . . . ,N}, render the system (11), with
hk ∈ [h, h], k ∈ N, and the mentioned periodic protocol, UGES.

Proof. The proof follows directly from Theorem 3.3. �

Remark 3.7. The NCS model presented here can be extended to
include time-varying communication delays τk ∈ [τ , τ ], where
τk < hk for all k ∈ N, using the results in Donkers et al. (2011),
in a straightforward manner. Such an extension only requires re-
defining B̄hk to be B̄hk,τk =

 hk
τk

eA(hk−s)dsB and adding an additional
term Whk,τk ûk−1 =

 τk
0 eA(hk−s)dsBûk−1 to xk+1 in (4). As a direct

consequence, the closed-loop system matrix (12) will depend on
τk. This delay-induced uncertainty can be incorporated into an
overapproximated system of the form (13), where the additive un-
certainty set 1 then becomes part of R3nx×3nx instead of R2nx×2nx .
The decomposition of this overapproximated system into the form
(13) with (24) can still be achieved and, hence, Theorem 3.6 can
still be applied.

4. Example

In this section, we illustrate the presented theory using a
well-known benchmark example Bauer, Maas et al. (2012), Dačić
and Nešić (2007), Donkers et al. (2011), Heemels et al. (2010),
Nešić and Teel (2004) and Walsh et al. (2002) in the NCS
literature consisting of a linearized model of an unstable batch
reactor. This benchmark example has been used primarily to
compare conservatism in stability analysis techniques, where
the dynamic output-based stabilizing controller is assumed to
be given. In Dačić and Nešić (2007), dynamic output-feedback
controllers were synthesized for this problem in the presence of a
shared communication medium, but with a constant transmission
interval. This is the first paper which synthesizes dynamic output-
based stabilizing controllers for this problem with both a shared
communication medium and time-varying transmission intervals.
Moreover, we synthesize controllers while imposing constraints
regarding controller decentralization. First we will synthesize
stabilizing decentralized controllers for a single batch reactor
in Section 4.1 and then, in Section 4.2, synthesize stabilizing
controllers for multiple batch reactors. The single batch reactor
will be considered primarily for reasons of comparison to previous
work, and the multiple batch reactor case will be considered to
explore the (computational) limitations of the presented synthesis
technique.

4.1. Single batch reactor

The system matrices for the linearized batch reactor are given
in Walsh et al. (2002). This system is not in an ideal form to be
expressed as a collection of disjoint subsystems as in (1). So we
use a linear state transformation z = S̄x, where

S̄ =

0 1 0 0
0 0 1 1
1 0 1 −1
0 0 −1 1


and we reverse the order of the output vector y to arrive at the
following system matrices for the system in the form (2):

A B
C



=


−4.290 0.675 −0.581 −0.581 5.679 0
4.273 −0.761 0.048 −1.295 1.136 0

−0.208 1.039 2.399 3.681 0 −3.146
0 0 −1.019 −9.016 0 3.146
1 0 0 0
0 0 1 0

 . (33)

The two disjoint subsystems of (33) are denoted by the dashed
lines.Wewill use the systemmatrices in (33) as the plantmodel (2)
for the remainder of this example. We will compare four different
controller structures, denoted C1–C4.

C1—The first controller (C1) is a centralized controller (N = 1)
of the form (9) where the communication medium is not shared,
meaning all sensors and actuators are in one node (N̄ = 1) and
Γ u
1 = Γ

y
1 = I . This is the simplest setting for which Theorem 3.3

applies.
C2—The second controller (C2) is a decentralized controller

(N = 2) of the form (9) where the decentralized structure is
indicated in (33) by the dashed lines. The communication medium
is not shared, meaning all sensors and actuators are in one node
(N̄ = 1) and Γ u

1 = Γ
y
1 = I . Since the communication medium is

not shared and the controller is decentralized, the subsystems will
communicate in parallel and Theorem 3.6 must be used.

C3—The third controller (C3) is a decentralized controller (N =

2) of the form (9) where the decentralized structure is indicated
in (33) with the dashed lines. In addition, the communication
medium is shared. We specify that each sensor and actuator is
placed into a separate node. Hence, there are N̄ = 4 nodes,
where Γ u

1 = diag(1, 0), Γ u
2 = diag(0, 1), Γ u

3 = Γ u
4 = Γ

y
1 =

Γ
y
2 = diag(0, 0), Γ

y
3 = diag(1, 0) and Γ

y
4 = diag(0, 1). We
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specify the protocol to be the well-known Round Robin protocol
given by (6) with σl = l, l ∈ {1, . . . , 4} and Ñ = 4. With
this decentralized structure and communication protocol, the
subsystems communicate in a serial fashion and Theorem 3.3
applies.

To help clarify (23) we now explicitly provide the matrices
Υ u

l , Υ
y
l , Υ x

l , K̄l and L̄l, l ∈ {1, . . . , 4} associated with this con-
troller. If we define the elements of Kl and Ll as

Kl :=


Kl,1 Kl,2 0 0
0 0 Kl,3 Kl,4


,

L⊤

l :=


Ll,1 Ll,2 0 0
0 0 Ll,3 Ll,4


,

then we have that (23) translates to

Γ u
1 K1 = Υ u

1 K̄1Υ
x⊤
1 =


1
0

 
K1,1 K1,2

 
1 0 0 0
0 1 0 0


,

Γ u
2 K2 = Υ u

2 K̄2Υ
x⊤
2 =


0
1

 
K2,3 K2,4

 
0 0 1 0
0 0 0 1


,

Γ u
3 K3 = Γ u

4 K4 = 0, L1Γ
y
1 = L2Γ

y
2 = 0,

L3Γ
y
3 = Υ x

3 L̄3Υ
y⊤
3 =

1 0
0 1
0 0
0 0

 
L3,1
L3,2

 
1 0


,

L4Γ
y
4 = Υ x

4 L̄4Υ
y⊤
4 =

0 0
0 0
1 0
0 1

 
L4,3
L4,4

 
0 1


.

C4—The fourth controller (C4) is an exact discretization of
the dynamic controller considered in Bauer, Maas et al. (2012),
Donkers et al. (2011), Heemels et al. (2010), Nešić and Teel (2004)
and Walsh et al. (2002) which, when discretized, becomes of the
form x̃k+1 = Ac x̃k + Bc ŷk, uk = Cc x̃k + Dc ŷk−1, where


Ac Bc
Cc Dc


=

 1 0 h⋆ 0
0 1 0 h⋆

−2 0 −2 0
0 8 0 5

 ,

h⋆ is the nominal sampling interval used for controller discretiza-
tion and the decentralized structure is indicatedwith dashed lines.
This discrete-time controller was also studied in Dačić and Nešić
(2007). We consider the communication medium to be shared and
impose the same nodes and Round Robin protocol as specified for
controller C3.

For each of the controllers C1–C3 we took different values of h⋆

and used the YALMIP interface (Löfberg, 2004) with the SeDuMi
solver (Sturm, 1999) to verify the conditions of Theorem 3.3 or
Theorem 3.6 in order to find stabilizing gains Kl and Ll which
maximize h such that the NCS (11) is stable for [h, h] =

[10−3, h], k ∈ N, i.e. for a fixed lower bound on the transmission
interval. In the NCS literature, this problem setting is also known
as finding the maximum allowable transmission interval (MATI)
that still guarantees stability (Bauer, Maas et al., 2012; Donkers
et al., 2011; Heemels et al., 2010; Nešić & Teel, 2004; Walsh et al.,
2002). Unlike the aforementioned references which consider the
controller as given, we now have the advantage of using controller
synthesis to push the MATI to an even higher value. For C4,
the closed-loop model and stability analysis technique given in
Donkers et al. (2011) (see Remark 2.2) were used to verify stability
in order tomaximize the uncertainty range [h, h] = [10−3, h], k ∈

N. For C1–C4 we considered an overapproximation of the closed-
loop dynamics usingM = 10 grid points.
Fig. 2. Maximum h (with h = 10−3) for which (i) stabilizing controller gains for
the batch reactor system could be synthesized for C1 and C3 using Theorem 3.3 and
C2 using Theorem 3.6 and (ii) stability could be guaranteed for C4.

The result of applying Theorem 3.3 to C1 and C3 and applying
Theorem 3.6 to C2 is plotted in Fig. 2. The regions for which
closed-loop stability can be guaranteed for controller structures
C1, C2, C3 and C4 lie below the lines corresponding to C1, C2,
C3 and C4, respectively. Furthermore, the regions lying below
the lines corresponding to C1–C3 represent the set of stabilizing
controllers that can be found by iteratively applying Theorem 3.3
or Theorem 3.6. One can see that, as expected, the case of a
centralized controller and a communication medium which is not
shared (C1) achieves the largest robustness margins and yields
the largest set of stabilizing controllers. Imposing decentralized
structural constraints (C2) and both decentralized structural
constraints and a shared communication medium (C3) results in
lower robustness margins and smaller sets of controllers. Lastly,
analyzing stability of the ‘conventional’ batch reactor controller
(C4) yields the smallest region. The stability analysis technique
used to analyze C4 was shown in Donkers et al. (2011) to greatly
reduce conservatism compared to robustness margins proven in
previous work. However, every point (h⋆, h), which lies between
the lines corresponding to C3 and C4 in Fig. 2, represents a
decentralized observer-based controller (9) that has improved
closed-loop robustness compared to the existing controller C4.
Hence, the presented technique, which synthesizes decentralized
dynamic controllers for C3, results in finding an entire set of
controllers that have significantly improved robustness margins
compared to the given decentralized controller C4.

An additional useful aspect of Fig. 2 is that the h⋆ which provides
themost robustness to network-induced uncertainties (largest h in
this case) can be determined for the different controller/network
configurations C1–C4. Thus by performing a parametric sweep of
h⋆ over a certain range (typically between h and h), we have a way
of determining suitable values of h⋆ that provide a certain desirable
level of robustness.

As a final remark, the amount of time taken to solve the LMI
feasibility problem given in Theorem 3.3 or Theorem 3.6 was, on
average, 5 s for C1 and C2 and 20 s for C3 using a laptop containing
a 2.5 GHz Core2 Duo CPU and 4 GB of RAM, which illustrates the
computational feasibility of the presented approach for small-scale
problems.

4.2. Multiple batch reactors

In this section, we will apply the synthesis techniques to the
case where ν ∈ N batch reactors are considered. Thus, the system
matrices Â, B̂ and Ĉ considered in this section are block diagonal,
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Fig. 3. Maximum h (with h = 10−3 and h⋆ = 0.010) for which (i) stabilizing
controller gains for the batch reactor system could be synthesized for C1 using
Theorem 3.3 and C2 and C5 using Theorem 3.6.

where the number of blocks is equal to ν and the blocks themselves
are equal to the A, B and C matrices in (33), respectively. Hence,
we have that Â = diag(A, A, . . . , A), B̂ = diag(B, B, . . . , B) and
Ĉ = diag(C, C, . . . , C). The scenario we aim to study is a factory
setting where multiple batch reactors are using wireless commu-
nication to transmit their sensor values. We can perform a similar
analysis as in the previous section, which compares the resulting
robustness for different controller configurations. We will again
consider an overapproximation of the closed-loop dynamics using
M = 10 grid points, as in the previous section.

For this multi-batch-reactor situation, we will again consider
the controller structures C1 and C2 introduced in the previous
section. In this section, C2 is a decentralized controller (N =

2ν) of the form (9) where the decentralized structure for each
batch reactor is indicated in (33) with the dashed lines. Although
synthesizing robustly stabilizing controllers C1 or C2 for a single
batch reactor does guarantee robust stability when applied to
multiple batch reactors (due to a lack of network and subsystem
coupling), the main reason for considering these two controller
structures is to explore the computational limitations of the
developed synthesis technique when the closed-loop dimension is
increased. In addition to C1 and C2, we also want to investigate the
resulting robustness for a decentralized controller structure that
does introduce network coupling, denoted C5, described below.

C5—The fifth controller (C5) is a decentralized controller (N =

2ν) of the form (9)where the decentralized structure for each batch
reactor is indicated in (33) with the dashed lines. In addition, the
communication medium is shared. We specify that each sensor
is placed into a separate node and all actuators are updated at
each transmission instant. Hence, there are N̄ = 2ν nodes, where
Γ u
l = I for all l ∈ {1, . . . , 2ν} and (Γ

y
l )(r,r) = 1 when l = r and

is zero otherwise for all l ∈ {1, . . . , 2ν}. We specify the protocol
to be the well-known Round Robin protocol given by (6) with
σl = l, l ∈ {1, . . . , 2ν} and Ñ = 2ν. With this decentralized
structure and communication protocol, the subsystems’ actuators
communicate in a parallel fashion and Theorem 3.6 applies.

The controller structure C5 models the practical situation
where each (decentralized) controller is co-located at each
actuator. Although the batch reactors themselves are not coupled,
the presence of a shared communication network couples the
individual batch reactor’s dynamics. Unlike C1 and C2, a controller
C5 that robustly stabilizes a single batch reactor is not guaranteed
to be stabilizing when applied to multiple batch reactors. Hence,
stabilizingmultiple batch reactors by using this practical (wireless)
Fig. 4. The number of variables which must be solved as a function of the number
of batch reactors ν. Both the cases of controller synthesis and stability analysis are
plotted with different numbers of grid pointsM .

controller structure requires a synthesis technique that includes
both decentralized and shared networked aspects, such as the one
provided in Theorem 3.6.

The result of applying the synthesis theorems to this setting
is shown in Fig. 3. Due to the lack of a shared communication
medium, the amount of robustness that can be guaranteed
employing controllers corresponding to C1 and C2 is equal to
that in Fig. 2 for any number of batch reactors. This is, of course,
expected since the controller structures C1 and C2 do not couple
the batch reactors in any way. However, for C5, which considers
a shared communication medium, we can see that the amount of
robustness that can be guaranteed decreases with an increasing
number of batch reactors as more sensors are required to share
the medium. For the case of ν = 3 batch reactors, the proposed
synthesis technique can be used to synthesize a decentralized
controller that robustly stabilizes the closed-loop NCS for h =

0.011. Due to the memory limitations of the computer used for
computation (mentioned before), stabilizing controllers could be
synthesized for a maximum of ν = 4 batch reactors for C1
and C2, whereas stabilizing controllers could be synthesized for a
maximum number of ν = 3 batch reactors for C5. This indicates
the limitations of this technique when implemented in current
commercially available computer hardware.

To provide a better (solver/hardware independent) indication
of how the computational complexity (i.e. memory/computational
time required) scales with the state dimension, we will provide an
analytical expression which specifies the number of free variables
which must be determined to synthesize controller C5 as a
function of the number of batch reactors (and grid points). This
expression is

nvars = nP + nR + nG + nX + nZ (34)

where nP , nR, nG, nX and nZ indicate the number of free variables
in the P, R,G, X and Z matrices of Theorem 3.6, respectively. For
the controller structure C5, it can be determined that

nP = 144ν3
+ 12ν2, nR = 16Mν2, nG = 288ν3,

nX = 8ν2
+ 4ν, nZ = 16ν2

+ 2ν,
(35)

where M ∈ N is the number of grid points (and ν is the number
of batch reactors). This representation illustrates the computa-
tional penalty incurred from each component, and gives insight
into how the computational complexity would be reduced if cer-
tain elements were removed or modified. For example, perform-
ing robust stability analysis (as mentioned in Remark 2.2) only
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requires the computation of the P and R matrices and, therefore,
nvars = nP + nR. Therefore, we can conclude that for this switched
system framework, the computational complexity has polynomial
growth (of third order in this case) in terms of the number of
batch reactors considered. Interestingly, the decentralized synthe-
sis technique presented in this paper has the same order of com-
plexity as the simpler stability analysis problem.

In Fig. 4, the number of free variables is plotted as a function
of the number of batch reactors, as specified in (34) with (35).
This plot considers the number of variables required to both
synthesize controllers C5 and determining robust stability analysis
of a given controller C5 (based on Donkers et al., 2011). We
can observe how many more additional variables the synthesis
technique presented in this paper requires than the stability
analysis technique. Recalling that the maximum number of
batch reactors able to be synthesized for C5 was ν = 3 (which
corresponds to a closed-loop dimension of size 36), we can see
that ≈104 variables need to be determined by the LMI solver,
which, from Fig. 4, implies that robust stability analysis of C5 can
be assessed for at least ν = 4 batch reactors (which corresponds
to a closed-loop dimension of size 48). We also observe that
the addition of more grid points does not introduce a large
computational penalty in terms of additional variables asM enters
linearly in (34) and (35). Finally, Fig. 4 provides an indication of
the amount ofmemory (and computational time) required to solve
larger problems, and suggests where the limitations of one-shot
LMI-based techniques currently are.

5. Conclusion

In this paper, we have presented LMI-based synthesis con-
ditions for designing decentralized observer-based control laws
in the presence of a shared communication medium, which are
robust with respect to time-varying transmission intervals and
time-varying delays. This result was obtained by expressing the
observer-based controller design problemas amulti-gain switched
static output-feedback problem (with additive uncertainty), for
which the gains can be efficiently solved by LMI-based feasibility
conditions. These LMI-based synthesis conditions, if satisfied, pro-
vide stabilizing gains for both the decentralized problem setting
and the NCS problem setting in isolation, as well as the unifica-
tion of these two problem settings. Using a benchmark example
in the NCS literature, it was shown that this synthesis technique
was able to find an entire set of controllers that significantly im-
proved the closed-loop robustness compared to that of a dynamical
controller, extensively studied in the literature. However, the com-
putational complexity of the proposed approach limits this one-
shot technique to synthesizing (decentralized) controllers for small
and mid-size state-space dimensions. This limitation is primarily
due to the fact that, although offering low levels of conservatism
and efficient verification for small-scale problems, the number of
variables that must be solved using a (switched) quadratic Lya-
punov function candidate grows polynomially with respect to the
state dimension. Therefore, this advocates that future techniques
should not only focus on providing low levels of conservatism but
also focus on having low levels of computational complexity. Ac-
complishing lower levels of computational complexity, improved
solvers, and distributed solving of LMIswould enhance the possible
application of the proposed methodology for large-scale systems.
In any event, the framework laid down in this paper forms one of
the first systematic methodologies for the synthesis of stabilizing
controllers that incorporate both decentralized and (shared) net-
worked features.
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Appendix. Proof of Theorem 3.3

Before going to the construction of a Lyapunov function to prove
the theorem, we first establish some technical facts that we need
in the following:

• Due to (27), Pj ≻ 0 for j ∈ {1, . . . , Ñ}.
• Feasibility of (27) implies that Gσj + G⊤

σj
− Pj ≻ 0, and thus Gl is

invertible for all l ∈ {1, . . . , N̄}. Indeed, suppose that Gσj x̄ = 0
for some x̄, then 0 = x̄⊤(Gσj + G⊤

σj
)x̄ ≽ x̄⊤Pjx̄. Since Pj ≻ 0, this

implies that x̄ = 0 and thus Gl, l ∈ {1, . . . , N̄}, is invertible.
• Using the fact thatCl has full row rankwhen (C)J̄yl ,•

= Υ
y⊤
l C has

full row rank and El is full row rank by definition, then it follows
from (28) and invertibility of Gl, l ∈ {1, . . . , N̄}, that X1,l, l ∈ Lu,
must have full rank and X2,l, l ∈ Ly, must have full rank and thus
be invertible. Hence, the controller gains K̄l = Z1,lX−1

1,l , l ∈ Lu,
and observer gains L̄l = Z2,lX−1

2,l , l ∈ Ly, are well defined.

Now we are ready to prove that the controller gains K̄l =

Z1,lV−1
1,l , l ∈ Lu, and observer gains L̄l = Z2,lV−1

2,l , l ∈ Ly, with
(22) and (23) stabilize (11) and (12) with hk ∈ [h, h] and a given
protocol satisfying (6) by proving that (27) and (28) guarantee
the existence of a Lyapunov function proving uniform global
exponential stability (UGES) of (13), (18) and (24) with αk ∈

�, ∆k ∈ 1 and the same protocol satisfying (6). This is a direct
consequence as (13) is an overapproximation of (11) and (12) in
the sense that (16) holds.

Let us consider the following Lyapunov function candidate

Vk(x̄k) = x̄⊤

k P
−1
j x̄k, (36)

where j = k− rÑ for some r ∈ N such that j ∈ {1, . . . , Ñ}. Clearly,
there exist c1, c2 > 0 such that c1∥x̄∥2

≤ Vk(x̄) ≤ c2∥x̄∥2 for all
k ∈ N and x̄ ∈ Rn due to the positive definiteness of P−1

1 , . . . , P−1
Ñ

.
Due to the fact that σk is periodic, see (6), we only have to show
that the Lyapunov function candidate decreases along solutions of
(13), (18) and (24) for k = {1, . . . , Ñ}. UGES of (13), (18) and (24)
is established if this Lyapunov function candidate satisfies

P−1
j −

M
m1=1

αm1(Fσj,m1 + Gm11Hσj)
⊤

× P−1
j+1

M
m2=1

αm2(Fσj,m2 + Gm21Hσj) ≻ 0 (37)

for all j ∈ {1, . . . , Ñ}, ∆ ∈ 1 and α ∈ � where PÑ+1 = P1
as this would guarantee the existence of an ϵ > 0 such that
1Vk(x̄k) := Vk+1(x̄k+1) − Vk(x̄k) ≤ −ϵ∥x̄k∥2 for all x̄k ∈ Rn and
all k ∈ N.

Now we will prove that satisfaction of (37) for all ∆ ∈ 1

and α ∈ � is implied by satisfaction of (27) and (28) with
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K̄l = Z1,lX−1
1,l , l ∈ Lu and L̄l = Z2,lX−1

2,l , l ∈ Ly. By a Schur
complementwe canobserve that the condition in (37) is equivalent
to satisfying

M
m=1 αmQj,m ≻ 0, where

Qj,m :=


P−1
j (Fσj,m + Gm1Hσj)

⊤

(Fσj,m + Gm1Hσj) Pj+1


,

α ∈ � and∆ ∈ 1 for all j = {1, . . . , Ñ}. A necessary and sufficient
condition for the satisfaction of

M
m=1 αmQj,m ≻ 0 for all α ∈ �

and for all ∆ ∈ 1 is to require that Qj,m ≻ 0 for all ∆ ∈ 1 and
for all j ∈ {1, . . . , Ñ}, m ∈ {1, . . . ,M}. Now observe that for
all ∆j ∈ 1, it holds that H⊤

σj
(R−1

j,m − ∆⊤R−1
j,m∆)Hσj ≽ 0, for all

R−1
j,m ∈ R, j ∈ {1, . . . , Ñ} and m ∈ {1, . . . ,M} by the definitions of

1 in (15) and R in (26). Hence, Qj,m ≻ 0 is satisfied if
P−1
j (Fσj,m + Gm1Hσj)

⊤

(Fσj,m + Gm1Hσj) Pj+1


≻


H⊤

σj
(R−1

j,m − ∆⊤R−1
j,m∆)Hσj 0

0 0


,

or equivalently that S⊤

j,mQ̄j,mSj,m ≻ 0, where

Q̄j,m :=


G⊤

σj
P−1
j Gσj (Fσj,mGσj)

⊤ 0 (HσjGσj)
⊤

⋆ Pj+1 GmRj,m 0
⋆ ⋆ Rj,m 0
⋆ ⋆ ⋆ Rj,m

 ,

and

Sj,m :=


G−1

σj
0

0 I
R−1
j,m1Hσj 0

−R−1
j,mHσj 0

 .

The matrix inequality S⊤

j,mQ̄j,mSj,m ≻ 0 is satisfied if Q̄j,m ≻ 0
since Sj,m is full column-rank. Using the fact that it holds that
G⊤

σj
P−1
j Gσj ≽ Gσj + G⊤

σj
− Pj, the satisfaction of Q̄j,m ≻ 0 is implied

by the satisfaction of Gσj + G⊤
σj

− Pj (Fσj,mGσj)
⊤ 0 (HσjGσj)

⊤

⋆ Pj+1 GmRj,m 0
⋆ ⋆ Rj,m 0
⋆ ⋆ ⋆ Rj,m

 ≻ 0. (38)

Note that G⊤
σj
P−1
j Gσj ≽ Gσj + G⊤

σj
− Pj follows from the fact that

if P−1
j ≻ 0 then (Gσj − Pj)⊤P−1

j (Gσj − Pj) ≽ 0.
Finally, combining Z2,σjCσj = L̄σjCσjGσj , which is derived from

(28b) and L̄σj = Z2,σjX
−1
2,σj

, and Z1,σjEσj = K̄σjEσjGσj , which is derived

from (28a) and K̄σj = Z1,σjX
−1
1,σj

, with (24), we can substitute

Fσj,mGσj = Aσj,mGσj + Bσj,mK̄σjEσjGσj − Dσj L̄σjCσjGσj

= Aσj,mGσj + Bσj,mZ1,σjEσj − DσjZ2,σjCσj ,

HσjGσj = IσjGσj + Jσj K̄σjEσjGσj

= IσjGσj + JσjZ1,σjEσj ,

into (38), which yields (27). The above substitution of Z2,lCl =

L̄lClGl, thus using (28b), is only needed when l ∈ Ly since, by
definition, Υ

y
l = 0 when l ∉ Ly (and thus Cl = 0). Similarly,

substitution of Z1,lEl = K̄lElGl, thus using (28a), is only needed
when l ∈ Lu since Υ u

l = 0 when l ∉ Lu (and thus Jl = 0 and
Bl,m = 0 for all m ∈ {1, . . . ,M}).

We have shown that satisfaction of (27) and (28) yield K̄l and
L̄l which satisfy (37) for all j ∈ {1, . . . , Ñ}, α ∈ � and ∆ ∈ 1.
Hence, using standard Lyapunov arguments, UGES of (13), (18) and
(24) with αk ∈ �, ∆k ∈ 1 and the given protocol satisfying (6) is
guaranteed and also yields UGES of (11) and (12) with hk ∈ [h, h]
and the same periodic protocol.

References

Al-Hammouri, A. T., Branicky, M. S., Liberatore, V., & Phillips, S. M. (2006).
Decentralized and dynamic bandwidth allocation in networked control
systems. In 20th Int. parallel and distributed processing symposium (p. 8). April.

Anderson, B. D. O., &Moore, J. (1981). Time-varying feedback laws for decentralized
control. IEEE Transactions on Automatic Control, 26(5), 1133–1139.

Bakule, L. (2008). Decentralized control: an overview. Annual Reviews in Control,
32(1), 87–98.

Bauer, N. W., Donkers, M. C. F., van de Wouw, N., & Heemels, W. P. M. H. (2012).
Decentralized static output-feedback control via networked communication. In
Proc. American control conf., June.

Bauer, N. W., Maas, P. J. H., & Heemels, W. P. M. H. (2012). Stability analysis of
networked control systems: a sum of squares approach. Automatica, 48(8),
1514–1524.

Blaabjerg, F., Teodorescu, R., Liserre, M., & Timbus, A. V. (2006). Overview of
control and grid synchronization for distributed power generation systems. IEEE
Transactions on Industrial Electronics, 53, 1398–1409.

Cembrano, G., Wells, G., Quevedo, J., Pérez, R., & Argelaguet, R. (2000). Optimal
control of a water distribution network in a supervisory control system. Control
Engineering Practice, 8, 1177–1188.

Cloosterman, M. B. G., Hetel, L., van de Wouw, N., Heemels, W. P. M. H., Daafouz,
J., & Nijmeijer, H. (2010). Controller synthesis for networked control systems.
Automatica, 46(10), 1584–1594.

Cloosterman,M. B. G., van deWouw, N., Heemels,W. P.M. H., & Nijmeijer, H. (2009).
Stability of networked control systemswith uncertain time-varying delays. IEEE
Transactions on Automatic Control, 54(7), 1575–1580.

Daafouz, J., Riedinger, P., & Iung, C. (2002). Stability analysis and control
synthesis for switched systems: a switched Lyapunov function approach. IEEE
Transactions on Automatic Control, 47(11), 1883–1887.

Dačić, D. B., & Nešić, D. (2007). Quadratic stabilization of linear networked control
systems via simultaneous protocol and controller design. Automatica, 43(7),
1145–1155.

Dačić, D. B., & Nešić, D. (2008). Observer design for wired linear networked control
systems using matrix inequalities. Automatica, 44(11), 2840–2848.

De Souza, C. E., & Trofino, A. (2000). An LMI approach to stabilization of linear
discrete-time periodic systems. International Journal of Control, 73(8), 696–703.

Donkers, M. C. F., Heemels, W. P. M. H., van de Wouw, N., & Hetel, L. (2011).
Stability analysis of networked control systems using a switched linear systems
approach. Transactions on Automatic Control, 56(9), 2101–2115.

Fujioka, H. (2008). Stability analysis for a class of networked/embedded con-
trol systems: a discrete-time approach. In Proc. American control conf.
(pp. 4997–5002). June.

Gao, H., Meng, X., Chen, T., & Lam, J. (2010). Stabilization of networked control
systems via dynamic output-feedback controllers. SIAM Journal on Control and
Optimization, 48(5), 3643–3658.

Garcia-Rivera, M., & Barreiro, A. (2007). Analysis of networked control systemswith
drops and variable delays. Automatica, 43(12), 2054–2059.

Geromel, J. C., Bernussou, J., & Peres, P. L. D. (1994). Decentralized control through
parameter space optimization. Automatica, 30(10), 1565–1578.

Hao, F., & Zhao, X. (2010). Linear matrix inequality approach to static output-
feedback stabilisation of discrete-time networked control systems. IET Control
Theory and Applications, 4(7), 1211–1221.

Heemels, W. P. M. H., Teel, A. R., van de Wouw, N., & Nešić, D. (2010). Networked
control systems with communication constraints: tradeoffs between transmis-
sion intervals, delays and performance. IEEE Transactions on Automatic Control,
55(8), 1781–1796.

Heemels, W. P. M. H., van de Wouw, N., Gielen, R. H., Donkers, M. C. F., Hetel, L., &
Olaru, S. et al. (2010). Comparison of overapproximation methods for stability
analysis of networked control systems. In HSCC 2010: proc. 13th ACM int. conf.
on hybrid systems: computation and control (pp. 181–190).

Hespanha, J. P., Naghshtabrizi, P., & Xu, Y. (2007). A survey of recent results in
networked control systems. Proceedings of the IEEE, 95(1), 138–162.

Hong, S. H. (1995). Scheduling algorithm of data sampling times in the integrated
communication and control systems. IEEE Transactions on Control Systems
Technology, 3(2), 225–230.

Horn, R., & Johnson, C. R. (1985).Matrix analysis. Cambridge University Press.
Johnson, K. E., & Thomas, N. (2009). Wind farm control: addressing the

aerodynamic interaction among wind turbines. In Proc. American control conf.
(pp. 2104–2109). June.

Löfberg, J. (2004). YALMIP: a toolbox for modeling and optimization in MATLAB. In
Proc. CACSD conf.

Montestruque, L. A., & Antsaklis, P. (2004). Stability of model-based networked
control systems with time-varying transmission times. IEEE Transactions on
Automatic Control, 49(9), 1562–1572.

Moyne, J. R., & Tilbury, D. M. (2007). The emergence of industrial control networks
for manufacturing control, diagnostics, and safety data. Proceedings of the IEEE,
95, 29–47.



2086 N.W. Bauer et al. / Automatica 49 (2013) 2074–2086
Murray, R. M., Åström, K. J., Boyd, S. P., Brockett, R. W., & Stein, G. (2003). Future
directions in control in an information-rich world. Control Systems Magazine,
20–33.

Naghshtabrizi, P., & Hespanha, J. P. (2005). Designing an observer-based controller
for a network control system. In Proc. 44th IEEE conf. on decision and control
(pp. 848–853). December.

Naghshtabrizi, P., Hespanha, J. P., & Teel, A. R. (2008). Exponential stability of
impulsive systemswith application to uncertain sampled-data systems. Systems
& Control Letters, 57(5), 378–385.

Nešić, D., & Teel, A. R. (2004). Input–output stability properties of networked control
systems. IEEE Transactions on Automatic Control, 49(10), 1650–1667.

Nešić, D., Teel, A. R., & Sontag, E. D. (1999). Formulas relating KL stability estimates
of discrete-time and sampled-data nonlinear systems. Systems & Control Letters,
38(1), 49–60.

Postoyan, R., & Nešić, D. (2010). A framework for the observer design for networked
control systems. In Proc. American control conf. (pp. 3678–3683).

Rotkowitz, M., & Lall, S. (2005). A characterization of convex problems in decentral-
ized control. IEEE Transactions on Automatic Control, 50(12), 1984–1996.

Sandell, N. R., Varaiya, P., Athans, M., & Safonov, M. (1978). Survey of decentralized
control methods for large scale systems. IEEE Transactions on Automatic Control,
23(2), 108–128.

Šiljak, D. D. (1991).Decentralized control of complex systems. Boston: Academic Press.
Stanković, S. S., Stipanović, D. M., & Šiljak, D. D. (2007). Decentralized dynamic

output feedback for robust stabilization of a class of nonlinear interconnected
systems. Automatica, 43(5), 861–867.

Sturm, J. F. (1999). Using SeDuMi 1.02, a MATLAB toolbox for optimization over
symmetric cones. Optimization Methods and Software, 11–12, 625–653. Version
1.05 Available from: http://fewcal.kub.nl/sturm.

van de Wouw, N., Naghshtabrizi, P., Cloosterman, M. G. B., & Hespanha, J. P.
(2009). Tracking control for sampled-data systemswith uncertain time-varying
sampling intervals and delays. International Journal of Robust and Nonlinear
Control, 20(4), 387–411.

Walsh, G. C., Ye, H., & Bushnell, L. G. (2002). Stability analysis of networked control
systems. IEEE Transactions on Control Systems Technology, 10(3), 438–446.

Zhang, L., & Hristu-Varsakelis, D. (2006). Communication and control co-design for
networked control systems. Automatica, 42(6), 953–958.

Zhu, Y., & Pagilla, P. R. (2007). Decentralized output feedback control of a class of
large-scale interconnected systems. IMA Journal of Mathematical Control and
Information, 24(1), 57–69.

Nicolas Bauer received his B.Sc. (Honors) and M.Sc. from
the Department of Electrical and Computer Engineering
at the University of California Santa Barbara in 2007
and 2008, respectively. He received his Ph.D. from the
Department of Mechanical Engineering at the Eindhoven
University of Technology, The Netherlands, in February
2013. Currently he is with the Department of Mechanical
Engineering at the Eindhoven University of Technology as
a postdoctoral researcher. His current research interests
include networked control systems, distributed control
and switched systems.
M.C.F. Donkers received theM.Sc. degree and the Ph.D. de-
gree (both summa cum laude) in systems and controls in
2008 and 2011, respectively, from the Eindhoven Univer-
sity of Technology, The Netherlands. In 2010, he was a vis-
iting researcher at the Cyber-Physical Systems Laboratory
of the University of California at Los Angeles, CA, USA. His
current research interests include networked and event
driven control, distributed control, and switched systems.

N. van de Wouw (born, 1970) obtained his M.Sc. degree
(with honors) and his Ph.D. in mechanical engineering
from the Eindhoven University of Technology, Eindhoven,
The Netherlands, in 1994 and 1999, respectively. From
1999 until nowhe has been affiliatedwith the Department
of Mechanical Engineering of the Eindhoven University
of Technology in the group of Dynamics and Control
as an assistant/associate professor. In 2000, Nathan van
de Wouw was working at Philips Applied Technologies,
Eindhoven, The Netherlands and, in 2001, he was working
at The Netherlands Organization for Applied Scientific

Research (TNO), Delft, The Netherlands. He has held positions as a visiting professor
at the University of California Santa Barbara, USA, in 2006/2007, at the University
of Melbourne, Australia, in 2009/2010 and at the University of Minnesota, USA,
in 2012. Nathan van de Wouw has published a large number of journal and
conference papers and the books ‘UniformOutput Regulation of Nonlinear Systems:
A Convergent Dynamics Approach’ with A.V. Pavlov and H. Nijmeijer (Birkhauser,
2005) and ‘Stability and Convergence of Mechanical Systems with Unilateral
Constraints’ with R.I. Leine (Springer–Verlag, 2008). He is currently an Associate
Editor for the journal Automatica. His current research interests are the analysis
and control of nonlinear/non-smooth systems and networked control systems.

Maurice Heemels received the M.Sc. in mathematics and
the Ph.D. degrees (both with the highest distinction) from
the Eindhoven University of Technology, Eindhoven, The
Netherlands, in 1995 and 1999, respectively.

From 2000 to 2004, he was with the Electrical En-
gineering Department, Eindhoven University of Technol-
ogy, as an Assistant Professor, and from 2004 to 2006
with the Embedded Systems Institute (ESI) as a Research
Fellow. Since 2006, he has been with the Department of
Mechanical Engineering, EindhovenUniversity of Technol-
ogy, where he is currently a Full Professor and the chair of

theHybrid andNetworked SystemsGroup. He held visiting research positions at the
Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (2001) and at the
University of California Santa Barbara (2008). In 2004, he was also at the Research
& Development Laboratory, Océ, Venlo, The Netherlands. His current research in-
terests include hybrid and non-smooth dynamical systems, networked control sys-
tems and constrained systems including model predictive control.

Dr. Heemels is an Associate Editor for the journals Automatica and Nonlinear
Analysis: Hybrid Systems and serves as the General Chair of the 4th IFAC Conference
on Analysis and Design of Hybrid Systems 2012 in Eindhoven, The Netherlands.

http://fewcal.kub.nl/sturm

	Decentralized observer-based control via networked communication
	Introduction
	Nomenclature

	The model and problem definition
	Network description
	Decentralized networked observer-based controllers
	Closed-loop model
	Polytopic overapproximation

	Controller synthesis
	Serial subsystem communication
	Parallel subsystem communication

	Example
	Single batch reactor
	Multiple batch reactors

	Conclusion
	Acknowledgments
	Proof of Theorem 3.3
	References


