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a b s t r a c t

In this paper, we develop a methodology for the steady-state performance optimization, in terms of
the sensitivity to disturbances, for Lur’e type nonlinear control systems. For linear systems, steady-state
performance is well defined and related to frequency-domain characteristics. The definition and analysis
of steady-state performance of nonlinear systems are, however, far from trivial. For a practically relevant
class of nonlinear systems and disturbances, this paper provides a computationally efficient method for
the computation of the steady-state responses and, therewith, for the efficient performance assessment of
the nonlinear system. Based on these analysis tools, a strategy for performance optimization is proposed,
which can be employed for the optimized tuning of system and controller parameters. The results are
illustrated by application to a variable gain controlled short-stroke wafer stage of a wafer scanner.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Steady-state performance of a control system relates to the
sensitivity of its steady-state response to perturbations. For linear
systems, powerful tools for performance evaluation exist, which
are well-known among control engineers and have been crucial
to the success of linear control in industrial practice. Linear
control systems’ performance is usually assessed by investigating
frequency-domain characteristics, such as the sensitivity, process
sensitivity, and complementary sensitivity functions. The power
of these frequency-domain techniques hinges on the fact that the
steady-state response is unique, and it can be easily computed
in the frequency domain from the input and the corresponding
frequency response functions. The latter fully characterizes the
mapping from the input to the steady-state output due to the
superposition principle. However, for nonlinear systems such a
frequency response function is not defined, and, moreover, the
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superposition principle does not hold. As a consequence, steady-
state performance analysis for nonlinear control systems is a
challenging task and themajority of theworks onnonlinear control
focus on stability rather than performance.

Still, there are several tools available to evaluate the steady-
state performance of nonlinear systems in the face of disturbances.
For example it can be assessed through an L2-gain between input
and output (van der Schaft, 2000) or ISS-gain between input
and state (Sontag, 2007) for the whole class of (bounded in the
corresponding norm) inputs. These approaches provide an upper
bound on the norm of the steady-state response given an upper
bound on the norm of the input. The benefit of such an approach is
that it is valid for a generic class of bounded disturbances. On the
other hand, this generality results in conservative estimates when
considering particular classes of disturbances. Moreover, such a
bound tends to be rather conservative because estimated L2- and
ISS-gains for nonlinear systems are generally conservative.

Quite oftenwe do havemore knowledge about the disturbances
than a mere bound on their magnitude. For example, in many
practically relevant cases, disturbances can be modeled as being
periodic. This is the case, for example, if perturbations are induced
by a mass-unbalance in rotor dynamics systems (Huang, Chao,
Kang, & Sung, 2002), due to narrow-band filtering of resonances
in the system dynamics in e.g. mechanical systems, or due to
periodicity of reference trajectories to be tracked. In addition to
periodicity, from the physical properties of the system we may
even know the shape of disturbances possibly parameterized in
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someway. In this case the estimates on the steady-state responses
obtained through the L2-gain or ISS-gain approach, which do not
take into account this information, will be too conservative.

To overcome this problem and evaluate the steady-state
performance in a more accurate way, an alternative approach is
proposed in this paper. It is based on numerical computation of the
steady-state solutions as opposed to estimating their quantitative
characteristics as in the previously mentioned approaches. For
example, performance of a controlled robot doing a finite number
of repetitive tasks can be evaluated by computing its steady-state
solutions for the corresponding periodic reference trajectories.
In addition to this, with an efficient algorithm for numerical
computation of the steady-state solution’s sensitivity with respect
to control system parameters, we can employ a gradient-like
method to optimize system performance. Of course, the efficiency
and practical feasibility of such an approach is based on the
efficiency of the underlying numerical algorithms.

Even though this approach may sound straightforward, it is
far from trivial to make it feasible from both theoretical and
computational points of view, since we are dealing with nonlinear
systems. To cope with this problem, we limit our analysis to the
case of periodic excitations (disturbances or reference signals)
and to the practically relevant class of Lur’e nonlinear control
systems. As it has been mentioned above, the choice of periodic
disturbances is practically relevant for a number of applications.
Modeling disturbances as being periodicmay usually involve some
form of approximation. However, it is well worth adopting such an
approximation if more accurate characterizations of the steady-
state response can be obtained, when compared to employing
an L2-gain or ISS-gain approach. The choice of Lur’e systems is
explained by simple and easily verifiable conditions under which
such a system exhibits a unique periodic steady-state response to
a periodic excitation (Pavlov, van de Wouw, & Nijmeijer, 2005;
Yakubovich, 1964). It is exactly this property that will allow us
to uniquely characterize steady-state performance. For nonlinear
systems that are not necessarily of Lur’e type, some conditions
for the existence of the unique periodic steady-state response
to a periodic excitation can be found, for example, in Angeli
(2002), Demidovich (1961) and Russo, di Bernardo, and Sontag
(2010). For general nonlinear systems, in contrast, the steady-state
response to periodic disturbances may not be well-defined: it may
be non-unique (i.e. dependent on the initial conditions) and/or
not periodic. Examples of Lur’e type systems include variable-gain
controlled motion systems (Fromion & Scorletti, 2002; Heertjes,
Schuurbiers, & Nijmeijer, 2009; Heertjes & van de Wouw, 2006;
Jiang & Gao, 2002; van de Wouw, Pastink, Heertjes, Pavlov, &
Nijmeijer, 2008; Zheng, Guo, & Wang, 2005), and mechanical
systems with local nonlinearities such as friction or one-sided
supports (Bonsel, Fey, & Nijmeijer, 2004).

In general, periodic steady-state responses of a nonlinear
system can be computed using several methods. Well-known
methods for calculation of periodic solutions include, for example,
period solvers Ascher, Mattheij, and Russell (1995) and Parker
and Chua (1988) (e.g. the shooting method and finite difference
method), or routines using simple forward integration in time.
However, these methods are in general computationally rather
expensive. A computationally less expensive method is to use
describing function methods (Khalil, 2002), but the disadvantage
of these methods is that only a single-harmonic approximation of
the response is obtained. In another approach, which is especially
applicable to Lur’e systems, the periodic solution is computed
iteratively through finding the response of the linear part of the
system in the frequency domain, and computing the response of
the nonlinearity in the time domain, see, e.g. Cardona, Lerusse, and
Géradin (1998), Semlyen and Medina (1995) and Telang and Hunt
(2001). Thismethod is very efficient especially in combinationwith
Fast Fourier Transforms, which are used for transitions between
the time- and frequency domains.

In contrast to the results in the literature mentioned above,
in this paper we, firstly, prove that under the same conditions
that guarantee a unique periodic steady-state response of a
Lur’e system to a periodic excitation, this iterative method will
converge from any initial guess for the steady-state solution.
Secondly, we provide estimates on the accuracy of the algorithm
if higher harmonics are truncated in each algorithm step. Both of
these contributions are essential for practical application of the
algorithm. Thirdly, we prove that the sensitivity of the steady-
state response with respect to control system parameters is a
unique periodic steady-state solution of another Lur’e system
satisfying the same conditions as the original system. Thus it
can be computed using the same iterative mixed time–frequency
domain algorithm. Efficient computation of both the steady-state
solution and its sensitivity with respect to control parameters
opens the possibility for a gradient-based strategy for the steady-
state performance optimization.

The developed optimizationmethod allows us to solve the chal-
lenging problem of performance-based tuning of a variable gain
controller for the linear motion stage of a wafer scanner (Heertjes
et al., 2009; Heertjes & van de Wouw, 2006). Linear motion sys-
tems, of which such a motion stage is an example, are nowadays
still often controlled by linear proportional–integral–differential
(PID) controllers. However, it is well known that linear con-
trollers suffer from inherent performance limitations such as the
waterbed-effect (Freudenberg, Middleton, & Stefanopoulou, 2000;
Seron, Braslavsky, & Goodwin, 1997): an inherent trade-off be-
tween low-frequency tracking and sensitivity to high-frequency
disturbances and measurement noise. To overcome such linear
performance limitations, nonlinear PID control, also called variable
gain control, has been employed (Fromion& Scorletti, 2002; Heert-
jes et al., 2009; Heertjes & van de Wouw, 2006; Jiang & Gao, 2002;
van de Wouw et al., 2008; Zheng et al., 2005). In these references,
it has been shown that variable gain control can outperform lin-
ear control strategies. However, the performance-based tuning of
the variable gain controllers is far from trivial and typically done
in an heuristic fashion. The last contribution of this paper is there-
fore the performance-based tuning of variable-gain controllers for
amotion stage of an industrial wafer scanner. Thismethod is based
on the developed performance optimization method.

As can be seen, in this paper we pursue a model-based
approach to performance optimization. Alternatively, also data-
based approaches, such as e.g. extremum seeking (Krstić & Wang,
2000; Tan, Nešić, &Mareels, 2006), could be employed. The benefit
of extremum seeking based approaches is that no accurate system
and disturbance models need to be available. We note that in
the scope of the application domain considered in this paper,
i.e. control of high-precision motion stages in wafer scanners,
accurate model information is typically available, whichmotivates
the pursuit of a model-based approach. Moreover, a model-
based approach is beneficial, firstly, in a system design-phase
where no machine is available yet, secondly, in situations where
performing many experiments becomes prohibitive and, thirdly,
when performing parameter studies of the closed-loop system.

The paper is organized as follows. In Section 2,wewill introduce
the class of convergent Lur’e systems, and propose a method
for steady-state performance analysis and optimization for such
systems. Section 3 will present an efficient iterative numerical
procedure for the computation of the steady-state responses
and sensitivity of these steady-state responses to control system
parameters. The theory will be applied in Section 4 to a variable
gain controlled motion stage of a wafer scanner, to show the
effectiveness of the proposed performance optimization strategy.
Conclusions are presented in Section 5.
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1.1. Notation and mathematical preliminaries

Throughout this paper, the following notationwill be used. ByZ
wedenote the set of integer numbers. By L2(T )wedenote the space
of piecewise-continuous real-valued T -periodic scalar functions
y(t) satisfying ∥y∥L2 < +∞, where ∥y∥2

L2
:=

1
T

 T
0 |y(t)|2dt .

By l2 we denote the space of complex-valued sequences W =

{W [m]}m∈Z satisfying ∥W∥l2 < +∞, where ∥W∥
2
l2

=


m∈Z

|W [m]|
2. Both L2(T ) and l2 are Banach spaces.

The sequence of Fourier coefficients of y ∈ L2(T ) is denoted by
Y . The elements of this sequence are given by

Y [m] =
1
T

 T

0
y(t)e−imωtdt, m ∈ Z, (1)

where ω := 2π/T . The inverse Fourier transform is given by

y(t) =


m∈Z

Y [m]eimωt . (2)

For any y ∈ L2(T ) and its Fourier coefficients Y , Parseval’s equality
holds:

∥y∥L2 = ∥Y∥l2 . (3)

For a linear single-input–single-output system

ẋ = Ax + Bu (4)
y = Cx,

excited by a T -periodic input u(t), u ∈ L2(T ), if thematrix A is Hur-
witz, there exists a unique globally exponentially stable T -periodic
steady-state solution x̄u(t) with the corresponding steady-state
output ȳu(t) (ȳu ∈ L2(T )). Hence, system (4) defines a linear op-
erator Gyu : L2(T ) → L2(T ) according to Gyuu(t) = ȳu(t). In the
frequency domain, we define the linear operator Ĝyu : l2 → l2 that
maps the Fourier coefficients U of the function u(t) to the Fourier
coefficients ȲU of the function ȳu(t), i.e. ĜyuU := ȲU . It is known
that
ĜyuU


[m] = Gyu(imω)U[m], m ∈ Z, (5)

where Gyu(s) := C(sI − A)−1B, s ∈ C, is the transfer function of
system (4) from input u to output y. Due to (5) it is straightforward
to verify that

∥ĜyuU∥l2 ≤ sup
m∈Z

|Gyu(imω)| ∥U∥l2 (6)

and, by the Parseval’s equality (3), we also conclude that

∥Gyuu∥L2 ≤ sup
m∈Z

|Gyu(imω)| ∥u∥L2 . (7)

2. Performance analysis and optimization

2.1. Convergent Lur’e systems

Let us consider Lur’e systems of the form

ẋ = Ax + Bu + Hw(t) (8)
y = Cx + Dw(t) (9)
u = −ϕ(y, w(t), θ) (10)
e = Cex + Dew(t), (11)

where x ∈ Rn is the state, y ∈ R is the output, w(t) ∈ Rm is
a piecewise-continuous input, and e ∈ R is a performance out-
put. We assume that the nonlinearity ϕ : R × Rm

× Θ → R is
memoryless and may depend on nθ parameters collected in the
vector θ = [θ1, . . . , θnθ

]
T

∈ Θ ⊂ Rnθ . We also assume that
ϕ(0, w, θ) = 0 ∀w ∈ Rm and θ ∈ Θ . For simplicity, we only con-
sider the case inwhich the parameters θ appear in the nonlinearity
ϕ and none of the system matrices. An extension to the situation
where this is the case is relatively straightforward. The functions

Gyu(s) = C(sI − A)−1B (12)

Gyw(s) = C(sI − A)−1H + D (13)

Geu(s) = Ce(sI − A)−1B (14)

Gew(s) = Ce(sI − A)−1H + De, (15)
are transfer functions from inputs u and w to outputs y and e.
In this paper, we consider the case of periodic disturbances w(t).
The following theorem provides conditions under which system
(8)–(11) excited by a periodic input has a uniquely defined steady-
state solution.

Theorem 1 (Yakubovich, 1964). Consider system (8)–(11). Suppose
A1 The matrix A is Hurwitz;
A2 There exists a K > 0 such that the nonlinearity ϕ(y, w, θ)

satisfies
|ϕ(y2, w, θ) − ϕ(y1, w, θ)| ≤ K |y2 − y1| , (16)
for all y1, y2, w ∈ Rm, θ ∈ Θ;

A3 The transfer function Gyu(s) given by (12) satisfies

sup
ω∈R

|Gyu(iω)| =: γyu <
1
K

. (17)

Then for any θ ∈ Θ and any T-periodic piecewise continuous input
w(t), system (8)–(11) has a unique T-periodic solution x̄w(t, θ),
which is globally exponentially stable.
We will call x̄w(t, θ) the steady-state solution. Systems with a
uniquely defined bounded globally asymptotically stable solution
(for arbitrary bounded inputs w(t)) are called convergent (Demi-
dovich, 1961; Pavlov et al., 2005). It can be shown that systems sat-
isfying the conditions of Theorem 1 are also incrementally stable
(Angeli, 2002) and contracting (Forni & Sepulchre, 2012; Lohmiller
& Slotine, 1998). See Rüffer, van de Wouw, and Mueller (2013)
for a detailed comparison between convergence and incremental
stability. However, we will not need either of the above stability
properties for the analysis in the paper; we will use only technical
conditions A1–A3.

2.2. Steady-state performance analysis

Once the steady-state solution is uniquely defined, we can
define a performance objective to quantify the steady-state
performance of the system for a particular T -periodic input w(t)
and particular parameter θ . For example, it can be defined as

J(θ) =
1
T

 T

0
ēw(t, θ)2dt, (18)

where ēw(t, θ) is the value of the performance output cor-
responding to the steady-state solution. If we are interested
in quantifying simultaneously the steady-state performance
corresponding to several disturbances, w1(t), w2(t), . . . , wN(t),
with periods T1, . . . , TN , we can choose a functional depending on
all the corresponding steady-state performance outputs. For exam-
ple, it can be defined as

J(θ) =

N
k=1

1
Tk

 Tk

0
ēwk(t, θ)2dt. (19)

The choice of the performance objective strongly depends onneeds
of the particular application.

This or any other steady-state performance objective can be
evaluated by computing the corresponding steady-state solutions.
A numerical algorithm presented in Section 3 allows one to do
it in a computationally very efficient way. This gives us a non-
conservative method to evaluate the steady-state performance
for convergent Lur’e systems. Moreover, it is a key enabler for
performance optimization, as described in the next subsection.
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2.3. Steady-state performance optimization

System (8)–(11) may represent a closed-loop nonlinear control
system with θ being a vector of controller parameters. Ultimately
we aim to optimize the steady-state performance of this system by
tuning θ ∈ Θ . With the efficient numerical method for evaluation
of steady-state performance, as presented later in Section 3, this
can be done by computing the value of the performance objective
J(θ) for a sufficiently dense grid of parameters θ inside the set
Θ and then choosing an optimal θ . This approach, however,
becomes computationally prohibitive if the set Θ is large or
multidimensional. Also it becomes prohibitive if the performance
objective depends on multiple steady-state solutions (as in (19)),
which have to be computed for each value of θ .

To cope with this problem, we propose to use gradient-like
optimization algorithms, which provide a direction for decrease of
J(θ) based on the gradient of ∂ J/∂θ(θ). This approach requires the
computation of the gradient of J(θ). For the performance objective
as in (18), the gradient equals

∂ J
∂θ

(θ) =
2
T

 T

0
ēw(t, θ)

∂ ēw

∂θ
(t, θ)dt, (20)

under the condition that ēw(t, θ) is C1 with respect to θ . Here,
we see that to compute the gradient of J(θ) we need to know
both ēw(t, θ) and ∂ ēw/∂θ(t, θ). The following theorem provides,
firstly, conditions under which x̄w(t, θ) (and therefore ēw(t, θ)) is
C1 with respect to θ , and, secondly, gives us an equation for the
computation of ∂ ēw/∂θ(t, θ).

Theorem 2. Under the conditions of Theorem 1, if the nonlinearity
ϕ(y, w, θ) is C1 for all y ∈ R, w ∈ Rm and θ in the interior of Θ ,
then the steady-state solution x̄w(t, θ) is C1 in θ . The corresponding
partial derivatives ∂ x̄w/∂θi(t, θ) and ∂ ēw/∂θi(t, θ) are, respectively,
the unique T-periodic solution Ψ̄ (t) and the corresponding periodic
output µ̄(t) of the system

Ψ̇ = AΨ + BU + BWi(t) (21)
λ = CΨ (22)

U = −
∂ϕ

∂y
(ȳ(t, θ), w(t), θ)λ (23)

µ = CeΨ , (24)

where Wi(t) = −∂ϕ/∂θi(ȳw(t, θ), w(t), θ).

Proof. The proof can be found in the Appendix. �

Onemay be tempted to recognize in Theorem2 a classical result on
the sensitivity of solutions of differential equations with respect to
its parameters, see e.g. Khalil (2002). However, such classical sen-
sitivity result deals with the sensitivity of a solution correspond-
ing to a particular initial condition with respect to parameters.
Note that Theorem 2 is a result on the sensitivity of the steady-
state solution x̄(t, θ) and that if the parameter θ changes, then
x̄(t, θ) changes typically also at the initial time t = 0. Hence, the
statement and proof of this theorem is essentially different from
the classical sensitivity result and, consequently, needs an explicit
statement and proof.

As follows from the proof of Theorem 2, system (21)–(24) with
the T -periodic input (Wi(t), ȳ(t, θ), w(t)) has the same form as
system (8)–(11) and satisfies the same conditions of Theorem 1.
Thus, after computing ȳw(t, θ) from system (8)–(11), wewill know
the input to the sensitivity system (21)–(24), and, using the same
numerical method as for system (8)–(11), we will be able to
compute the periodic steady-state solution ∂ x̄w/∂θi(t, θ) of the
sensitivity system and the corresponding output ∂ ēw/∂θi(t, θ).
Having computed ēw(t, θ) and ∂ ēw/∂θ(t, θ), we can compute
J(θ) (e.g. from (18) or (19)) and its Jacobian ∂ J/∂θ(θ). With this,
we can apply some gradient-based optimization method (such as
steepest-descent or Quasi-Newton methods) to find an optimum
of J over the set Θ .

3. Computation of periodic responses

One way of computing a steady-state solution of system
(8)–(11) (or (21)–(24)) is simply to simulate it for an arbitrary
initial condition for sufficiently long time. Since the steady-state
solution is globally exponentially stable, the simulated solution
will eventually converge to the steady-state solution with any
desired accuracy. Still, this method is computationally expensive
and alternative methods are needed to make the computation
efficient, especially in the context of optimization. Such a method
is presented in this section. A preliminary version of the results
in Section 3.1 have been presented in Pavlov and van de Wouw
(2008). To simplify notations, we will denote the steady-state
solutions and the corresponding outputs by x̄(t), ȳ(t) and ē(t),
omitting their dependency on w(t) and θ , which are considered
fixed.

3.1. Iterative computation of periodic responses with convergence
and accuracy guarantees

The idea for the numerical method comes from the Banach
fixed point theorem (Khalil, 2002; Kreyszig, 1978). As follows from
the system equations (8)–(11), the steady-state output ȳ(t) is a
solution of the following equation

ȳ = Gyu ◦ F ȳ + Gyww, (25)

where Gyu and Gyw are the operators mapping L2(T ) → L2(T ) as
defined in Section 1.1, and F : L2(T ) → L2(T ) is the operator
defined by F y(t) := −ϕ(y(t), w(t), θ). We will show that the
operator Gyu ◦ F is a contraction mapping. Thus, as follows from
the Banach fixed point theorem, ȳ – being the solution of (25) – can
be found as the limit of the iterative process

yk+1 = Gyu ◦ F yk + Gyww (26)

with an arbitrary initial value y0 ∈ L2(T ). This iterative process
forms the core of the numerical method.

Let us show that Gyu ◦ F is a contraction mapping. Since Gyu is
a linear operator, Gyuu1 − Gyuu2 = Gyu(u1 − u2). Applying (7) and
(17) to the last equality, we conclude that

∥Gyuu1 − Gyuu2∥L2 ≤ γyu∥u1 − u2∥L2 , (27)

for any u1, u2 ∈ L2(T ). Consider the nonlinear operator F . Due to
condition A2 of Theorem 1, this operator satisfies

∥F y1 − F y2∥L2 ≤ K∥y1 − y2∥L2 . (28)

From (27) and (28), we conclude that

∥Gyu ◦ F y1 − Gyu ◦ F y2∥L2 ≤ γyu∥F y1 − F y2∥L2

≤ γyuK∥y1 − y2∥L2 . (29)

Finally, condition A3 in Theorem 1 implies γyuK < 1, which, to-
gether with (29), yields that Gyu ◦ F is a contraction mapping.

To implement the iterative process (26), we decompose it into
the following equivalent one:

uk+1 = F yk (30)
yk+1 = Gyuuk+1 + Gyww. (31)

Computationally it is cheaper to implement this algorithm
in frequency domain by representing the T -periodic functions
uk(t), yk(t) and w(t) by their respective Fourier coefficients Uk, Yk
and W , and substituting the operators Gyu, Gyw and F by their
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frequency-domain counterparts Ĝyu, Ĝyw and F̂ , respectively.
Then the algorithm (30), (31) takes the form

Uk+1 = F̂ Yk (32)

Yk+1 = ĜyuUk+1 + ĜywW . (33)

Using inequalities (27), (28) and (29) and taking into account
Parseval’s equality (3), one can show that the operator Ĝyu ◦ F̂
is a contraction on l2 and by the Banach fixed point theorem,
the iterative process (32), (33) will exponentially converge to the
unique solution Ȳ of the equation

Ȳ = Ĝyu ◦ F̂ Ȳ + ĜywW . (34)

As a final step, we can calculate the steady-state performance
output Ē as

Ē = Ĝeu ◦ F̂ Ȳ + ĜewW . (35)

The main advantage of such a frequency-domain implementa-
tion is the fact that the computation in (31), which is the most
computationally demanding in the time-domain implementation,
is now replaced by the computationally cheap step (33). Indeed,
in (33) only the product of the Fourier coefficients U (W ) and
the frequency response function Gyu (Gyw) need to be calculated,
see (5). However, frequency-domain implementation of the non-
linear operator F̂ becomes prohibitive. For a general nonlinear-
ity ϕ(y, w(t), θ), it is impossible to find an analytic expression
for the implementation of F̂ . Therefore, it is suggested to firstly
transform the Fourier coefficients Yk to the periodic function yk(t)
in the time domain using the inverse Fourier transform, com-
pute uk+1(t) = −ϕk+1(yk(t), w(t), θ) in the time domain, and
then apply the Fourier transform to transform uk+1(t) into Uk+1.
Since the calculations are carried out iteratively in the time- and
frequency domain we will refer to this algorithm as the Mixed-
Time–Frequency (MTF) algorithm. Numerical implementation of
this algorithmcan be done very efficiently using Fast Fourier Trans-
form algorithms (Brigham, 1976).

Practical implementation of the MTF algorithm will require
truncations of Uk+1 and W : due to the nonlinear operator F̂ , the
number of nonzero entries in Uk+1 will, in general, be infinite.
Moreover, the spectrum W of the periodic input w(t) can have an
infinite number of nonzero entries. So, we need to truncate Uk+1
and W at each step. Another argument for truncation stems from
using Fast Fourier Transforms. In practice, applying a Fast Fourier
Transform operation, will always imply a truncation of Uk+1. Thus
the MTF algorithm becomes

Uk+1 = (F̂ Yk)N (36)

Yk+1 = ĜyuUk+1 + Ĝyw(W )N , (37)

where (·)N denotes a truncation operation:

(U)N [m] =


U[m], for |m| ≤ N
0, for |m| > N,

(38)

and N > 0 is a truncation parameter. In general, introduction of
truncation in such an iterative algorithm can cause large errors
in the limit solution and even prevent the convergence of the
algorithm. However, in the next theorem we prove that, in fact,
under the conditions of Theorem 1, the iterative sequence (36),
(37) will converge for any value of the truncation parameter N .
Moreover, we obtain an estimate on the accuracy of the algorithm
with truncation.
Theorem 3. Under the conditions of Theorem 1, for any N > 0 there
is a unique limit ȲN for the sequence Yk, k = 1, 2, . . . , resulting from
the iterative process with truncation (36), (37). Moreover,

∥Ȳ − ȲN
∥l2 ≤


sup

|m|>N
|Gyu(imω)|γyw

K∥W∥l2

1 − γyuK

+ γyw∥(W )resN ∥l2


1

1 − γyuK
, (39)

where γyw := supm∈Z |Gyw(imω)| and (W )resN := W − (W )N .

Proof. Notice that, as follows from (5), for any U ∈ l2 it holds that
Ĝyu(U)N = (Ĝyu)NU , where (Ĝyu)N : l2 → l2 is a linear operator
defined as

(Ĝyu)NU[m] =


Gyu(imω)U[m], for |m| ≤ N
0, for |m| > N.

(40)

Hence, instead of (36), (37) one can consider the equivalent
iterative process

Uk+1 = F̂ Yk (41)

Yk+1 = (Ĝyu)NUk+1 + Ĝyw(W )N , (42)

which is of a similar form as (32), (33). So, in order to prove its
convergence we only need to show that (Ĝyu)N ◦ F̂ is a contraction
mapping from l2 to l2.

It is straightforward to verify that

∥(Ĝyu)NU∥l2 ≤ sup
|m|≤N

|Gyu(imω)|∥U∥l2 . (43)

Taking into account (17), we obtain ∥(Ĝyu)NU∥l2 ≤ γyu∥U∥l2 . From
this fact and from the linearity of (Ĝyu)N we conclude that for any
U1,U2 ∈ l2 it holds that

∥(Ĝyu)NU1 − (Ĝyu)NU2∥l2 ≤ γyu∥U1 − U2∥l2 . (44)

Using Parseval’s equality (3) and (28) we conclude that

∥F̂ Y1 − F̂ Y2∥l2 ≤ K∥Y1 − Y2∥l2 , (45)

for any Y1, Y2 ∈ l2. In the sameway as in (29), inequalities (44) and
(45) imply

∥(Ĝyu)N ◦ F̂ Y1 − (Ĝyu)N ◦ F̂ Y2∥l2 ≤ γyuK∥Y1 − Y2∥l2 . (46)

Since γyuK < 1 (see condition A3 in Theorem 1), the operator
(Ĝyu)N ◦ F̂ is a contraction. By the Banach fixed point theorem,
there exists a unique ȲN

∈ l2 satisfying

ȲN
= (Ĝyu)N ◦ F̂ ȲN

+ Ĝyw(W )N , (47)

and this solution ȲN can be found as a limit of the iterative
sequence (41), (42) or, equivalently, of the sequence (36), (37).

It remains to show that the error bound in (39) holds. From (34)
and (47), we conclude that

∥Ȳ − ȲN
∥l2 = ∥Ĝyu ◦ F̂ Ȳ + ĜywW

− ((Ĝyu)N ◦ F̂ ȲN
+ Ĝyw(W )N)∥l2

≤ ∥(Ĝyu)N ◦ F̂ Ȳ − (Ĝyu)N ◦ F̂ ȲN
∥l2

+ ∥(Ĝyu)
res
N ◦ F̂ Ȳ∥l2 + ∥ĜywW res

N ∥l2 , (48)

where (Ĝyu)
res
N := Ĝyu − (Ĝyu)N and (W )resN = W − (W )N . Taking

into account (46), we obtain

∥Ȳ − ȲN
∥l2 ≤ γyuK∥Ȳ − ȲN

∥l2 + ∥(Ĝyu)
res
N ◦ F̂ Ȳ∥l2

+ ∥Ĝyw(W )resN ∥l2 . (49)
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Since γyuK < 1, it follows that

∥Ȳ − ȲN
∥l2 ≤

1
1 − γyuK


∥(Ĝyu)

res
N ◦ F̂ Ȳ∥l2

+ ∥Ĝyw(W )resN ∥l2


. (50)

Notice that (Ĝyu)
res
N is defined as

(Ĝyu)
res
N U[m] =


0, for |m| ≤ N
Gyu(imω)U[m], for |m| > N.

(51)

Hence it can be easily verified that

∥(Ĝyu)
res
N U∥l2 ≤ sup

|m|>N
|Gyu(imω)|∥U∥l2 . (52)

Since F̂ is Lipschitzwith the Lipschitz constantK and F̂ 0 = 0 (this
follows from the condition that ϕ(0, w, θ) = 0 ∀θ ∈ Θ, w ∈ Rm,
see Section 2.1), we obtain

∥F̂ Ȳ∥l2 ≤ K∥Ȳ∥l2 . (53)

Next, let us determine a bound on ∥Ȳ∥l2 . Due to Parseval’s equality
∥Ȳ∥l2 = ∥ȳ∥L2 , so we can estimate ∥ȳ∥L2 instead. Since ȳ satisfies
(25), using the triangular inequality, it holds that

∥ȳ∥L2 ≤ ∥Gyu ◦ F ȳ∥L2 + ∥Gyww∥L2 . (54)

Applying inequality (29) for y1 = ȳ and y2 = 0 and expressing
∥ȳ∥L2 , from (54) we obtain

∥ȳ∥L2 ≤
1

1 − γyuK
∥Gyww∥L2 . (55)

Finally, application of inequality (7) gives

∥ȳ∥L2 ≤
1

1 − γyuK
γyw∥w∥L2 . (56)

Uniting (50), (52), (53), and (56) with the Parseval’s equality (3) we
obtain (39). �

Remark 4. Using the Parseval’s equality (3), in the time domain
the accuracy estimate (39) takes the form

∥ȳ − ȳN∥L2 ≤


sup

|m|>N
|Gyu(imω)|γyw

K∥w∥L2

1 − γyuK

+ γyw∥w − wN
∥L2


1

1 − γyuK
. (57)

Note that the algorithm converges for any initial guess for the
steady-state output solution and hence no a priori knowledge
is needed on the steady-state solution. Moreover, note that the
algorithm can be made as accurate as we desire. From (57) we
see that for a given input function w(t) and a given tolerance
ε > 0 one can always choose the truncation parameter N such
that ∥ȳN − ȳ∥L2 ≤ ε. Namely, the transfer function Gyu(s) is strictly
proper (see (8)–(9)) such that one can always choose N sufficiently
large to reduce sup|m|>N |Gyu(imω)| to a desired level. Moreover,
we can arbitrarily closely approximate a periodic signal w ∈ L2(T )
by again choosing N sufficiently large, such that ∥w − wN

∥L2 is
sufficiently small (this follows from the Riesz–Fischer theorem, see
for example Beals, 2004).

For a certain choice of N , at each step we only need to store
complex-valued 2N + 1-dimensional vectors (for frequencies
ranging from −Nω, up to Nω). Moreover, if the transfer function
Gyu(s) has good filtering properties and the spectrum W of w(t)
has good roll-off for high frequencies, the numberN characterizing
Fig. 1. Mixed-Time–Frequency algorithm to compute the steady-state solutions.

the dimension of these vectors can be chosen rather small
without significant deterioration of the algorithm accuracy. This is
definitely a benefit for numerical implementation of this algorithm
since a smaller N implies a smaller number of operations at each
iteration of the algorithm, which makes the algorithm faster.

3.2. Numerical implementation of the MTF algorithm

For a numerical implementation of the algorithm (36), (37), we
assume that the truncation parameter N is chosen in accordance
with (39) to guarantee a desired accuracy of the algorithm. We
choose a number M = 2b for some positive integer b and satis-
fying M ≥ 2N , which we will use in the direct and inverse Fast
Fourier Transform. In addition to this we will introduce a param-
eter ϵreltol > 0 for stopping the iterative process (36), (37) if, for
example,

ϵY :=
∥Yk − Yk−1∥l2

∥Yk−1∥l2
< ϵreltol. (58)

The iterative computation of the periodic response can be summa-
rized by the following algorithmic steps, see Fig. 1:

(1) Set iteration index k = 0, ϵY > ϵreltol;
(2) Compute the Fourier coefficients (W )N [m] of w(t) using the

Fast Fourier Transform (FFT);
(3) Choose any initial guess Y0[m] for the first N Fourier coeffi-

cients of ȳ(t).
(4) Set Y ext

0 [m] = Y0[m] for |m| ≤ N and Y ext
0 [m] = 0 for

N < |m| ≤ M/2;
(5) Compute the time signal y0(t) corresponding to Y ext

0 [m] using
the Inverse Fast Fourier Transform (IFFT);

(6) while ϵY > ϵreltol,
(a) Evaluate the nonlinearity in the time domain:

uk+1(t) = −ϕ(yk(t), w(t), θ); (59)
(b) Compute the Fourier coefficients Uext

k+1[m] of uk+1(t) using
the Fast Fourier Transform (FFT);

(c) Set Uk+1[m] = Uext
k+1 for |m| ≤ N;

(d) Evaluate the linear dynamics in the frequency domain:
Yk+1[m] = Gyu(imω)Uk+1[m] + Gyw(imω)W [m], (60)
for |m| ≤ N;

(e) Set Y ext
k+1[m] = Yk+1[m] for |m| ≤ N and Y ext

k+1[m] = 0 for
N < |m| ≤ M/2;

(f) Compute the time signal yk+1(t) corresponding to Y ext
k+1[m]

using the Inverse Fast Fourier Transform (IFFT);
(g) Check termination criterion, for example (58). If satisfied,

terminate algorithm, otherwise go back so step (6)(a);
(h) set k = k + 1.

(7) Calculate the steady-state performance output

Ē = Geu(imω)Uk[m] + Gew(imω)W [m]. (61)
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Fig. 2. The z-direction of the wafer stage will be controlled by a variable gain
controller.

Note that the computation of the steady-state performance
output Ē only has to be carried out once at the end, after
convergence of the algorithm.

We approximate the direct and inverse Fourier transforms
for continuous signals by discrete Fourier transform for sampled
signals. The inaccuracy introduced by this approximation is not
accounted for in the analysis in this section, but it can be reduced
by increasing the parameterM .

The direct and inverse discrete Fourier transforms can be
computed very efficiently using Fast Fourier Transform (FFT)
algorithms, while (60) requires only a relatively small number of
summations and multiplications. This makes the algorithm very
efficient from a computational point of view as we will illustrate
in a realistic engineering application in the next section.

4. Variable gain control of wafer stages

In this section, we will use the theory presented in the previous
sections to optimize the performance of a variable gain controller
for a benchmark system, namely the motion control of the
z-direction of a short-stroke wafer stage of a wafer scanner, see
Fig. 2, which is disturbed by force disturbances.Wafer scanners are
used to produce integrated circuits (IC’s). Light, emitted by a laser,
falls on a reticle, which contains an image. This image is projected
onto a wafer by passing through a lens. Due to this illumination, in
combination with a photo-resist, a chemical reaction takes place
which results in an image on the wafer, the IC’s. This process
requires positioning of the wafer stage in three degrees of freedom
(x, y and z) with nm-accuracy. High-bandwidth linear controllers
are used to achieve this. Due to the waterbed-effect (Freudenberg
et al., 2000; Seron et al., 1997), low-frequency performance
improvement (i.e. a higher bandwidth) goes hand in hand with
high-frequency performance deterioration. Variable gain-control
can be used to balance this trade-off in a more desirable manner
(Heertjes et al., 2009; Heertjes & van de Wouw, 2006). However,
it is a challenging problem to tune the variable gain controller
parameters to optimize performance. In this section, we will apply
the model-based performance optimization to tune the variable
gain controller parameters in order to optimize the closed-loop
performance. Exploiting the particular knowledge we have on the
disturbances, we compute the steady-state solutions and their
sensitivities in a numerically efficient way, using the algorithm
developed in Section 3. Subsequent application of a gradient-based
Quasi-Newton optimization algorithm lead us to an optimal choice
of the controller parameters.
Fig. 3. Closed loop variable gain control scheme.

Fig. 4. Nonlinearityϕ∗(y) discriminating between small errors and large errors and
the transformed nonlinearity ϕ(y).

4.1. Variable gain control of linear motion systems

Consider Fig. 3 which shows a closed-loop variable gain control
structure with plant P(s), nominal linear controller C(s), force
disturbance w, filter F(s), and variable gain element ϕ∗(y). The
performance output is the positioning error e, which is also the
signal y = e that is used in the nonlinearity ϕ∗(y). The nonlinearity
ϕ∗(y) is based on a smooth variant of a dead-zone characteristic:

ϕ∗(y) = αy − δα tanh (y/δ) , (62)

where α is the additional gain and δ is the dead-zone length
(θ = [α, δ]T ). Note that the nonlinearity satisfies 0 ≤ ∂ϕ/∂y ≤

α ∀y ∈ R, see Fig. 4. The particular choice for the variable gain
element ϕ∗(y) is key to our control design. For motion systems,
errors induced by low-frequency disturbances are generally larger
in amplitude than those induced by high-frequency disturbances.
Therefore, if the error signal exceeds some pre-defined dead-
zone level δ, an additional controller gain α is induced, yielding
superior low-frequency disturbance suppression. If, however, the
error signal does not exceed δ, only small additional gain is
induced to avoid deterioration of the sensitivity to high-frequency
disturbances. Parameters α and δ are the parameters that have to
be tuned for performance.

Due to the choice of the variable gain controller structure, see
Fig. 3, the closed-loop system inherently falls into the class of Lur’e-
type systems, described by (8)–(11), where y = e ∈ R is the error
(and performance output), w(t) is a bounded scalar piecewise-
continuous force disturbance, and the nonlinearity ϕ∗ satisfying
0 ≤ ∂ϕ∗/∂y ≤ α is given by (62), see Fig. 4. Equivalently, we
can loop-transform (see Khalil, 2002) the dynamics such that the
transformed nonlinearity ϕ = ϕ∗

−αy/2 satisfies the symmetrical
bound |∂ϕ/∂y| ≤ α/2, see Fig. 4. The transfer functions Gyu(s) =

C(sI −A)−1B between u = −ϕ(y, θ) and output y, and the transfer
Gyw(s) = C(sI − A)−1H between force disturbance w and output
y are given in terms of the plant P(s), controller C(s), and filter
F(s) by Gyw(s) = −P(s)/(1 + P(s)C(s)(1 +

α
2 F(s))) and Gyu(s) =

−C(s)F(s)Gyw(s), respectively. Because the performance output
y = e, it holds that Geu = Gyu and Gew = Gyw . Note that we can
perform a similar loop-transformation for the sensitivity system
(21)–(24). The transfer functions GλiUi(s) = GµiUi(s) = GλiWi(s) =

GµiWi(s) = Gyu(s).
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A typical performance objective J for a motion system is
the minimization of the squared steady-state error in a certain
important time window [ts, te]:

J(ē(·, θ)) =
1

te − ts

 te

ts
ē(t, θ)2dt, (63)

where ts and te are the starting time and ending time of the time
interval, respectively. If (63) is used, the gradients ∂ J/∂θi are given
by

∂ J
∂θi

=
2

te − ts

 te

ts
ē(t, θ)

∂ ē
∂θi

dt. (64)

4.2. Model specification and disturbance modeling of the wafer stage

The plant dynamics is modeled by the transfer function

P(s) =
m1s2 + bs + k

s2(m1m2s2 + b(m1 + m2)s + k(m1 + m2))
, (65)

s ∈ C, where the following numerical values are used for the plant
model (Heertjes et al., 2009): m1 = 5 kg,m2 = 17.5 kg, k =

7.5 · 107 N/m, b = 90 Ns/m. The nominal low-gain (α = 0)
controller C(s) = CPID(s)Clp(s)Cn(s) consists of a PID controller
CPID(s), a second-order low-pass filter Clp(s) and a notch filter Cn(s)
to suppress the plant resonance. The filters are given by: CPID(s) =

(kp(s2 + (ωi + ωd)s + ωiωd))/(ωds), where kp = 6.9 · 106 N/m
is a loop gain, ωd = 3.8 · 102 rad/s is the cutoff frequency of
the differential action, and ωi = 3.14 · 102 rad/s is the cutoff
frequency of the integral action; Clp(s) = ω2

lp/(s
2
+2βlpωlps+ω2

lp),
where ωlp = 3.04 · 103 rad/s is the cutoff frequency of the low-
pass filter, βlp = 0.08 is the dimensionless damping coefficient;
Cn(s) = (ωp/ωz)

2(s2 + 2βzωzs + ω2
z )/(s

2
+ 2βpωps + ω2

p), where
ωp = 5.03 · 103 rad/s is the frequency of the poles of the notch
with damping βp = 0.88, and ωz = 4.39 · 103 rad/s is the
frequency of the zeros of the notch with damping βz = 2.7 · 10−3.
The loop-shaping filter F(s) is given by F(s) = (ωp,F/ωz,F )

2(s2 +

2βz,Fωz,F s + ω2
z,F )/(s

2
+ 2βp,Fωp,F s + ω2

p,F ), with ωp,F = ωz,F =

2000 rad/s, βp,F = 4.8, and βz,F = 0.6. Note that these filters,
together with a certain value for α, define the transfer functions
Gyu and Gyw . We aim to optimize the design of the additional gain
α and dead-zone length δ of the variable gain controller element
ϕ(y), see Fig. 4, in the next section.

The z-direction of the wafer stage should be kept in focus,
therefore we need to track a zero-reference signal. Force-
disturbances w(t) are a dominant source of disturbances for the
z-direction of the wafer stage. These force disturbances can be
considered to have two main contributions uFFz(t) and up(t), such
that

w(t) = uFFz(t) + up(t), (66)

where uFFz(t) is a mainly low-frequency contribution (below the
bandwidth), and up(t) is a high-frequency contribution (above the
bandwidth).
Low-frequency force disturbance uFFz . Because the wafer stage
is undergoing large accelerations in the horizontal x- and
y-direction (around 28.5 m/s2), the feed-forward forces acting
in the horizontal plane to realize such set-points affect on the
z-direction due to unavoidable mechanical cross-talk. Based on
a 3rd-order polynomial reference signal xd(t) in the x-direction,
the force-disturbance uFFz in the z-direction is modeled in the
following way: the reference trajectory xd is filtered by a feed-
forward filter FFx(s) which transforms the position xd to a feed-
forward force uFFx in the x-direction, and a static cross-talk factor
Fig. 5. Weighting interval for the performance objective Jtot .

γct is used (γct = 4.5 · 10−2, based on experimental data) to link
the feed-forward force uFFx in x-direction to the force disturbance
uFFz in z-direction. The filter FFx(s) is given as a 2nd-order high-
pass filter FFx(s) = (ω2

hps
2)/(s2 + 2βhpωhps + ω2

hp), where
ωhp = 400π rad/s, and βhp = 0.5. All IC’s contained on a wafer
are illuminated in the same way, over a scanning length L with
scanning velocity V . This leads to periodic motion profiles that
need to be carried out by the wafer stage in the horizontal plane.
The T -periodic 3rd-order reference signal xd(t) is parameterized
corresponding to values formaximum jerk and accelerationused in
practice: jmax = 3000 m/s3, and amax = 28.35 m/s2. The set-point
xd(t), see Fig. 5, is fully determined by the following two variables:

• V , the scanning velocity during the constant velocity part t3 ≤

t ≤ t4;
• L, the scanning length during the scanning part.

Typical ranges for these parameters are V ∈ [0.3, 0.6] m/s and
L ∈ [20 · 10−3, 40 · 10−3

] m. The scanning takes place during
the constant velocity part t3 ≤ t ≤ t4, but not this entire time
interval is used for scanning. A certain time Twin is used to open
the entire ‘diaphragm’ for exposure of the wafer (Twin/2 at the
beginning and Twin/2 at the end of constant velocity part), and a
certain settling time Tset is allowed for the wafer stage to settle
after the acceleration phase. The rest of the time Tscan is used for
scanning; therefore, the time span t4 − t3 = Twin + Tset + Tscan (see
Fig. 5), where Tscan = L/V depends on the scanning length L and
scanning velocity V , Tset = 2 · 10−3 s, and the time Twin needed to
open the ‘diaphragm’ depends on the scanning velocity V , namely
Twin = 1Lwin/V , where 1Lwin = 5.5 · 10−3 m, in agreement
with machine parameters used in practice. Note that the scanning
is repeated such that the force disturbance uFFz is periodic with
period time T , and this time T depends on the chosen scanning
length L and scanning velocity V .
High-frequency force disturbance up. The sources of the high-
frequency noise-disturbance are amplifier noise, and possibly
other high-frequency disturbances such as e.g. perturbations
stemming from the immersion process taking place on the
wafer stage. In the immersion process, water is used to avoid
the transition from lens to air which otherwise disturbs the
illumination process. Continuously, water and air is supplied and
removed,which causes the force-disturbances. Although apossibly
noisy perturbation signal stemming from either of the above
sources is in general not periodic, we can very well approximate
it as being periodic with period time T of uFFz . Note that this
assumption can be justified if the noisy disturbances are of a
significantly higher frequency than the frequency 1/T of the signal
uFFz(t). This is indeed the case in practice and more numerical
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specifics will be given later. Moreover, it is well worth adopting
such a modeling of the high-frequency noise because it allows
for an explicit quantification of the steady-state performance. We
model the high-frequency noise as a sumofNp sinusoidal signals of
constant amplitude Ap, frequencies ωp,j and random phase angles
φp,j such that

up =

Np
j=1

Ap sin(ωp,jt + φp,j), (67)

where Np = 50, and Ap = 0.12 N, based on experiments, and
the phase φp,j ∈ [0, 2π ] is chosen randomly. Note that different
values for φp,j lead to different realizations of the high-frequency
noise up. The Np frequencies in the signal are chosen as multiples
of 1/T (≈10 Hz) such that the total force disturbance w(t) is a
periodic signal with period time T . We define a vector of evenly
distributed frequencies ω̃p,j in the range 2π [200, 400] rad/s, based
on experiments, with corresponding period times T̃j = 2π/ω̃p,j.
Subsequently, the noise frequencies ωp,j are chosen as ωp,j =

floor(T/T̃j)/T , where the operation floor(T/T̃j) is defined as the
largest integer smaller or equal to T/T̃j. This assures that the
frequencies 1/(2πωp,j) are multiples of the frequency 1/T of uFFz .
Note that for increasing ω̃p,j, the relativemismatch (ωp,j−ω̃p,j)/ω̃p,j
becomes smaller, which motivates our choice for modeling the
high-frequency noise as being periodic on the long time scale of
the set-point.

4.3. Performance optimization of the variable gain controlled wafer
stage

We aim to tune the dead-zone length δ and additional gain
α of the variable gain controller (so θ = [α, δ]T ) in order to
optimize the performance (related to the error e = y, the per-
formance output) for a whole range of disturbance situations,
corresponding to different scanning lengths L, scanning velocities
V , and high frequency noise realizations up. We do this because
we aim at optimized performance for a wafer scanner that has to
manufacture a wide range of different wafers corresponding to a
wide range of set-points. Therefore, we want to use our efficient
Mixed-Time–Frequency algorithm, discussed in Section 3, to com-
pute the steady-state error signals ē and steady-state sensitivities
∂ ē/∂α and ∂ ē/∂δ. The following performance objective is used

Jtot = c
nL

jL=1

nV
jV =1

np
jp=1

J(ē(t, α, δ, LjL , VjV , up,jp)), (68)

with c = 1/nLnVnp. Here, we use the squared steady-state error
performance objective J defined in (63), nL = 10 is the number
of scanning lengths considered, evenly distributed such that LjL ∈

[20 · 10−3, 40 · 10−3
] m, nV = 10 is the number of scanning veloc-

ities considered, evenly distributed such that VjV ∈ [0.3, 0.6] m/s,
and np = 20 is the number of realizations of up considered, lead-
ing to different realizations of the phase φp,j of the high-frequency
disturbance up, see (67) (the random numbers are chosen from a
uniform distribution). The time interval ts ≤ t ≤ te in (63) is in-
dicated in Fig. 5, and is located around the time instance where
scanning starts, and hence represents a key performance window
in practice (Heertjes et al., 2009).

Note that we consider a finite set of disturbances for which we
evaluate the performance. This set is representative for the range of
tasks that are performed by thewafer scanner, allowing us to draw
conclusions, in a practical sense, about the systems’ performance.

We choose to optimize the variable-gain controller in the range
α ∈ [α, α] = [0, 3], and δ ∈ [δ, δ] = [1 · 10−10, 1 · 10−4

], which
defines Θ . For these values, the conditions of Theorems 1 and 2
102
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Fig. 6. Frequency-domain conditionwhich shows
Gyu(iω)

 < 1/K = 2/α ∀ω ∈ R.

are all satisfied: we can verify that matrix A (or equivalently, the
transfer function Gyu(s)) is Hurwitz ∀θ ∈ Θ , such that condition
A1 of Theorem 1 is satisfied. The nonlinearity ϕ(y, α, δ) satisfies
|∂ϕ/∂y| ≤ α/2, see Fig. 4.Moreover,ϕ(0) = 0, such that condition
A2 of Theorem 1 holds. Condition A3 is satisfied for all α ∈ [0, 3]
(K = α/2 in (17)) as can be concluded from the limiting case
α = 3 shown in Fig. 6 (note that this figure shows the reason why
the loop-shaping filter F(s) is included). Because ϕ(y, α, δ) is C1 in
the parameters, the conditions in Theorem 2 are satisfied. Thus, all
conditions of Theorems 1 and 2 are satisfied such that the original
system (8)–(11) and the sensitivity system (21)–(24) both exhibit
unique bounded globally exponentially stable T -periodic steady-
state solutions. Now ē and ∂ ē/∂θ can be efficiently computed
using the Mixed-Time–Frequency (MTF) algorithm presented in
Section 3 (recall that the algorithm always converges to the unique
steady-state solution for any initial guess).

The MTF algorithm has been implemented in Matlab (The
MathWorks, Inc., 2010) andwe use the following parameter values
for our calculations: the number of points used to describe the
response equals M = 2N = 213

= 8192, the tolerance criterion
(58) is used with ϵreltol = 1 · 10−8, which together guarantee
sufficient accuracy of the calculated responses. Furthermore, the
model, controllers, nonlinearity, and disturbances as discussed in
Section 4.2 are used. The steady-state error signals ē (defining the
performance objective Jtot in (68)) and steady-state sensitivities
∂ ē/∂α and ∂ ē/∂δ (defining ∂ Jtot/∂α and ∂ Jtot/∂δ) are supplied to a
gradient-basedQuasi-Newton optimization algorithm tominimize
the performance objective Jtot given by (68). The Quasi-Newton
optimization routine is a second-order optimization routinewhich
uses subsequent gradient information to build up curvature
information on the Hessian using a BFGS update (Papalambros &
Wilde, 2000). As an initial guess we choose α = 0.4, and δ = 5 ·

10−8 m. The optimization converged in 15 iterations to the optimal
variable gain controller with α = 3.000, δ = 2.405 · 10−8 m, and
Jtot = 4.857 · 10−16 m2, see Fig. 7. In this figure, for validation, the
iteration history of the 2nd-order optimization is plotted together
with the performance objective Jtot for a grid of values of α and δ.
For α = 0, we see a straight line of the performance objective Jtot;
the setting (α, δ) = (0, δ), for arbitrary δ, corresponds to the low-
gain control setting, because no additional gain is applied. Finally,
for δ > 1 · 10−6 the objective function J hardly changes anymore.
This is due to the fact that in such a case the complete error stays
within the dead-zone length δ. Therefore, hardly any additional
gain is applied, such that for large δ the response will equal the
response of a low-gain controller setting. The optimal variable gain
controller outperforms the linear control limits by approximately
25% in terms of the performance objective Jtot, which is a very
significant performance increase for this type of application in
which nm-accuracy is required.
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Fig. 7. Quasi-Newton optimization of the performance objective Jtot with the
optimization surface for validation.

To emphasize the computational efficiency of the algorithm,
note that if forward integration is used to compute a single steady-
state response with similar accuracy, this takes approximately
20 s (on an Intel Core 2 Duo, 3 GHz processor). Opposed to
a computational time of 0.1s for a single steady-state response
using the Mixed-Time–Frequency algorithm, this is a factor 200
difference in computational time. Note that each combination of
α and δ requires the calculation of nLnVnp = 10 · 10 · 20 =

2000 steady-state solutions. The calculation of a single point out
of 900 points in Fig. 7 therefore roughly takes 2000 · 0.1 s ≈

3.3 min using our novel approach, while it would, hence, take
3.3 min · 200 ≈ 11 h using forward integration. Computing Jtot
for all 900 points and then choosing optimal α and δ would take
more than a year of computation time using forward integration.
The same (brute force) optimizationmethod, but based on theMTF
algorithm for computing steady-state solutions reduces this time
to approximately 3.3 min · 900 ≈ 50 h. Furthermore, if instead
we apply the developed gradient-based algorithm, it takes only
2 h of computational time to arrive at the optimal δ and α. This
comparison clearly demonstrates the benefits of the developed
method.

5. Conclusions

In this paper, we have developed a method for the steady-
state performance optimization for nonlinear control systems
of Lur’e type. Accurate and efficient calculation of steady-state
responses of periodically excited Lur’e systems using the Mixed-
Time–Frequency algorithm has led to an efficient and non-
conservative performance assessment of the nonlinear control
system. Moreover, a gradient-based optimization strategy has
been presented which can be used to tune system parameters of
the nonlinear system to optimize the closed-loop performance.
Remarkably, the same Mixed-Time–Frequency algorithm can be
used for calculating the necessary gradients, by which an accurate
and efficient performance optimization strategy is obtained. The
results are applied to a variable gain controlled motion stage of a
wafer scanner.

Appendix. Proof of Theorem 2

In this proof, we will use the following additional property of
Lur’e systems (8)–(11) satisfying the conditions of Theorem 2.

Property 1. Under the conditions of Theorem 1, if θ1(h) converges to
θ2, as h → 0, and T-periodic w1(t, h) converges to T-periodic w2(t)
uniformly in t ∈ [0, T ], then the corresponding steady-state solution
x̄w1(h)(t, θ1(h)) converges to x̄w2(t, θ2) uniformly in t ∈ [0, T ] as
h → 0.
This property follows from the fact that under the conditions of
Theorem 1, system (8)–(11) is input-to-state convergent (Pavlov
et al., 2005), which implies a continuous dependence of the steady-
state solutions on the inputs in the uniform metric.

Now we will prove the theorem for the case of scalar θ . If
θ is vector-valued, the proof can be repeated for each scalar
component. In the proof we assume that w(t) is fixed. For this
reason we will denote the steady-state solution as x̄(t, θ), without
subscript w.

Consider θ in the interior of Θ and all sufficiently small h such
that θ + h lies in Θ . Let us show that for z(t, h) :=

1
h (x̄(t, θ + h) −

x̄(t, θ)) there exists the limit limh→0 z(t, h), i.e. that x̄(t, θ) is C1

in θ .
As follows from the definition of the steady-state solution and

from system Eqs. (8)–(11), for h ≠ 0, z(t, h) is a T -periodic
function satisfying

dz(t, h)
dt

= Az(t, h) + B∆hϕ (A.1)

where∆hϕ := −
1
h (ϕ(ȳ(t, θ+h), w(t), θ+h)−ϕ(ȳ(t, θ), w(t), θ)).

Notice that ∆hϕ can be rewritten as

∆hϕ = −
1
h
(ϕ(ȳ(t, θ + h), w(t), θ + h)

− ϕ(ȳ(t, θ), w(t), θ + h))

−
1
h
(ϕ(ȳ(t, θ), w(t), θ + h) − ϕ(ȳ(t, θ), w(t), θ)). (A.2)

Applying the mean value theorem to (A.2) and using the fact that

1
h
(ȳ(t, θ + h) − ȳ(t, θ)) = Cz(t, h),

we obtain

∆hϕ = −
∂ϕ

∂y
(ζ (t, h), w(t), θ + h) · Cz(t, h)

−
∂ϕ

∂θ
(ȳ(t, θ), w(t), ξ(t, h)),

for some ζ (t, h) ∈ (ȳ(t, θ), ȳ(t, θ + h)) and ξ(t, h) ∈ (θ, θ + h),
both of which can be chosen T -periodic. Combining this with (A.1),
we conclude that for all sufficiently small h ≠ 0, z(t, h) is a
T -periodic solution of the system

Ψ̇ = AΨ + BU + BW̃
λ = CΨ ,

U = −
∂ϕ

∂y
(ζ (t, h), w(t), θ + h)λ,

W̃ = W̃ (t, h) := −
∂ϕ

∂θ
(ȳ(t, θ), w(t), ξ(t, h)).

(A.3)

For fixed θ , we will consider ζ (t, h), h and W̃ (t, h) as inputs to
system (A.3).

Let us show that system (A.3) satisfies the conditions of Theo-
rem 1. Matrices A, B and C of the linear part of the system are the
same as for system (8)–(11). Thus condition A1 is satisfied. Condi-
tion A2 with the same K as in (16) holds since |∂ϕ/∂y(y, w, θ)| ≤

K for all y, w and θ ∈ Θ . The latter inequality directly follows from
(16) and the condition that ϕ(y, w, θ) is C1 in y. Condition A3 holds
automatically. Applying Theorem 1 to system (A.3), we conclude
that for the T -periodic input [ζ (t, h), h, W̃ (t, h)], system (A.3) has
a unique T -periodic solution Ψ̄ (t, h). Since z(t, h) is a T -periodic
solution of the same system, we conclude that Ψ̄ (t, h) ≡ z(t, h)
for all small h ≠ 0.

As follows from Property 1, ȳ(t, θ + h) converges to ȳ(t, θ)
uniformly in t , as h → 0. By the definition of ζ (t, h) and ξ(t, h),
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this implies that, as h → 0, ζ (t, h) converges to ȳ(t, θ) and
ξ(t, h) converges to θ uniformly in t . Thus, all the inputs of system
(A.3)—ζ (t, h), h and W̃ (t, h)—converge, respectively, to ȳ(t, θ), 0
and W (t, θ) = −

∂ϕ

∂θ
(ȳ(t, θ), w(t), θ) uniformly in t . Applying

Property 1 to system (A.3), we conclude that Ψ̄ (t, h) converges to
Ψ̄ (t, 0), uniformly in t . Hence, limh→0 z(t, h) = limh→0 Ψ̄ (t, h) =

Ψ̄ (t, 0). This proves that x̄(t, θ) is C1 in θ . Moreover, ∂ x̄/∂θ(t, θ) =

Ψ̄ (t, 0), which is the unique T -periodic solution of system
(21)–(24). From this it is straightforward to show that ∂ ē/∂θ(t, θ)
is the corresponding T -periodic output µ̄(t) of that system. �
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