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a b s t r a c t

This work considers the control of a manipulator with the aim of executing desired time-varying
motion–force trajectories in the presence of a stiff environment. In several situations, the interaction
with the environment constrains just one degree of freedom of themanipulator end-effector. Focusing on
this contact degree of freedom, a switching position–force controller is considered to perform the hybrid
motion–force tracking task. To guarantee input-to-state stability of the switching closed-loop system, a
novel stability result and sufficient conditions are presented. The switching occurs when themanipulator
makes or breaks contact with the environment. The analysis shows that to guarantee closed-loop stability
while tracking arbitrary time-varying motion–force profiles with a rigid manipulator, the controller
should implement a considerable (and often unrealistic) amount of damping, resulting in inferior tracking
performance. Therefore, we use the stability analysis technique developed in this paper to analyze
a manipulator equipped with a compliant wrist. Guidelines are provided for the design of the wrist
compliancy while employing the switching control strategy, such that stable tracking of a motion–force
reference trajectory can be achieved and bouncing of the manipulator against the stiff environment can
be avoided. Numerical simulations are presented to illustrate the effectiveness of the approach.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Numerous applications such as, e.g., bilateral teleoperation, au-
tomated assembly tasks, and surface finishing involve the interac-
tion between a robotmanipulator and a stiff environment. In those
applications, a time-varying motion profile should be tracked dur-
ing freemotion, whereas during constrainedmotion a time-varying
force profile should be applied on the environment. The stability of
the fast transitions from free motion to constrained motion and
from constrained motion to free motion is essential for the track-
ing of such time-parameterized time-varying motion–force profiles.
Ensuring stability during these transitions is a challenge as the
combined robot–environment dynamics switches abruptly at the
moments of establishing contact with and detachment from the
environment. The aim of this paper is to propose a novel approach
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to analyze stability of this switched system, while tracking time-
varying motion–force profiles. The need for this stability analysis
originates particularly from our interest in telerobotics, where a
force andposition reference from themaster device has to be trans-
lated into a command for the slave device. As the force and position
reference comes from a human operator, we aim to treat generic
reference signals.

Over the past decades, different control architectures have been
proposed formotion–force control of amanipulator in contactwith
a stiff environment (for an overview, see, e.g., Siciliano & Khatib,
2008, Chapter 7). Themost studied and applied control schemes in-
clude stiffness, impedance and admittance control (Canudas deWit
& Brogliato, 1997; Ge, Li, &Wang, 2014; Hogan, 1988; Jung, Hsia, &
Bonitz, 2004; Volpe & Khosla, 1993; Zotovic Stanisic & Valera Fer-
nández, 2012), hybrid position–force control (Khatib, 1987; Raib-
ert & Craig, 1981), and parallel position–force control (Chiaverini
& Sciavicco, 1993). While these approaches usually exhibit suf-
ficient robustness to be used in practice, a formal mathematical
proof of stability is still lacking. Typically, the gains in these con-
trol schemes are tuned separately for free motion and constrained
motion. Stability of the resulting closed-loop dynamics is analyzed
using standard Lyapunov methods and guaranteed for free mo-
tion and constrained motion independently, but the contact and
detachment transitions are not included in the analysis. Bouncing
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and unstable contact behavior might therefore still occur, and do
still occur. As a practical solution, when implementing these con-
trol schemes on a physical manipulator, the manipulator is usually
commanded to approach the environment with a very slow veloc-
ity to prevent the excitation of the unstable contact dynamics.

From an analysis perspective, only a few theoretical studies
have addressed directly the instability resulting from bouncing of
the manipulator against a stiff environment. In Tarn, Wu, Xi, and
Isidori (1996) and Doulgeri and Iliadis (2005), a switched posi-
tion–force controller is considered, where the controller switches
from motion to force control when contact with the environment
is made. Using analysis techniques for switched systems, condi-
tions for asymptotic stability are derived for a constant position or
force setpoint regulation problem. Hysteresis switching is consid-
ered in Carloni, Sanfelice, Teel, and Melchiorri (2007) to prevent
bouncing of the manipulator against the environment. In Pagilla
and Yu (2001), the number of bounces is cleverly minimized by
exploiting a transition controller, but then the contact force is con-
trolled to a constant setpoint. In Lai et al. (2012), nonlinear damping
is proposed to minimize the force overshoot without compromis-
ing the settling time. In all these publications, tracking of desired
time-varying motion and force profiles is not considered.

A popular approach to prevent unstable impacts is impedance
control (Albu-Schaffer, Ott, & Hirzinger, 2007; Canudas de Wit &
Brogliato, 1997; Jung et al., 2004). In the outer loop, the contact
force is controlled by creating a desired impedance specified for
the contact dynamics to compute a requested motion profile for
the inner motion control loop. Consequently, the contact force is
controlled indirectly, such that tuning the impedance parameters
requires a trade-off betweenmotion control, force control and sta-
bilizing the effect of impacts. To alleviate the compromising ef-
fect of this trade-off on the tracking performance, the proportional
gain is adapted online in Jung et al. (2004), whereas in Canudas
de Wit and Brogliato (1997) the desired impedance is temporarily
scaled during the transition phase. In Zotovic Stanisic and Valera
Fernández (2012), the impedance parameters are switched online
to dissipate the kinetic energy engaged at impact. The proposed
controller guarantees velocity regulation in free motion and track-
ing of a constant force setpoint in contact. For other forms of com-
pliant control, such as variable impedance actuation, the interested
reader is referred to Vanderborght et al. (2013). To the best of our
knowledge, a formal stability proof that includes in the analysis the
free motion to contact transitions, while tracking arbitrary time-
varying motion–force profiles, does not yet exist in the context of
impedance and compliant control.

In the above mentioned papers, the manipulator–environment
interaction is modeled using a flexible spring–damper contact
model. The stiffness and damping properties of the environment
are included explicitly and, as a consequence, the impact phase has
a finite time duration. Such a modeling approach is also taken in
this paper.

Manipulator–environment interaction can also be modeled us-
ing tools from nonsmooth mechanics (Brogliato, 1999; Leine &
van de Wouw, 2008). In doing so, the time duration of the im-
pact event is assumed to be zero and an impact law (e.g., New-
ton’s law of restitution) is employed to characterize the collision.
Stable tracking of specific force/position profiles using such nons-
mooth mechanics modeling formalism has been addressed in this
context. In Pagilla (2001), a discontinuous control scheme is pro-
posed to ensure stable regulation on the surface of the unilateral
constraint. A switchedmotion–force tracking controller formanip-
ulators subject to unilateral constraints is considered in Brogliato,
Niculescu, and Orhant (1997), Bourgeot and Brogliato (2005) and
Morărescu and Brogliato (2010). There, it is shown that the de-
sign of the desired trajectory in the transition phase is crucial for
achieving stability. To the best of authors’ knowledge, the problem
of stable tracking of arbitrary force/position profiles aswe consider
in this work has not been solved even in the framework of nons-
mooth mechanics. The stability of the tracking controller cast in
this framework is clearly of interest and deserves further investi-
gation. This framework will not be addressed here just because, as
wementioned,we adopt a flexible (spring–damper) contactmodel.

In this work, we propose a mathematical analysis that can
help control engineers as well as mechanical designers to de-
velop controlled manipulators that exhibit stable contact be-
havior with a stiff environment, while tracking a time-varying
motion and force profile. Because in many tasks of practical inter-
est the interaction of the robot end-effector with the environment
occurs just in one direction, we study the contact stability prob-
lemusing a 1-DOF dynamicmanipulatormodel. The remaining un-
constrained DOFs can be controlled with standard motion control
techniques (see Spong, Hutchinson, & Vidyasagar, 2006). For illus-
tration purposes, we consider a switched motion–force tracking
control strategy and we analyze stability of the resulting closed-
loop dynamics. The obtained stability conditions are given in The-
orem1 in Section 3. The stability analysis of the closed-loop system
reveals that, due to the relatively stiff contact dynamics, the consid-
ered switched motion–force controller should implement a con-
siderable amount of damping to guarantee stability while tracking
an arbitrary time-varying motion–force profile. Because an exces-
sive amount of damping limits the tracking performance due to a
sluggish response, the contact dynamics aremade compliant by us-
ing an alternative mechanical manipulator design that includes a
compliantwrist. In thisway, the resonance frequency of the impact
and contact transients can be reduced and the associated energy
can be dissipated in a passive way. The purpose of such a compli-
ant energy absorbing component is similar to that of an impedance
or compliant controller.

The main contributions of this paper are as follows. First,
we propose a combination of the compliant wrist design with a
switched motion–force controller for the tracking of time-varying
motion and force profiles. Secondly, we propose a stability analysis
that provides design guidelines for both the compliant wrist and
controller to guarantee stable contact while tracking arbitrary
motion and force profiles. In particular, we show that for realistic
system parameter values, the compliant model exhibits a clear
distinction between fast and slow time-scale dynamics. Using
model reduction, we obtain models of reduced order for the
free motion and contact phase, respectively, representing only
the slow dynamics. In combination with the stability analysis
developed for the rigid manipulator, we obtain guidelines for the
parametric design of the compliant wrist such that bouncing of
the manipulator against the stiff environment can be prevented
without the need of a considerable amount of damping from the
controller.

This article is organized as follows. In Section 2, the manipu-
lator and environment model, and the considered switched mo-
tion–force controller are introduced. The stability analysis of the
switched closed-loop system is described in Section 3. Section 4 il-
lustrates the obtained results by means of a simulation study. Sec-
tion 5 discusses the benefits of additional (wrist-)compliance in the
manipulator and illustrates how to tune the parameters of the con-
troller and the compliant wrist. Finally, the conclusions are pre-
sented in Section 6.

2. Systemmodeling and controller design

Our primary goal is tomake amanipulator track a desired time-
varying motion–force profile. As explained in the introduction,
we focus on a 1-DOF modeling of the manipulator–environment
interaction.
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Fig. 1. 1-DOF manipulator.

Consider the decoupled contact DOF of the manipulator as
depicted in Fig. 1. The Cartesian space dynamics are described by

Mẍ + bẋ = Fc − Fe, (1)

where x represents the manipulator position, M > 0 the equiv-
alent mass of the manipulator, b > 0 the viscous friction in the
joint, Fc the control force and Fe the force exchanged between the
environment and themanipulator. The environment is modeled as
a static wall at x = 0 and, without loss of generality, the manip-
ulator is in contact with the environment for x > 0. In Tarn et al.
(1996) and Doulgeri and Iliadis (2005), the environment is mod-
eled as a piecewise linear spring. We consider, similarly to Carloni
et al. (2007), an extended model including damping and friction.
Namely, we use the Kelvin–Voigt contact model

Fe(x, ẋ) =


0 for x ≤ 0
kex + beẋ for x > 0 (2)

with ke > 0 and be > 0 the stiffness and damping properties of
the environment, respectively. This model is nonlinear and non-
smooth due to the abrupt change in Fe at x = 0.

In free motion, the manipulator is required to follow a bounded
desired motion profile xd(t), whereas in contact, a desired force
profile Fd(t) should be applied to the environment. In this
work, we consider the following switchedmotion–force controller
that switches between a resolved acceleration controller, e.g.,
mentioned in Spong et al. (2006), in freemotion and a proportional
force controller, e.g. considered in Volpe and Khosla (1993), in the
contact phase:

Fc =


Maẍd(t) + kd(ẋd(t) − ẋ) + kp(xd(t) − x),

∀x ≤ 0, (a)
Fd(t) + kf (Fd(t) − Fe) − bf ẋ, ∀x > 0, (b)

(3)

such that both motion and force are controlled directly. Here, kp >
0 and kd > 0 are the proportional and derivative gains of the mo-
tion controller, respectively. The estimated mass of the manipula-
torMa > 0 in (3)(a) might differ from the actual massM in (1) due
to uncertainties in the model parameter identification. The gain
kf > 0 represents the proportional term of the force controller
and bf > 0 is the damping gain, dissipating energy during the
contact phase. For the controller (3), it is assumed that the con-
tact force Fe, position x and velocity ẋ can be measured. Although,
in (3), the switching between motion control and force control is
decided based on the actual position x of themanipulator, for a stiff
environment, ke ≫ be, this is equivalent to switching based on the
interaction force Fe. This implies that a perfect knowledge of the lo-
cation of the environment is not necessary for the implementation
of the controller defined by (3).

Remark 1. Compared to the controllers proposed in Brogliato et al.
(1997), Bourgeot andBrogliato (2005) andMorărescu andBrogliato
(2010) obtained for systems modeled with nonsmooth mechanics,
the considered controller (3) does not use a separate (third)
controller for the transition phase from free motion to contact.
Instead, the controller (3) uses the damping term bf ẋ during the
whole contact phase.
In order to analyze stability of the system described by (1)–(3),
we reformulate the closed-loop dynamics as a switching state-
space model. A key idea for the stability analysis, detailed in Sec-
tion 3, is to express the force tracking error Fd(t)−Fe in terms of the
motion tracking error xd(t) − x, such that both in free motion and
in contact the goal is to make the tracking error xd(t) − x small. In
contact, xd(t) then represents the ‘virtual’ desired trajectory, cor-
responding to the desired contact force Fd(t). For the relationship
between Fd(t) and xd(t) during contact, x → xd(t) should also im-
ply Fe → Fd(t). To this end, we consider the following relationship
to deduce xd(t) from Fd(t) in the contact phase:

k̂exd(t) + b̂eẋd(t) = Fd(t), for Fd(t) > 0, (4)

where k̂e and b̂e are available estimates of ke and be.

Assumption 1. The desired position xd(t) and velocity ẋd(t)
trajectories are continuous, and the desired acceleration ẍd(t) is
piecewise-continuous and bounded.

Two separate user-defined motion and force profiles can be
glued together to satisfy Assumption 1 by using the design
procedure detailed in Appendix A.

In terms of the exact parameters ke and be, (4) can be rewritten
as

kexd(t) + beẋd(t) + wf (t) = Fd(t), for Fd(t) > 0, (5)

with wf (t) := (k̂e − ke)xd(t) + (b̂e − be)ẋd(t) a bounded –due
to Assumption 1– perturbation. When the estimates k̂e and b̂e are
exact, wf (t) = 0 and x − xd(t) → 0 implies that Fe − Fd(t) → 0.
When k̂e ≠ ke and/or b̂e ≠ be,wf (t) ≠ 0 and acts a perturbation in
the stability analysis. Since the mapping (5) is only used for the
stability analysis and not in the controller (3), the lack of exact
knowledge of ke and be will not affect the stability or tracking of
the system described by (1)–(3).

The tracking error

z =


z1
z2


:=


xd(t) − x
ẋd(t) − ẋ


(6)

can be used to rewrite the closed-loop system dynamics (1)–(3)
and (5) as the following perturbed switched system

Σp
: ż = Aiz + Nwi(t) =


0 1

−Ki −Bi


z + Nwi(t),

z ∈ Ωi(t), i ∈ {1, 2}, (7)

where N = [0, 1]T and

K1 :=
kp
M

, B1 :=
kd + b
M

, (8a)

K2 :=
(1 + kf )ke

M
, B2 :=

(1 + kf )be + bf + b
M

, (8b)

w1(t) :=
M − Ma

M
ẍd(t) +

b
M

ẋd(t), (8c)

w2(t) := ẍd(t) +
bf + b
M

ẋd(t) −
1
M

wf (t), (8d)

with wf as in (5). The perturbations wi(t), i = {1, 2}, are bounded
due to Assumption 1. All system parameters are positive, implying
that in (7), for i ∈ {1, 2}, Ki, Bi > 0 and Ai is Hurwitz. The
environment is located at x = 0, so switching occurs at x =

xd(t)−z1 = 0. Expressed in the z-coordinates, the freemotion and
contact subspaces, respectively denoted by Ω1 and Ω2, are time-
varying: Ω1(t) := {z ∈ R2

|xd(t) − z1 ≤ 0} and Ω2(t) := {z ∈

R2
|xd(t) − z1 > 0}. Note that for all t , Ω1(t) ∪ Ω2(t) = R2 and

Ω1(t) ∩ Ω2(t) = ∅.
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Fig. 2. Switching surfaces and domains ofΣw for K2 > K1 and B2 > B1 . The vectors
v1
1 and v1

2 represent the real eigenvectors of A1 in (14).

The environment stiffness ke is typically much higher than the
control gain kp. Furthermore, the true value of ke and be are usually
unknown and therefore the control parameters cannot be selected
to result in K1 = K2 and B1 = B2 in (7). Thus, in general, Σp

in (7) represents a switched system. The stability of Σp does not
follow from the stability of each of the two continuous subsystems
(corresponding to free motion and contact) taken separately, as
shown, e.g., in Raibert and Craig (1981), Chiaverini and Sciavicco
(1993) and Jung et al. (2004) (see also Liberzon, 2003, in the scope
of generic switched systems). Hence, the switching between the
two subsystems, corresponding to making and breaking contact,
must also be taken into account. This is the purpose of the next
section.

Remark 2. Note that the switched controller (3) is not the only
controller that results a switched closed-loop system of the form
Σp in (7). Also for other controllers, such as, e.g., the impedance
controllers presented in Zotovic Stanisic and Valera Fernández
(2012), the resulting closed-loop dynamics can be expressed in the
form Σp. Hence, the stability analysis presented in the next sec-
tion has more generic applicability and can be used to guarantee
stability of both the switched controller (3) and such impedance
controllers while tracking arbitrary time-varying motion–force
profiles.

3. Stability analysis

In this section, sufficient conditions are provided under which
Σp in (7) is input-to-state stable (ISS) with respect to the input
wi(t), i = {1, 2}. Note that wi(t) depends on xd(t), thereby
encoding the information of Fd(t) during the contact phases.

The following definitions, taken from Biemond, van de Wouw,
and Nijmeijer (2010), are required for the stability analysis.

Definition 1. Consider a region Ti ⊂ R2. If z ∈ Ti implies cz ∈ Ti,
∀c ∈ (0, ∞) and Ti \ {0} is connected, then Ti is a cone.

Definition 2. Let ż = Aiz be the dynamics on an open cone Ti ⊂

R2, i = 1, . . . ,m. An eigenvector of Ai is visible if it lies in T i, the
closure of Ti.

As a stepping stone towards proving ISS of (7), we provide
sufficient conditions for the global uniform exponential stability
(GUES) of the origin of Σp when wi ≡ 0. This corresponds to
studying the unperturbed system

Σu
: ż = Aiz ∀z ∈ Ωi(t). (9)

The GUES of the origin of Σu for any xd(t) satisfying Assump-
tion 1 can be concluded by considering the worst-case switching
sequence (Liberzon, 2003; Margaliot, 2006). In this way, we obtain
the time-invariant system Σw , defined below, with state-based
switching, that represents the worst-case switching sequence for
Σu in (9). The worst-case switching sequence is defined as the
switching sequence that results in the slowest convergence (or
fastest divergence) of the solution of Σu towards (or from) the ori-
gin. Denote with σ(t) : R → {1, 2} the switching sequence corre-
sponding to i ∈ {1, 2} in (9). Note that σ(t) depends on the initial
condition z(t0) = z0. Then, the solution of Σu starting from z0 at t0
will be denoted by z(t) = Φu(t, t0; σ)z0, withΦu(t, t0; σ) the state
transitionmatrix associated with the switching sequence σ(t). For
K2 > K1, representing a manipulator interacting with a stiff en-
vironment, the worst-case dynamical system Σw , associated with
the worst-case switching sequence, is characterized by the follow-
ing lemma.

Lemma 1. Consider the switched system

Σw
: ż = Aiz, ∀z ∈ Si, (10)

with A1 and A2 as in (7). Assume K2 > K1 and let

S1 = {z ∈ R
2
|z2((K1 − K2)z1 + (B1 − B2)z2) ≤ 0},

S2 = {z ∈ R
2
|z2((K1 − K2)z1 + (B1 − B2)z2) > 0}.

For the solution of Σu in (9) corresponding to an arbitrary
switching signal σ(t) and initial condition z0, ∥Φu(t, t0; σ)z0∥ ≤

∥Φw(t, t0)z0∥ for t ≥ t0, where Φw denotes the state transition
matrix of Σw in (10). In this sense, wewill refer toΦw(t, t0)z0, t ≥ t0,
as the worst-case response of Σu with initial condition z0.

Proof. Let ż = Aσ(t)z denote the time-varying vector field associ-
ated with the switching signal σ(t) ∈ {1, 2} ∀t corresponding to
an arbitrary xd(t) satisfying Assumption 1. Let V =

1
2 z

T z be a posi-
tive definite comparison function, with time derivative V̇ = zT ż =

zTAσ(t)z. Let us define V̇i := zTAiz for i = {1, 2}. Then it holds
that V̇ = zTAσ(t)z ≤ max


V̇1, V̇2


. From the structure of A1 and A2

in (7), with K2 > K1, it follows that V̇1 > V̇2 if z2((K1 − K2)z1 +

(B1 − B2)z2) < 0 and vice versa, such that a switching logic based
on i = argmaxj∈{1,2}V̇j, is equivalent with the one in (10). For equal
initial conditions z0, it follows that V (Φu(t, t0; σ)) ≤ V (Φw(t, t0)).
Since V (z) =

1
2∥z∥

2, it follows that ∥Φu(t, t0; σ)∥ ≤ ∥Φw(t, t0)∥
and Σw generates the worst-case response of Σu. �

From the definition of S1 and S2 given in Lemma 1, we obtain
the two switching surfaces z2 = 0 and (K1 −K2)z1 + (B1 −B2)z2 =

0 that characterize the worst-case switching. These switching
surfaces and the subsystems of Σw that are active between the
switching surfaces are visualized in Fig. 2 for K2 > K1 and B2 > B1.

In Theorem 1, necessary and sufficient conditions for the global
uniform asymptotic stability (GUAS) of Σw are given. We then
show in Lemma 2, that GUAS of Σw implies GUES of Σu and this,
in turn, implies ISS of Σp w.r.t. wi for an arbitrary xd(t) satisfying
Assumption 1. This result is given in Theorem 2 at the end of this
section and, togetherwith Theorem 1, constitute themain result of
this paper.We refer the interested reader to Appendix B for further
details about the backgroundmaterial used to obtain the following
results.

Theorem 1. Let Ki, Bi > 0,1K := K1 −K2 < 0 and1B := B1 −B2.
The origin of the unperturbed, conewise linear system Σw is GUAS if
at least one of the following conditions is satisfied:

(i) Σw has a visible eigenvector associated with an eigenvalue λ <
0; in other words, one of the following two conditions is satisfied:
(a) a visible eigenvector exists in S1, i.e., 1B < 0,

B2
1 ≥ 4K1 and

1K
1B

<
2K1

B1 −


B2
1 − 4K1

(b) a visible eigenvector exists in S2, i.e., B2
2 ≥ 4K2 and one of the

following conditions is satisfied:
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(1) 1B < 0 and 1K
1B >

2K2
B2+

√
B22−4K2

, or

(2) 1B ≥ 0.
(ii) Σw has no visible eigenvectors and Λ1Λ2 < 1, where Λi, i =

{1, 2}, are given by:
(1) if B2

i < 4Ki,

Λi =


Ki

ωi


(1K)2

L2
+

Q 2

4ω2
i L2

−1/2
(−1)i

e−
Bi
2ωi

ϕi (11)

with ϕi := mod

− arctan(

(−1)i2ωi1K
Q ), π


, Q := Bi1K −

2Ki1B, ωi :=
1
2


4Ki − B2

i and L :=


(1K)2 + (1B)2.

(2) if B2
i = 4Ki,

Λi =

 BiL
21K − Bi1B

 e(−1)i 21K
21K−Bi1B


. (12)

(3) if B2
i > 4Ki,

Λi =

1Kλbi + Ki1B
KiL



(−1)i λai

λbi−λai



·

1Kλai + Ki1B
KiL



(−1)i λbi

λai−λbi


(13)

with λai :=
−Bi−


B2i −4Ki
2 and λbi :=

−Bi+

B2i −4Ki
2 .

Proof. From Lemma 3 in Appendix B it follows thatΣw in (10) has
no sliding modes on the switching surfaces. Therefore, Theorem 3
can be applied to conclude GUAS of the origin of Σw . To this end,
consider the conditions under points i and ii sequentially:

(i) Since Ki, Bi > 0, both A1 and A2 are Hurwitz, such that

ℜ(λi
1,2) < 0, with λi

1,2 =
−Bi±


B2i −4Ki
2 being the eigenvalues

of Ai. An eigenvector is visible in Si if the eigenvalues λi
1,2 of Ai

are real and for at least one of the corresponding eigenvectors

vi
1 :=

−Bi +


B2
i − 4Ki

2Ki
1

 ,

vi
2 :=

−Bi −


B2
i − 4Ki

2Ki
1


(14)

it holds that vi
j ∈ Si, with j = 1 or j = 2. These eigenvectors

lie in the second and fourth quadrant of the phase portrait.
For j = 1, Fig. 2 shows the eigenvectors v1

1 and v1
2 and

switching surfaces z2 = 0 and z2 = −
K1−K2
B1−B2

z1. The subsystem
active in S1 has a visible eigenvector if 1B < 0 (switching
surface in second and fourth quadrant) and the slope of the
corresponding real eigenvector with the steepest slope, i.e. v1

1 ,
is steeper than z2 = −

K1−K2
B1−B2

z1, i.e. the inequalities of condition
i.(a) of the theorem hold.

Similarly, it follows that the subsystem active in S2 has a
visible eigenvector if either (1) 1B < 0 (switching surface
in second and fourth quadrant) and z2 = −

K1−K2
B1−B2

z1 has a
steeper slope than the real eigenvector of S2 with the least
steep slope, i.e. v2

2 , or (2)1B ≥ 0 (switching surface in first and
third quadrant, hence S2 spans at least the whole second and
fourth quadrant). These two cases hold when conditions (1)
and (2) of condition i.(b) of the theorem are satisfied. For both
cases, GUAS of the origin follows from case (i) of Theorem 3 in
Appendix B.
(ii) In case no visible eigenvectors exist, case (ii) of Theorem 3,
provided in Appendix B, must hold with Λ := Λ2

1Λ
2
2 < 1,

or equivalently, Λ1Λ2 < 1 in order for the origin of Σw to be
GUAS. The expressions (11)–(13) follow from the three cases
(B.1)–(B.3) of part (ii) of Theorem 3, with the following vectors
and matrices

ρ1
12 = −ρ2

12 =


1
0


, ρ1

21 = ρ2
21 =

1
L


1B

−1K


,

(1) Pi =


−Ki
ωi

−Bi
2ωi

0 1


, (2) Pi =


−

2
Bi

−
4

B2i
1 0


,

(3) Pi =


λai
Ki

λbi
Ki

1 1


. �

Remark 3. GUAS of a system of the form (10) can alternatively be
analyzed using a common Lyapunov function approach (Liberzon,
2003). Due to typically large differences between A1 and A2 (re-
sulting from a large difference between the contact stiffness and
the proportional feedback gain of the motion controller), it is gen-
erally hard to find an analytic expression for a common Lyapunov
function. Therefore, we developed an analytical approach for ana-
lyzing GUAS of (10) using the theory for conewise linear systems
presented in Biemond et al. (2010). In doing so, we provide analyt-
ical conditions for stability in terms of the system and controller
parameters, which is beneficial for system design.

Theorem 1 can be interpreted as follows. If the system Σw

does not have a visible eigenvector (case (ii)), the response spirals
around the origin and visits the regions S1 and S2 infinitely many
times. In such a case, the worst-case system Σw switches between
free motion and contact, but if Λ < 1, defined in the proof
of Theorem 1, the resulting bouncing behavior is asymptotically
stable, implying that the amplitude of the oscillation decays over
time. Furthermore, since the trajectory leaves each cone in finite
time (see Lemma 5 in Appendix B), the time between two switches
is fixed and finite, implying that Zeno behavior (infinitely many
switches in finite time) of Σw is excluded. If Σw does have a
visible eigenvector with λ < 0 (case (i)), the response converges
to the origin exponentially without leaving the cone (see Lemma 4
in Appendix B). Then, the system does not switch between free
motion and contact and bouncing of the manipulator against the
environment does not occur.

The following lemma states that GUAS of Σw implies GUES of
Σu.

Lemma 2. If Σw in (10) is GUAS, then the origin of Σu in (9) is GUES
for arbitrary xd(t) satisfying Assumption 1.

Proof. By Lemma 1, ∥Φu(t, t0; σ)z0∥ ≤ ∥Φw(t, t0)z0∥. So, if the
origin of Σw is GUAS, then so is the origin of Σu for arbitrary
xd(t) satisfying Assumption 1. Then, from Theorem 2.4 of Liberzon
(2003) it follows that the origin of Σu is GUES for arbitrary xd(t)
satisfying Assumption 1. �

From Lemma 2, Σu is GUES if Σw is GUAS, and this last fact
is guaranteed when one of the conditions given in Theorem 1
holds true. The following theorem provides conditions for ISS of
the perturbed system Σp in (7).

Theorem 2. Consider the perturbed systemΣp in (7), with piecewise-
continuous, bounded input wi(t). If the origin of the unperturbed sys-
temΣu in (9) is GUES for arbitrary xd(t) satisfying Assumption 1, then
Σp is ISS w.r.t. xd(t).
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Proof. For an arbitrary switching sequence σ(t) : R → {1, 2},
resulting from arbitrary xd(t) satisfying Assumption 1, the solution
of Σp, with initial condition z0 at t0, can be expressed as (see Sun
& Ge, 2005, Chapter 1)

z(t) = Φu(t, t0; σ)z0 +

 t

t0
Φu(t, τ ; σ) Nwi(τ )dτ . (15)

If the origin of Σu is GUES, which is guaranteed if the conditions
in Lemma 2 are satisfied, ∥Φu(t, t0; σ)∥ ≤ ce−λ(t−t0), for some
constants c, λ > 0. Then, it follows from (15) that

∥z(t)∥ ≤ ∥Φu(t, t0; σ)z0∥ + ∥

 t

t0
Φu(t, τ ; σ)Nwi(τ )dτ∥

≤ ce−λ(t−t0)∥z0∥ + c
 t

t0
e−λ(t−τ)

∥Nwi(τ )∥dτ

≤ ce−λ(t−t0)∥z0∥  
β(∥z0∥,t−t0)

+
c
λ

sup
t0≤τ≤t

∥Nwi(τ )∥  
γ ( sup

t0≤τ≤t
∥Nwi(τ )∥)

.

Since β is a class KL function and γ is a class K function, Σp is
ISS for arbitrary xd(t) satisfying Assumption 1. �

This theorem can be interpreted as follows. If Nwi(t) ≡ 0, the
response of Σp is equivalent to the response of Σu, whose origin
is GUES. Due to (5), xd(t) encodes the information of Fd(t) during
the contact phase, so x → xd(t) and Fe → Fd(t) exponentially.
If Nwi(t) ≠ 0, the response of Σp deviates from the response of
Σu, (i.e. x and Fe will only converge to neighborhoods of xd(t) and
Fd(t), respectively), but due to the ISS property the response of Σp

is bounded and the bound on the error norm ∥z∥, with z defined in
(6), will depend on the norm of the perturbation Nwi.

4. Example with a stiff environment

We now illustrate the use of the developed theory by means of
simulations and show the implications of satisfying Theorem 2 on
the controller design. Consider a manipulator with M = 1 kg and
b = 0 N s/m (i.e. no viscous friction is present in the manipulator
to help dissipate energy), interacting with an environment with
ke = 106 N/m and be = 10 N s/m. For the control parameters
we choose Ma = 0.8 kg, kp = 4000, kd = 80, kf = 1 and bf = 5.
For this parameter set, the eigenvectors of A2 in (7) are complex,
such that no visible eigenvectors exist in the contact phase (see
Definition 2). The eigenvectors of A1 in (7) are real, but not visible.
Fig. 3 shows the response of the system when tracking a time-
varying motion profile xd(t) in free motion, and tracking a time-
varying force profile Fd(t) in contact. Although xd(t) and Fd(t)
used for the simulation in Fig. 3 are not necessarily worst-case
inputs, the value Λ = Λ2

1Λ
2
2 = 10.16 indicates that the system

is potentially unstable (the conditions in case (ii) of Theorem 1 are
necessary and sufficient for stability of Σw , since they are based
on its exact solution). The controller tracks xd(t) in free motion,
but due to the stiff environment and nonzero impact velocity, a
large peak force occurs (see middle plot in Fig. 3). The manipulator
bounces then back from the environment and breaks contact.
During the 0.15 s of intended contact, the manipulator continues
to bounce and the controller keeps switching between the motion
and force controller. This results in high control forces (see bottom
plot in Fig. 3) and the controller is not able to track the desired
contact force Fd(t), which has a maximum of 7 N. Around 0.27 s
the motion controller is no longer able to bring the manipulator in
contact with the environment due to the relatively large negative
derivative term in (3)(a). The amplitude of the bouncing does decay
over time, but Fig. 3 clearly illustrates an undesired response. The
Fig. 3. Simulation results with bf = 5. The gray area indicates the contact phase.

Fig. 4. Simulation results with bf = 9000. The gray area indicates the contact
phase.

problem is the lack of damping in contact. Increasing the damping
level in the force controller to bf = 9000 results in Λ = Λ2

1Λ
2
2 =

0.98, such that the origin of Σw is GUAS (see Theorem 1) and the
systemΣp is ISS, for anymotion–force profile xd(t), Fd(t) satisfying
Assumption 1 (see Theorem 2). With bf = 9000, the manipulator
does not bounce against the environment (see Fig. 4) and, after the
peak impact force, the contact force Fe approximately tracks Fd(t).

However, such a high damping gain bf in contact is probably
not realizable in practice, so therefore we consider a different
solution, namely the use of the switched motion–force controller
in combination with a compliant manipulator. The results of
Theorem 2 are then used as a systematic procedure to design the
stiffness of the wrist. This solution is discussed in the next section.

5. Compliant manipulator design

This section discusses the motivation for the need of compli-
ancy in the contact phase. In particular, for a compliant manipula-
tor, it is shown how Theorem 2 can be used to tune the stiffness
and damping properties of the introduced compliancy.

5.1. Motivation and design

A drawback of the high damping gain bf used in the simulation
in Fig. 4 is that it results in a lag in tracking Fd(t) for t ∈
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Fig. 5. Manipulator with compliant wrist.

[0.17, 0.28] (sluggish response). Moreover, most manipulators
are not equipped with velocity sensors. So typically, the velocity
signal ẋ, used in (3)(b), must be obtained from the position
measurements. Due to measurement noise, encoder quantization
and a finite sample interval, realizing the damping force −bf ẋ
appearing in (3)(b) is very hard, for not saying impossible, in
practice, even if one would use a state observer to estimate ẋ.

To guarantee stable impacts without the need of high damping
gains, many solutions in the literature aim at making the contact
phase compliant. For example, the desired compliancy can be
created using an impedance or admittance controller (Canudas
de Wit & Brogliato, 1997; Jung et al., 2004; Zotovic Stanisic &
Valera Fernández, 2012). Alternatively, as sketched in Fig. 5, the
compliancy could be implemented mechanically by designing
the manipulator with a compliant connection between the arm
and the end-effector (wrist) or a compliant cover, like the
skin around a human finger. Unlike impedance or admittance
controllers, a mechanical compliance does not suffer from a noisy
force sensor, encoder quantization or sampling-induced effects.
In contrast, with mechanical compliance, a direct response to
the fast impact phenomena is guaranteed. Therefore, to illustrate
how the results for the rigid manipulator can be applied to a
compliant manipulator, we consider, for illustration purposes,
the manipulator with mechanical compliance depicted in Fig. 5.
Indicating with kt and bt , respectively, the stiffness and damping
coefficient of the wrist and with xt the position of the end-effector,
the dynamics of the compliant manipulator is

Mẍ + bẋ = Fc − Ft , (16a)
Mt ẍt = Ft − Fe(xt , ẋt), (16b)

where the internal force Ft is given by
Ft = kt(x − xt) + bt(ẋ − ẋt). (17)
The environmentmodel and controller are still given by (2) and (3),
respectively, and (3) controls x to xd(t).

The compliant wrist and end-effector should improve the
system response during and after the impact phase. To this end,
we consider a design where the mass Mt is smaller than M to
reduce the kinetic energy of Mt engaged at impact. The damping
bt is larger than be to help dissipate the impact energy and provide
more damping in the contact phase. The stiffness kt is considered
smaller than ke (ke is much larger than all other parameters) to
reduce the eigenfrequency and increase the damping ratio of the
contact phase. In symbols, we can write these assumptions as

Mt ≪ M, kt ≪ ke, bt ≫ be, and
bt
ke

≪ 1 s. (18)

5.2. Reduced order model

The stability results of Section 3 only apply to two-dimensional
systems. The dynamics of the 2-DOF compliant manipulator of
(16) is 4-dimensional, so Theorem 1 cannot be applied directly.
However, when (18) is satisfied, the compliant 2-DOFmanipulator
(16) exhibits a clear separation between fast and slow dynamics. In
free motion, the fast dynamics are related to x− xt , and, in contact,
to the end-effector position xt . The time-scale of the (exponentially
stable) fast dynamics is very small compared to the time-scale of
interest, so the slow dynamics can be considered as the dominant
dynamics describing the response x of the compliant manipulator
to the control input Fc(t).
Consider the 2-DOF compliant manipulator (16), (2) with M ∼

100, b ∼ 100, Mt ∼ 10−2, kt ∼ 104, bt ∼ 102, ke ∼ 106 and
be ∼ 101. The model reduction analysis in Appendix C shows
that the slow time-scale response of this system in free motion
and contact considered separately can be approximated by the
following model of reduced (2nd) order:

Mẍ + bẋ = Fc − F̄e(x, ẋ), (19)

F̄e(x, ẋ) =


0 for x ≤ 0
b̄eẋ + k̄ex for x > 0 (20)

with b̄e := bt ke
kt+ke

and k̄e := kt ke
kt+ke

. The fraction ke
kt+ke

≈ 1 for
kt ≪ ke, so kt and bt directly influence the perceived environment
damping and stiffness by the massM .

The reduced-order dynamics (19), (20) are obtained separately
for the free motion and contact case. During free motion to contact
transitions, the high-frequency dynamics of (16), (2), which are
not captured in (19), (20), might still be excited. However, the
simulations provided in Section 5.4 indicate that the response of
(19), (20) accurately approximates the response of (16), (2), subject
to (18) and controlled by (3). Hence, we claim that the reduced-
order model (19), (20) can be used to analyze stability of (16), (2),
in closed loop with (3).

5.3. Stability of the reduced-order model

Since the reduced-order model (19), (20) has exactly the same
structure as (1), (2), we can employ the stability analysis as in
Section 3 to design the parameters of the controller in (3). In
contact, we use a similar expression to relate Fd(t) to xd(t), namely

Fd(t) = k̄exd(t) + b̄eẋd(t) + w̄f (t), for Fd(t) > 0 (21)

with w̄f (t) := (k̃e−k̄e)xd(t)+(b̃e−b̄e)ẋd(t), and k̃e and b̃e available
estimates of k̄e and b̄e, respectively. The design of the desired
trajectories such that xd(t) is bounded and twice differentiable is
discussed in Appendix A.

The system described by (19), (20), (3) and (21) can be
expressed in the form Σp of (7), with (8a), (8c), (8d) and

K2 :=
(1 + kf )k̄e

M
, B2 :=

(1 + kf )b̄e + bf + b
M

. (22)

As a result, ISS can be concluded from Theorem 2 for arbitrary xd(t)
satisfying Assumption 1 if the conditions of Theorem 1 are satis-
fied. Compared to the system without compliant wrist, we now
have more flexibility to tune the parameters for stability and per-
formance. From Theorem 1 we can compute the required values
of the design parameters kt and bt to meet design specifications
such as the existence of a visible eigenvector corresponding to a
stable eigenvalue (implying bounceless impact) or an upper bound
on Λ = Λ2

1Λ
2
2 in Theorem 1. In case of a visible eigenvector cor-

responding to a stable eigenvalue, stable contact with the envi-
ronmentwithout bouncing can be achieved for all bounded signals
xd(t), Fd(t).

Remark 4. The second-order closed-loop dynamics

Md(ẍd(t) − ẍ) + Bd(ẋd(t) − x) + Kd(xd(t) − x) = Fe, (23)

obtained in, e.g., (Zotovic Stanisic & Valera Fernández, 2012)
after the implementation of an impedance controller, can also be
expressed in the form Σp in (7). Therefore, even if the desired
impedanceparametersMd,Bd andKd switch for the freemotion and
contact phase (as done in Zotovic Stanisic and Valera Fernández
(2012)), Theorem 1 can be used to tune these parameters to
guarantee stable and bounceless impacts. A reduction of the
closed-loop model is in that case not required.
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Fig. 6. Simulation results of compliant manipulator described by (16). The gray
area indicates the contact phase. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

5.4. Compliant manipulator example

With the following example we illustrates how to design the
compliant wrist parameters Mt , bt and kt to improve the closed-
loop performance compared to the simulation results of the rigid
manipulator in Fig. 3. For the design of the end-effector, consider
Mt = 0.05 kg and kt = 5 · 104 N/m (kt ≪ ke, but still large to
minimize the spring-travel in the wrist). With bf = 5 N s/m, we
require bt > 170 N s/m to guarantee that Λ < 1, such that one of
the conditions of Theorem 1 is satisfied. Fig. 6 shows the response
of the unreduced compliant system (16), (3) and (2), with bt =

171 N s/m. Compared to Fig. 3, the peak impact force is reduced
and the computed control force Fc is improved. During the first 20
ms of intended contact, the tip makes and breaks contact due to
the fast dynamics of (16). After 20 ms the fast dynamics of (16)
damp out, the slow dynamics become dominant and the response
of (16) converges to that of (19). Hence, Fe tracks the desired
trajectory Fd(t) (without a sluggish response as in Fig. 4).Moreover,
since stability is now obtained with a (more practical) passive
implementation, there is more freedom in tuning the parameters
of the controller in (3).

Finally, Fig. 7 shows a comparison of the response of the 4-
dimensional compliant manipulator described by (16), (17), (2),
controlled by (3), and the 2-dimensional model described by (19),
(20), and controlled by (3). The peak impact force of the 2-
dimensional model is 30% smaller, but the time of making and
breaking contact is almost equal. The main difference between the
two models is found between 0.155 s and 0.18 s, where the fast
dynamics of the 4-dimensional model are excited due to bouncing
of the tip against the environment. Here, the 2-dimensional model
has a second peak around 0.16 s due to a larger impact velocity
compared to the tip of the 4-dimensional model. After 0.18 s, the
response of both models is similar, indicating that (19), (20) is
indeed a good (slow time-scale) approximation of (16), (17), (2)
and that Theorem 1 can be used as a guideline for the design of
damping and stiffness parameters of the compliant wrist and of
the switching controller (3).

5.5. Discussion

From the expressions k̄e and b̄e in (20) and the results in
Fig. 6, we see how the compliance in the manipulator can
Fig. 7. Simulation results of the compliant manipulator described by (16), (17), (2)
(black line), and the reduced-order model described by (19), (20) (blue line). The
gray area indicates the contact phase, i.e. xt > 0 for the 4-dimensional model (16),
(17), (2) and x > 0 for the 2-dimensional model (19), (20). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

contribute to guaranteeing stability and improve the tracking
performance during free motion to contact transitions. With bt ≫

be, the end-effector acts as a vibration-absorber, dissipating the
kinetic energy present at impact. Due to the compliance, we can
lower the stiffness and increase the damping of the perceived
manipulator–environment connection in contact. As a result, the
controllers (3)(a) and (3)(b) can be tuned separately for optimal
performance in free motion and contact, respectively, rather than
a trade-off to guarantee stability during transitions in case of a
rigid manipulator. Using a light end-effector and tuning of bt and
kt to satisfy Theorem 1, stable contact with the environment can
be made for arbitrary xd(t) and Fd(t) satisfying Assumption 1.
Moreover, if a visible eigenvector exists in the contact phase, even
bouncing of the manipulator can be prevented for arbitrary xd(t)
and Fd(t).

6. Conclusion

We consider the motion–force tracking control problem of a
manipulator in contact with a stiff environment, focusing on a
single direction of contact interaction. Using a novel analytical
stability analysis, we provide sufficient conditions for the input-
to-state stability (ISS) of the closed-loop switching tracking error
dynamics with respect to perturbations related to desired time-
varying trajectories. From this analysis, we obtain guidelines to
ensure stable bounded tracking of time-varying motion and force
profiles. For a rigid manipulator and realistic parameter values,
a high level of controller damping is required during contact
to guarantee stability of the closed-loop system. Such high-gain
velocity feedback is undesirable for achieving satisfying tracking
performance and, moreover, likely to be unrealizable in practice.

Based on the results of our investigation, we combined the pro-
posed switching controller with amechanical design of themanip-
ulator that includes a compliant wrist. Together with a reduction
of the compliant model, the proposed stability conditions are used
as a guideline for the design of the damping and stiffness of this
compliant wrist, as well as the controller parameters, to guaran-
tee stability. Furthermore, those stability conditions can be used
to shape the closed-loop response to prevent persistent bouncing
of the manipulator against the environment for arbitrary desired
time-varying motion and force profiles.

To create a wider applicability of the obtained results, it is
recommended to extend the results towards nonlinear multiple-
DOF systemswhere the constrained direction cannot be decoupled
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Fig. A.1. Example of a construction of xd(t) and Fd(t) from x̃d(t) and F̃d(t).

from the unconstrained directions. Furthermore, to include more
advanced controllers, for instance PD or PI force control in contact,
it is advised to extend the results to include switched systems of
the form (7) with an increased state-space dimension. Finally, the
obtained results should be tested experimentally.

Appendix A. Design of continuous signals xd(t) and ẋd(t)

In this appendix, we present a method to obtain continuous
signals xd(t) and ẋd(t) (and corresponding Fd(t)), required as
reference signals for the switched controller (3), from the
continuous and bounded reference profiles x̃d(t) and F̃d(t) specified
by the user.

Denote the ith intended time of making contact by tc,i and
the subsequent time of breaking contact by tb,i respectively, as
indicated in Fig. A.1. Then, during the contact time interval
[tc,i, tb,i], Fd(t) and xd(t) are obtained from

ÿ1 = −2γ1ẏ1 − γ 2
1 (y1 − F̃d(t)), (A.1a)

y1(tc,i) = k̂exd(tc,i) + b̂eẋd(tc,i),

ẏ1(tc,i) = k̂eẋd(tc,i) + b̂eẍd(tc,i),

ÿ2 = −
k̂e
b̂e

ẏ2 +
1

b̂e
ẏ1, y2(tc,i) = xd(tc,i), (A.1b)

ẏ2(tc,i) = ẋd(tc,i)

with the outputs Fd(t) = y1, xd(t) = y2 and ẋd(t) = ẏ2 for
t ∈ [tc,i, tb,i]. The y2-dynamics follow from the time derivative
of (4) and guarantee continuity of xd(t) and ẋd(t) at t = tc,i. The
y1-dynamics represent a critically damped second-order filter on
F̃d(t) to guarantee continuity of Fd(t) and Ḟd(t) at t = tc,i. As a
guideline, the time constantγ1 > 0 in (A.1a) is chosen such that the
‘bandwidth’ of this filter is significantly higher than the frequencies
present in F̃d(t).

Continuity of the profiles xd(t) and ẋd(t)when breaking contact
is guaranteed when these profiles during the free motion time
interval [tb,i, tc,i+1] are obtained from x̃d(t) filtered by the critically
damped second-order filter

ÿ3 = −2γ2ẏ3 − γ 2
2 (y3 − x̃d(t)), y3(tb,i) = xd(tb,i), (A.2)

ẏ3(tb,i) = ẋd(tb,i),
with outputs xd(t) = y3 and ẋd(t) = ẏ3 for t ∈ [tb,i, tc,i+1]. As for
γ1 in (A.1a), the time constant γ2 > 0 in (A.2) is chosen such that
the ‘bandwidth’ of (A.2) is significantly higher than the frequencies
typically present in x̃d(t).

Appendix B. GUAS of a conewise linear system

The stability results presented here are based on the results
presented in Biemond et al. (2010) and ultimately lead to the
statement of Theorem 3, which is used in the proof of Theorem 1
in the main text of this paper. The results in Biemond et al. (2010)
apply to continuous, conewise linear systems. The conewise linear
system Σw in (10) is, however, discontinuous. The continuity of
the vector field is only required in Biemond et al. (2010) to exclude
the existence of unstable slidingmodes at the switching surfaces of
the conewise linear system. The following lemma shows that Σw

has no sliding modes at the switching surfaces.
Lemma 3. For K1 − K2 < 0, the conewise linear system Σw has no
sliding mode.

Proof. The existence of a sliding mode at the two switching
surfaces z2 = 0 and z2 = −

K1−K2
B1−B2

z1 of Σw are considered
sequentially:

• Consider the subspace {z ∈ R2
|z1 ≥ 0}. The normal N1 to

the switching surface z2 = 0 is given by N1 = [0, 1]T . The
inner product of the vector fields Aiz, i ∈ {1, 2}, with N1 at
the switching surface z2 = 0 reads λN T

1 Aiν1 = −λKi, where
ν1 = [1, 0]T and λ ≥ 0. This inner product has the same sign
for both vector fields associated with i = 1 and i = 2, such
that no sliding mode exists at the switching surface z2 = 0, see
e.g. (Leine & Nijmeijer, 2004).

• Consider the subspace {z ∈ R2
|z1 ≥ 0}. The normal N2 to the

switching surface z2 = −
K1−K2
B1−B2

z1 is givenbyN2 =
1
L [1K , 1B]T ,

with1K := K1−K2,1B := B1−B2 and L :=


(1K)2 + (1B)2.
The projection of the vector fields Aiz, i ∈ {1, 2}, with N2 at the
switching surface z2 = −

K1−K2
B1−B2

z1 read

λN T
2 A1ν2 =

λ

L2
((1K)2 + K1(1B)2 − B1(1K)(1B)),

λN T
2 A2ν2 =

λ

L2
((1K)2 + K2(1B)2 − B2(1K)(1B)),

where ν2 =
1
L [−1B, 1K ]

T and λ ≥ 0. It can be shown that
λN T

2 A1ν2 − λN T
2 A2ν2 = 0, ∀Ki, Bi > 0, hence, the inner

products λN T
2 A1ν2 and λN T

2 A2ν2 have the same sign, such that
no slidingmode exists on the switching surface z2 = −

K1−K2
B1−B2

z1,
see e.g. (Leine & Nijmeijer, 2004).

With a similar analysis, the same results can be obtained for the
subspace {z ∈ R2

|z1 ≤ 0}. �

The following lemma holds for continuous conewise linear
systems Σw with visible eigenvectors.

Lemma 4 (Biemond et al., 2010). Consider a continuous, conewise
linear system of the form Σw . When this system contains one or
more visible eigenvectors, then z = 0 is an asymptotically stable
equilibrium of Σw if and only if all visible eigenvectors correspond
to eigenvalues λ < 0.

This lemma can also be shown to be valid for discontinuous
conewise systems Σw in the absence of a sliding mode. The
following lemma is useful in the analysis of the behavior of Σw

in the absence of visible eigenvectors.

Lemma 5 (Biemond et al., 2010). Let S̄i be a closed cone in R2.
Suppose no eigenvectors of Ai ∈ R2×2 are visible in S̄i. Then for any
initial condition z0 ∈ S̄i, with z0 ≠ 0, there exists a time t ≥ 0 such
that eAitz0 ∉ S̄i.

If Lemma5holds for all cones, the trajectories exhibit a spiraling
response, visiting each region i once per rotation, as indicated
in Fig. B.1. Stability for a spiraling motion can be analyzed by
the computation of a return map. Suppose the trajectory of (10)
enters a region Si at ti−1 at position z(ti−1), which is located on
the boundary Ei−1,i between cones Si−1 and Si, such that z(ti−1)
can be expressed as z(ti−1) = piρi−1,i. Here, pi represents the
radial distance from the origin at time ti−1 and ρi−1,i is the unit
vector parallel to the boundary Ei−1,i. The trajectory crosses the
next boundary Ei,i+1 at finite time ti (Lemma 5), and the position of
this crossing is given by z(ti) = pi+1ρi,i+1, such that z(ti) is parallel
to ρi,i+1. Since the dynamics in each cone are linear, the time ti can
be computed explicitly. The crossing positions are linear in pi, so
expressions for a scalar Λi, such that pi+1

= Λipi, can be obtained.
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Fig. B.1. Example of a trajectory of (10) that traverses each cone once per rotation.

In order to construct the returnmap, consider for each cone the
following coordinate transformation

z̃ i = P−1
i z, for z̃ i ∈ S̃i := {z̃ i ∈ R

2
| z̃ i = P−1

i z | z ∈ S̄i},

where Pi is given by the real Jordan decomposition of Ai, yielding
Ai = PiJiP−1

i . Depending on the eigenvalues of Ai, three different
cases can be distinguished.

(1) Ai has complex eigenvalues denoted by ai ± ωi, where ai and
ωi are real constants and ωi > 0. Then, Ji =

ai −ωi
ωi ai


. Define

φ(r1, r2) to be the angle in counter clockwise direction from
vector r1 to vector r2. Then,

Λi =
∥ρ̃ i

i−1,i∥

∥ρ̃ i
i,i+1∥

e
ai
ωi

φ(ρ̃i
i−1,i , ρ̃i

i,i+1), (B.1)

with ρ̃ i
i−1,i := P−1

i ρi−1,i and ρ̃ i
i,i+1 := P−1

i ρi,i+1.
(2) Ai has two equal real eigenvalues λai with geometric multiplic-

ity 1. Then, Ji =
λai 1

0 λai


and

Λi =

 eT2 ρ̃ i
i−1,i

eT2 ρ̃
i
i,i+1

 eλai


eT1 ρ̃ii,i+1
eT2 ρ̃ii,i+1

−
eT1 ρ̃ii−1,i
eT2 ρ̃ii−1,i


, (B.2)

where e1 := [1, 0]T and e2 := [0, 1]T .
(3) Ai has two distinct real eigenvalues λai and λbi. Then, Ji =λai 0

0 λbi


and

Λi =

 eT2 ρ̃ i
i,i+1

eT2 ρ̃
i
i−1,i


λai

λbi−λai
 eT1 ρ̃ i

i,i+1

eT1 ρ̃
i
i−1,i


λbi

λai−λbi

. (B.3)

From the scalars Λi for each cone Si, i = 1, . . . ,m, the return map
between the positions zk and zk+1 of two consecutive crossings
of the trajectory z(t) with the boundary Em1 can be computed as
zk+1 = Λzk, where

Λ =

m
i=1

Λi.

Theorem 3 is an extension of Theorem 6 in Biemond et al.
(2010) and provides necessary and sufficient conditions for GUAS
of the origin of the discontinuous, conewise linear systemΣw . For a
historical perspective, we also mention that a stability proof based
on visible and nonvisible eigenvectors as in Biemond et al. (2010)
was presented in Willems, Heemels, de Jager, and Stoorvogel
(2002) for a specific class of linear switching systems.

Theorem 3. Under the assumption that no sliding modes exist, the
origin of the discontinuous, conewise linear systemΣw in (10) is GUAS
if at least one of the following conditions is satisfied:
(i) In each cone Si, i = 1, . . . ,m, all visible eigenvectors are
associated with eigenvalues λ < 0.

(ii) In case there exists no visible eigenvector, it holds that Λ < 1.

Proof. If no slidingmodes exist on the switching surfaces, GUAS of
the origin of the discontinuous system Σw can be proven similarly
to the proof of Theorem 6 in Biemond et al. (2010) for continuous,
conewise linear systems. �

From Lemma 3 it follows that Σw in (10) has no sliding modes
on the switching surfaces, so Theorem 3 can indeed be applied to
conclude GUAS of the origin of Σw .

Appendix C. Model reduction compliant manipulator

The model (19)–(20) describes the slow dynamics of (16), (17),
(2) and is obtained by employing Theorem 11.2 of Khalil (2002).
With this theorem, the slow dynamics are obtained for an infinite
time horizon t ∈ [t0, ∞]. We will refer to it as Tikhonov’s extended
theorem, since the original theorem of Tikhonov, see e.g. Chapter
7 of Tikhonov, Vasil’eva, and Sveshnikov (1985), only applies on a
finite time horizon t ∈ [t0, tf ].

Tikhonov’s extended theorem is applicable to systems de-
scribed by (non)linear continuous, possibly time varying, dynam-
ics. The dynamics of (16), (17), (2) are not continuous due to the
switch between free motion and contact. Therefore, we consider
the model reduction of the free motion (xt ≤ 0) and contact
(xt > 0) phases separately. The simulation results presented in
Section 5 indicate that for the considered parameter values the re-
sponse of the original compliant manipulator dynamics (16), (17),
(2), including the transitions between free motion and contact,
can be approximated by the dynamics of the reduced-order model
(19)–(20).

Below, for both free motion and contact, the reduction of
the 4th-order model (16), (17), (2) to the second-order model
(19)–(20) is performed in two steps, where in each step the model
is reduced with one order.

Free motion: Consider the following states

e := x − xt
ė := ẋ − ẋt .

The following parameters are used as an example to illustrate the
separation of the two distinct time-scales of the system described
by (16), (17), (2): M ∼ 100, b ∼ 100, Mt ∼ 10−2, kt ∼ 104,
bt ∼ 102, ke ∼ 106 and be ∼ 101. For these parameter values,
the dynamics (16), (17), (2) in free motion can be written as

ẍ =
1
M

∼100

Fc(t) −
b
M

∼100

ẋ −
kt
M

∼104

e −
bt
M

∼102

ė (C.1a)

Mt

(1 + Mt/M)kt  
∼10−6

ë =
Mt

M(1 + Mt/M)kt  
∼10−6

Fc(t) − e −
bt
kt

∼10−2

ė

−
Mtb

M(1 + Mt/M)kt  
∼10−6

ẋ. (C.1b)

Define µ1 :=
Mt

(1+Mt/M)kt
≈

Mt
M(1+Mt/M)kt

≈
Mtb

M(1+Mt/M)kt
and µ2 :=

bt
kt
. With these parameters, it follows that µ1 ≪ µ2, and we obtain

the following dynamics

ẍ =
1
M

(Fc(t) − bẋ − kte − bt ė) (C.2a)

µ1ë = µ1Fc(t) − µ1ẋ − e − µ2ė. (C.2b)
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Note that x does not appear directly in the right-hand side of (C.2).
Therefore, the dynamics of (C.2) are described by the three states
(ẋ, e, ė) only.

In the analysis that follows, we consider µ1 and µ2 as singular
perturbations anduse Tikhonov’s extended theorem twice (once for
µ1 and once for µ2) to obtain a model of reduced order.

Before proceeding, we first decouple the free response of (C.2)
from the forced response (due to Fc(t)). To this end, consider the
coordinate transformation ˙̃x := ẋ − ˙̄xFc (t), where x̄Fc (t) is defined
as the forced response of the slow dynamics of (C.2) (i.e. for µ1 =

µ2 = 0) to the continuous and bounded input Fc(t), such that

M ¨̄xFc (t) + b˙̄xFc (t) = Fc(t). (C.3)

Note that ˙̄xFc (t) and ¨̄xFc (t) are continuous and bounded since
Fc(t) is continuous and bounded. By employing (C.3), the unforced
dynamics of (C.2) can be expressed as

¨̃x =
1
M

(−b˙̃x − kte − bt ė) (C.4a)

µ1ë = µ1Fc(t) − µ1(˙̃x + ˙̄xFc (t)) − e − µ2ė. (C.4b)

Since µ1 is much smaller than all other parameters, we treat
it as the vanishing perturbation parameter and use Tikhonov’s
extended theorem to obtain a model of reduced order that
describes the slow dynamics of this system. Consider y =

[y1, y2]T := [˙̃x, e]T as the states of the slow dynamics f1(y, ζ ) and
ζ := ė as the state of the fast dynamics g1(t, y, ζ , µ1) of (C.5)
according to
ẏ1
ẏ2


=

 1
M

(−by1 − kty2 − btζ )

ζ


=: f1(y, ζ ) (C.5a)

µ1ζ̇ = µ1Fc(t) − µ1(y1 + ˙̄xFc (t)) − y2 − µ2ζ

=: g1(t, y, ζ , µ1). (C.5b)

For µ1 = 0, ζ = h1(y) := −
1

µ2
y2 is the solution of 0 = g1(t, y,

ζ , 0) for y ∈ Dy = R2 and v1 := ζ − h1(y) ∈ Dv1 = R. Let
us analyze the three conditions of Tikhonov’s extended theorem
sequentially:

C1. The functions f1, g1, their first partial derivatives with respect
to (y, ζ , µ1), and the first partial derivative of g1 with respect
to t are continuous and bounded on any compact subset Dy ×

Dv1, since Fc(t) is continuous and bounded. Furthermore, h1(y)
and [∂g1(t, y, ζ , 0)/∂ζ ] have bounded first partial derivatives
and [∂ f1(y, h1(t, y), 0)/∂y] is Lipschitz in y.

C2. The slow dynamics of (C.5)

ẏ = f1(y, h1(y)) =


1
M


−by1 − kty2 +

bt
µ2

y2


−

1
µ2

y2



=

−
b
M

bt
µ2M

−
kt
M

0 −
1
µ2

y1y2


(C.6)

have a globally exponentially stable equilibrium point y = 0,
since−

b
M and−

1
µ2

, representing the eigenvalues of the system
matrix of the linear dynamics in (C.6), are both negative.

C3. With µ1
dv1
dt =

dv1
dτ1

(i.e. τ1 :=
1

µ1
t) the (linear) boundary-layer

system

∂v1

∂τ1
= g1(t, y, v1 + h1(y), 0) = −y2 − µ2


v1 −

1
µ2

y2


= −µ2v1 (C.7)
has a globally exponentially stable equilibrium point at the
origin (since µ2 > 0), uniformly in (t, y) with region of
attraction Rv1 = Dv1 = R.

From the conditions above, Tikhonov’s extended theorem allows
us to conclude that for all t0 ≥ 0, initial conditions y0 ∈ Dy,
ζ0 ∈ Dζ := R, and sufficiently small 0 < µ1 < µ∗

1 , the singular
perturbation problem of (C.5) has a unique solution y(t, µ1),
ζ (t, µ1) on [t0, ∞), and

y(t, µ1) − ȳ(t) = O(µ1)

ζ (t, µ1) − h1(ȳ(t)) − v̂1(t/µ1) = O(µ1)

holds uniformly for t ∈ [t0, ∞), with initial time t0, where ȳ(t)
and v̂1(τ ) are the solutions of (C.6) and (C.7), with ȳ(t0) = y(t0)
and v̂1(t0) = ζ (t0) +

1
µ2

y2(t0) respectively. Moreover, given any
tb > t0, there is µ∗∗

1 ≤ µ∗

1 such that

ζ1(t, µ1) − h1(ȳ(t)) = O(µ1)

holds uniformly for t ∈ [tb, ∞)wheneverµ1 < µ∗∗

1 . Hence, on the
domain t ∈ [tb, ∞), (C.5) can be approximated by (C.6). Rewriting
the reduced-order model (C.6) as the time-invariant system

ẏ1 =
1
M


−by1 − kty2 +

bt
µ2

y2


:= f2(y1, y2, µ2) (C.8a)

µ2ẏ2 = −y2 := g2(y2, µ2), (C.8b)

it becomes clear that µ2 =
bt
kt

∼ 10−2 is much smaller than
all other parameters in (C.8). Hence, we can apply Tikhonov’s
extended theorem once more with µ2 considered as the singular
perturbation parameter, y1 the slow dynamics and y2 the fast
dynamics.

The details regarding the reduction step with µ2 considered as
the singular perturbation is performed in a similar fashion as the
first reduction step and is therefore omitted here for the sake of
brevity. With y2 = h2(y1) := 0 the solution of 0 = g2(y2, 0), the
following globally exponentially stable slow dynamics of (C.8) are
obtained

ẏ1 = f2(y1, h2(y1), 0) = −
b
M

y1. (C.9)

With v2 := y2 − h2(y1) and τ2 :=
1

µ2
t , the boundary-layer sys-

tem ∂v2
∂τ2

= g2(y1, v2 + h2(y1), 0) = −v2 is globally exponen-
tially stable. Hence, the three conditions of Tikhonov’s extended
theorem are satisfied, such that it can be concluded that (C.9) is an
approximation of (C.8). After reversing the coordinate transforma-
tion, i.e. y1 = ẋ − ˙̄xFc (t), and using (C.3), we obtain

Mẍ + bẋ = Fc(t) (C.10)

as the approximation of (16) in free motion.
Contact: Similar as for the freemotion case, themodel reduction

for the contact case is performed in two steps. Due to the relatively
high environmental contact stiffness ke in (16), it is expected
that xt (and time derivatives) is approximately equal to zero (the
nominal position of the environment). Therefore, the motion xt of
the tip can be considered as the fast dynamics, and the motion x
of the manipulator can be considered as the slow dynamics. The
dynamics (16), (17), (2) for xt > 0 can be rewritten as

ẍ =
1
M

∼100

Fc(t) −
(b + bt)

M  
∼102

ẋ +
bt
M

∼102

ẋt −
kt
M

∼104

(x − xt) (C.11a)

µ3
∼10−8

ẍt =
kt

kt + ke  
∼10−2

x +
bt

kt + ke  
∼10−4

ẋ − xt −
bt + be
kt + ke  
∼10−4

ẋt , (C.11b)
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where µ3 :=
Mt

kt+ke
. Consider the coordinate transformation

y1 := x − x̄Fc (t),

y2 := ẋ − ˙̄xFc (t), ζ1 := ẋt − ˙̄xt,Fc (t), (C.12)
y3 := xt − x̄t,Fc (t),

such that y = [y1, y2, y3]T = 0 and ζ1 = 0 is the equilibrium
of (C.11) in the new coordinates. In (C.12), x̄t,Fc (t) and x̄Fc (t) are
defined as the forced response of (C.11) for µ3 = 0, to the
continuous and bounded input Fc(t), i.e.

˙̄xt,Fc (t) =
1

bt + be


kt x̄Fc (t) + bt ˙̄xFc (t) − (kt + ke)x̄t,Fc (t)


, (C.13)

M ¨̄xFc (t) + (b + bt)˙̄xFc (t) − bt ˙̄xt,Fc (t)

+ kt(x̄Fc (t) − x̄t,Fc (t)) = Fc(t). (C.14)

Using the coordinate transformation (C.12) and the expressions
(C.13) and (C.14), (C.11) can be rewritten asẏ1
ẏ2
ẏ3


=

y2
1
M

(−(b + bt)y2 + btζ1 − kt(y1 − y3))
ζ1


=: f3(y, ζ1) (C.15a)

µ3ζ̇1 =
1

kt + ke


kty1 + bty2 − (kt + ke)y3

− (bt + be)ζ1


− µ3 ¨̄xt,Fc (t)

=: g3(t, y, ζ1, µ3). (C.15b)
Sinceµ3 is much smaller than all other parameters, see (C.11b), we
treat it as the vanishing perturbation and use Tikhonov’s extended
theorem to obtain a model of reduced order.

The details regarding the reduction step with singular pertur-
bation parameter µ3 follows similar to the reduction step for the
free motion case with µ1 considered as the singular perturbation
parameter and is therefore omitted for the sake of brevity. With

ζ1 =
1

bt + be
(kty1 + bty2 − (kt + ke)y3) =: h3(y)

the solution of 0 = g3(t, y, ζ1, 0), the following globally
exponentially stable slow dynamics of (C.15) are obtained

ẏ = f3(y, h3(y)) (C.16)

=



y2

1
M

(−(b + bt)y2 +
bt

bt + be
(kty1 + bty2

− (kt + ke)y3) − kty1 + kty3)

1
bt + be

(kty1 + bty2 − (kt + ke)y3)


. (C.16)

With v3 := ζ1−h3(y) ∈ Dv3 = R andµ3
dv3
dt =

dv3
dτ3

(i.e. τ3 :=
1

µ3
t),

the boundary-layer system
∂v3

∂τ3
= g3(t, y, v3 + h3(y), 0) = −

bt + be
kt + ke

v3

is globally exponentially stable, and the conditions of Tikhonov’s
extended theorem are satisfied, such that it can be concluded
that (C.16) is an approximation of (C.15). Using (C.13), (C.14) and
inverting the coordinate transformation (C.12), the (intermediate)
slow dynamics (C.16) can be written in the original coordinates as

Mẍ = Fc(t) − (b + bt)ẋ − ktx + ktxt

+
bt

bt + be
(ktx + bt ẋ − (kt + ke)xt) (C.17a)

(bt + be)ẋt = ktx + bt ẋ − (kt + ke)xt . (C.17b)
This third-order system is further approximated to a system of
order 2 by considering µ4 :=

bt+be
kt+ke

as a singular perturbation
parameter. To this end, consider the state transformation

y1 := x − r̄(t),

y2 := ẋ − ˙̄r(t), (C.18)
ζ2 := (kt + ke)(xt − r̄t(t)),

such that y = [y1, y2]T = 0 and ζ2 = 0 is the equilibrium of (C.17)
in the new coordinates. Here, r̄t(t) is defined as the forced response
of the fast dynamics of (C.17) for µ4 = 0, and r̄(t) is defined as the
forced response of the slow dynamics of (C.17) to the input Fc(t),
with µ4 = 0, i.e.

r̄t(t) = kt r̄(t) + bt ˙̄r(t) (C.19)

M ¨̄r(t) +


b + bt

ke
kt + ke


˙̄r(t) + kt

ke
kt + ke

r̄(t) = Fc(t). (C.20)

Rewriting (C.17) in terms of the coordinates y1, y2 and ζ2, given in
(C.18), and using (C.19), (C.20), we obtain

ẏ1

ẏ2

 =


y2

1
M


−(b + bt)y2 − kty1 +

kt
kt+ke

ζ2

+
bt

bt+be


kty1 + bty2 − ζ2




=: f4(y, ζ2) (C.21a)

µ4
∼10−4

ζ̇2 = kt
∼104

y1 + bt
∼102

y2 − ζ2 − µ4
∼10−4

˙̄r t(t)

:= g4(t, y, ζ2, µ4). (C.21b)

Sinceµ4 is small compared to the other parameters, it is considered
a singular perturbation parameter for the system (C.21) and
Tikhonov’s extended theorem is used once more to obtain a model
of reduced order. Again, the proof of the reduction step with
µ4 considered as the singular perturbation follows similar to the
previous reduction steps and is therefore omitted.

For µ4 = 0, ζ2 = kty1 + bty2 := h4(y) is the root of
0 = g4(t, y, ζ2, 0) and the following slow dynamics of (C.21) are
obtained

ẏ = f4(y, h4(y))

=

 y2
1
M


−

b + bt

ke
kt + ke


y2 − kt

ke
kt + ke

y1


. (C.22)

With v4 := ζ2−h4(y) ∈ Dv4 = R andµ4
dv4
dt =

dv4
dτ4

(i.e. τ4 :=
1

µ4
t),

the boundary-layer system ∂v4
∂τ4

= g4(t, y, v4 + h4(y), 0) = −v4

is globally exponentially stable, and the conditions of Tikhonov’s
extended theorem are satisfied, such that the theorem allows us
to conclude that (C.22) is an approximation of (C.21). Using the
inverse of the coordinate transformation (C.18), we obtain

M(ẍ − ¨̄r(t)) = −kt
ke

kt + ke
(x − r̄(t))

−


b + bt

ke
kt + ke


(ẋ − ˙̄r(t)).

Using (C.20), the slow dynamics of (C.17) (and thus of (C.11)) are
given by

Mẍ + bẋ = Fc(t) − kt
ke

kt + ke
x − bt

ke
kt + ke

ẋ. (C.23)
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Finally, by combining the results (C.10) and (C.23), for free
motion and contact, we obtain the model of reduced order
described by (19)–(20).
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