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a b s t r a c t

The comparison between time-varying hybrid trajectories is crucial for tracking, observer design and
synchronisation problems for hybrid systemswith state-triggered jumps. In this paper, a generic distance
function is designed that can be used for this purpose. The so-called ‘‘peaking phenomenon’’, which occurs
when using the Euclidean distance to compare two hybrid trajectories, is circumvented by taking the
hybrid nature of the system explicitly into account. Based on the proposed distance function, we define
the stability of a trajectory and present sufficient Lyapunov-type conditions for hybrid systemwith state-
triggered jumps. A constructive Lyapunov function design is presented for hybrid systems with affine
flow and jump maps and a jump set that is a hyperplane. The stability conditions can then be verified
using linear matrix conditions. Finally, for this class of systems, we present a tracking controller that
asymptotically stabilises a givenhybrid reference trajectory andwe illustrate our resultswith an example.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Hybrid system models have proven valuable to capture the dy-
namics of complex systems arising in engineering, biological, and
economical systems as thesemodels combine continuous-time dy-
namics with discrete events or jumps (Goebel, Sanfelice, & Teel,
2012; Heemels, de Schutter, Lunze, & Lazar, 2010). While the sta-
bility of isolated points or closed sets of hybrid systems is relatively
well-understood (Goebel et al., 2012; Heemels et al., 2010), the sta-
bility of time-varying trajectories received significantly less atten-
tion andmany issues are presently unsolved. Given the importance
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of stability of trajectories in tracking control, observer design and
synchronisation problems, it is important to address these open is-
sues.

One of the main complications to study the stability of hybrid
trajectories is the ‘‘peakingphenomenon’’ of the Euclideandistance
between two trajectories, that can be observed when jump times
do not coincide, and the states of two hybrid trajectories are
compared at the same continuous-time instant, cf. Biemond, van
deWouw, Heemels, and Nijmeijer (2013), Leine and van deWouw
(2008), Menini and Tornambè (2001) and Sanfelice, Biemond, van
de Wouw, and Heemels (2014). Focussing on mechanical systems
with unilateral position constraints, the ‘peaking phenomenon’
has motivated the Zhuravlev–Ivanov method, cf. Brogliato (1999)
and related method of Forni, Teel, and Zaccarian (2013), in which
tracking control and observer problems are defined by requiring
the asymptotic stability of a set that consists of the real system and
‘mirrored’ images. For impacting mechanical systems, in Galeani,
Menini, Potini, and Tornambè (2008),Menini and Tornambè (2001)
and Morărescu and Brogliato (2010), the standard Euclidean state
error is employed away from the impacts times, while near
impacts, only the position error, andno velocity error is considered.
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Alternatively, measures on complete trajectories are presented in
Broucke and Arapostathis (2002) and Goebel et al. (2012).

To effectively address stability problems for a large class of
hybrid systems, we aim to express stability in terms of a distance
function evaluated along trajectories. In Biemond et al. (2013), this
is facilitated by a distance function that takes the jumping nature
of the hybrid system into account, therewith avoiding the ‘‘peaking
phenomenon’’. For this purpose, a distance function between two
states is used which is zero if either both states are equal, or they
can become identical after imminent jumps. We note that this
implies that the functions considered do not satisfy the conditions
to be a metric. However, no constructive design for this distance
function was presented in Biemond et al. (2013). Focussing on
a class of constrained mechanical systems, a similar distance
function was employed in Schatzman (1998) to study continuity
of trajectories with respect to initial conditions. In both works, ad-
hoc techniques were used to design the distance function.

As a first contribution in the current paper, we present a con-
structive and general design for the distance function. We show
that when (global) asymptotic stability is defined with respect to
the new distance function, then the proposed distance function
provides an intuitively correct comparison between two hybrid
trajectories. Subsequently, sufficient conditions for asymptotic sta-
bility are presented that rely on Lyapunov functions that may in-
crease during either flow or jump, as long as the Lyapunov function
eventually decreases along solutions. For this purpose, maximal
or minimal average dwell-time arguments are employed, as pro-
posed in the context of impulsive systems in Hespanha, Liberzon,
and Teel (2008). The final contribution consists of the application
of the developed stability theory to tracking control problems for
a class of hybrid systems where the jumpmap is an affine function
of the state, the jump set is a hyperplane, and the continuous-time
dynamics can be influenced by a bounded control input. A piece-
wise affine tracking control law is designed that achieves asymp-
totic tracking in the proposed distancemeasure. Finally, the results
of this paper are illustrated with an example. Preliminary results
have been advertised in Biemond, Heemels, Sanfelice, and van de
Wouw (2015).

This paper is outlined as follows. We present the class of hybrid
systems considered in Section 2. By presenting the constructive
distance function design, in Section 3, stability of trajectories is
defined and a Lyapunov theorem is formulated. A constructive
piecewise quadratic Lyapunov function is designed in Section 4 for
a class of hybrid systems with affine jump maps and the jump set
contained in a hyperplane. These results are applied to tracking
control problems in Section 5. Finally, an example is given in
Section 6, followed by conclusions in Section 7.

Notation: Let N and N>0 denote the set of nonnegative and
positive integers, respectively. For a set X ⊂ Rn, ∂X denotes its
boundary and for each y ∈ Rn, the distance between y and X is
dist(y, X) := infx∈X ∥x − y∥. The set B ⊂ Rn is the closed unit
ball. Given x ∈ Rn, y ∈ Rm, let (x, y) denote (xT , yT )T . Given a
(possibly set-valued)map F with domain of definition dom F ⊆ Rn

and a set S ⊆ dom F , F(S) = {y | y ∈ F(x), with x ∈ S}
denotes its image; F(y) = ∅ for y ∉ dom F , F k(x), with x ∈ Rn,
k ∈ N>0, denotes F(F k−1(x)) and for all x ∈ Rn, F 0(x) = {x}.
We denote the pre-image as F−1(S) = {x | F(x) ∩ S ≠ ∅}. A
set-valued map F : S ⊂ Rn ⇒ Rn is outer semicontinuous if
its graph {(x, y) ∈ Rn

× Rn
| x ∈ S, y ∈ F(x)} is closed, and

locally bounded if, for each compact set S̃ ⊆ S, F(S̃) is bounded.
For n,m ∈ N>0, let In and Omn denote the identity matrix and the
matrix of zeros of dimension n × n andm × n, respectively. Given
matrices A, B ∈ Rn×n, A ≺ 0 and A ≼ 0 denote that A is symmetric
and negative definite or negative semidefinite, respectively.
2. Hybrid systemmodel

Consider the hybrid system

ẋ ∈ F(t, x) x ∈ C, (1a)

x+
∈ G(x) x ∈ D, (1b)

with F : [t0, ∞) × C ⇒ Rn and G : D ⇒ Rn, where C ⊆ Rn and
D ⊆ Rn. We emphasise that the jump map G is independent of the
time t , which, in the following, will be exploited in the design of
the distance function. In contrast to embedding an extra variable
with dynamics ṫ = 1, we prefer to use explicit time-dependency
of the flow map F , as this allows to study the perturbation of
initial conditions without perturbing the initial time. The class of
hybrid systems in the form (1) is quite general and permits to
model systems arising in many relevant applications, including
mechanical systems with impacts (Goebel et al., 2012) and event-
triggered control systems, see e.g. Postoyan, Tabuada, Nesic, and
Anta (2015). We consider systems (1) that satisfy the following
‘‘hybrid basic conditions’’ (adapted to allow for non-autonomous
flow maps).

Assumption 1. The data of the hybrid system satisfies

• C,D are closed subsets of Rn with C ∪ D ≠ ∅;
• the set-valued mapping F(t, x) is non-empty for all (t, x) ∈

[t0, ∞) × C , measurable, and for each bounded closed set S ⊂

[t0, ∞) × C , there exists an almost everywhere finite function
m(t) such that ∥f ∥ ≤ m(t) holds for all f ∈ F(t, x) and for
almost all (t, x) ∈ S;

• G : D ⇒ Rn is nonempty, outer semicontinuous and locally
bounded.

We consider solutions ϕ to (1) defined on a hybrid time domain
dom ϕ ⊂ [t0, ∞)×N as given in Goebel et al. (2012). The function
ϕ : dom ϕ → Rn is a solution of (1) when jumps satisfy (1b)
and, for fixed j ∈ N, the function t → ϕ(t, j) is locally absolutely
continuous in t and a Krasovskii solution to (1a). This means
ϕ(t, j) ∈ D and ϕ(t, j + 1) ∈ G(ϕ(t, j)) for all (t, j) ∈ dom ϕ such
that (t, j + 1) ∈ dom ϕ and ϕ(t, j) ∈ C, d

dt ϕ(t, j) ∈ F̄(t, ϕ(t, j))
for almost all t ∈ Ij := {t | (t, j) ∈ dom ϕ} and all j such that Ij has
nonempty interior. Herein, F̄(t, x) =


δ≥0 co{F(t, (x + δB) ∩ C)}

and co denotes the closed convex hull operation. We note that
this convexification renders F̄(t, x), when restricted to a bounded
closed set S, convex, outer semi-continuous and measurable in
t , such that solutions to the differential equation can be defined,
cf. Filippov (1988, Theorem 6, p. 86). The solution ϕ is said to be
maximal if it cannot be extended, complete if dom ϕ is unbounded,
and dom ϕ is called unbounded in t-directionwhen for each T ≥ t0
there exists a j such that (T , j) ∈ dom ϕ.

3. Design of distance function and stability notion

We restrict our attention to hybrid systems satisfying the
following assumption.

Assumption 2. The data of the hybrid system (1) is such that G
is a proper function (cf. Definition 1.4.11 in Aubin & Frankowska,
2009), there is a k > 0 for which Gk(D)∩D = ∅ and everymaximal
solution of (1) has a hybrid time domain that is unbounded in
t-direction.

This assumption implies that neither Zeno behaviour nor finite-
time escape of solutions is possible.
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Definition 1. Consider the hybrid system (1) satisfying Assump-
tion 1 and let k̄ > 0 denote the minimum integer for which As-
sumption 2 holds. Let the distance function d : (C ∪D)2 → R≥0 be
defined by

d(x, y) = inf
z∈A

∥(x, y) − z∥ (2)

with

A :=

(zx, zy) ∈ (C ∪ D)2

 ∃k1, k2 ∈ {0, 1, . . . , k̄},

Gk1(zx) ∩ Gk2(zy) ≠ ∅

. (3)

The following theorem summarises particular properties of the
distance function d.

Theorem 1. Consider the hybrid system (1) satisfying Assump-
tion 1 and let k̄ denote the minimum integer for which Assump-
tion 2 holds. The set A in (3) is closed and the function d in
Definition 1 is continuous and satisfies

(1) d(x, y) = 0 if and only if there exist k1, k2 ∈ {0, 1, . . . , k̄} such
that Gk1(x) ∩ Gk2(y) ≠ ∅,

(2) {y ∈ C ∪ D | d(x, y) < β} is bounded for all x ∈ C ∪ D, and all
β > 0, and

(3) d(x, y) = d(y, x), for all x, y ∈ C ∪ D.

Proof. In order to prove (1), we prove that the infimum in (2)
is always attained. First, we observe from Assumption 1 that
G is outer semicontinuous, which directly implies that G−1 is
outer semicontinuous. In addition, as G is proper according to
Assumption 2, we observe that G−1 is locally bounded, cf. Aubin
and Frankowska (2009).

Since the composition M1 ◦ M2 of set-valued mappings M1 and
M2 is outer semicontinuous and locally bounded when M1 and
M2 are outer semicontinuous and locally bounded, we observe
that Gk2 is outer semicontinuous and locally bounded for all k2 ∈

{0, 1, . . . , k̄}. In addition, reusing this argument, G−k1Gk2 is outer
semicontinuous and locally bounded for all k1, k2 ∈ {0, 1, . . . , k̄}.

Note that A = ∪k1,k2∈{0,1,...,k̄} Ak1k2 , with Ak1k2 := {(x, y) ∈

(C ∪ D)2 | y ∈ G−k1Gk2(x)}, cf. (3). As, for all k1, k2 ∈ {0, 1, . . . , k̄},
G−k1Gk2 is outer semicontinuous and locally bounded, and (C ∪D)2

is closed, we conclude that each set Ak1k2 is closed. Consequently,
we find that the functions dk1k2(x, y) := dist((x, y), Ak1k2), for each
k1, k2 ∈ {0, 1, . . . , k̄}, are either continuous functions, or, when
Ak1k2 = ∅, identical to infinity. Since A00 is nonempty, we observe
that d00(x, y) is a continuous and locally bounded function in C∪D.
We may write d(x, y) = mink1,k2∈{0,1,...,k̄} dk1k2(x, y), proving that
d is continuous. As each set Ak1k2 is closed, A is closed, such that
d(x, y) = 0 if and only if (x, y) ∈ A, proving (1).

We now prove (2) by showing that, for every x ∈ C ∪ D,

Y∞(x) := {y ∈ C ∪ D | ∃(zx, zy) ∈ A,

∥x − zx∥ ≤ β, ∥y − zy∥ ≤ β} (4)

is bounded for β > 0. For any x, the set X0
β := {wx | ∥wx − x∥ ≤

β} is compact. Since we have shown above that G−k1Gk2 is outer
semicontinuous and locally bounded for all k1, k2 ∈ {0, 1, . . . , k̄},
we find that the set G−k1Gk2(X0

β) is compact for all k1, k2 ∈

{0, 1, . . . , k̄}. As zy in (4) has to satisfy zy ∈ G−k2Gk1(X0
β) for some

k1, k2 ∈ {0, 1, . . . , k̄}, we have shown that zy is contained in a
bounded set. Hence, we observe that Y∞(x) is bounded, which
implies (2). Property (3) directly follows from symmetry of (3),
which completes the proof. �

Remark 1. Note that the function d in (2) is not a metric, as it does
not satisfy the triangle inequality. Namely, ifG is set-valued and, for
some x, G(x) contains two distinct points y and z, then d(x, y) = 0
and d(x, z) = 0 by Definition 1, while d(y, z) ≠ 0 may still hold in
many cases.

An alternative distance function design is presented in Appendix A,
which has the advantage that, evaluated along solutions, it yields a
continuous function in time. We prefer (2) due to its more simple
formulation.

In order to enable the comparison of the states of two
trajectories in terms of the distance d, similar to Biemond et al.
(2013), we introduce the extended hybrid system with state q =

(x, y) ∈ (C ∪ D)2, flow map

q̇ ∈ Fe(t, q) := (F(t, x), F(t, y)), (5a)

for (x, y) ∈ Ce := C2 and jumps characterised by

q+
= Ge(q) :=


(G(x), y) if x ∈ D, y ∈ C \ D
(x,G(y)) if x ∈ C \ D, y ∈ D
{(G(x), y), (x,G(y))} if x, y ∈ D

for q ∈ De :=

(x, y) ∈ (C ∪ D)2 | x ∈ D ∨ y ∈ D


(5b)

and select the initial condition (ϕx(t0, 0), ϕy(t0, 0)) = ϕq(t0, 0).
We note that the set-valued function Ge above motivated the
design of the set A in (3), cf. Biemond et al. (2013). Namely, A
represents the smallest set that contains all points (x, y)with x = y
that can be forward invariant under (5).

Solutions of this extended system generate a combined hybrid
time domain. Introducing ϕ̄x(t, j) :=


In Onn


ϕq(t, j), and

ϕ̄y(t, j) :=

Onn In


ϕq(t, j), hence allows to evaluate the distance

d(ϕ̄x(t, j), ϕ̄y(t, j)) at every time instant (t, j) ∈ dom ϕq.
Given a trajectory ϕx of (1), we say that a trajectory

(ϕ̄x, ϕ̄y) of (5) represents ϕx in the first n states when ϕ̄x is a
reparameterisation of ϕx. Clearly, any trajectory to (5) represents
ϕx in the first n states when ϕ̄x(t0, 0) = ϕx(t0, 0) holds and
from this initial condition system (1) has a unique solution, as
considered in Biemond et al. (2013).

Definition 2. Consider a hybrid system (1) satisfying Assump-
tion 2 and let d be given in (2). The trajectoryϕx of (1) is called stable
with respect to d if for all ϵ > 0 there exists a δ(ϵ) > 0 such that for
every initial condition ϕy(t0, 0) satisfying d(ϕx(t0, 0), ϕy(t0, 0)) ≤

δ(ϵ), it holds that

d(ϕ̄x(t, j), ϕ̄y(t, j)) < ϵ for all (t, j) ∈ dom ϕq, (6)

with ϕq(t, j) = (ϕ̄x(t, j), ϕ̄y(t, j)) being any maximal solution to
(5) with initial condition (ϕx(t0, 0), ϕy(t0, 0)) that represents ϕx in
the first n states, and is called asymptotically stable with respect to
d if δ can be selected such that, in addition,

lim
t+j→∞

d(ϕ̄x(t, j), ϕ̄y(t, j)) = 0. (7)

When the trajectory ϕx is asymptotically stable with respect to d
and (7) holds for all maximal solutions ϕq to (5), then the trajectory
ϕx is called globally asymptotically stable with respect to d.

Remark 2. This stability notion is more general than stability of
the set A in (3) for system (5), since initial conditions of ϕq in (5)
are restricted to ϕ̄x(t0, 0) = ϕx(t0, 0).

To analyse stability using Lyapunov functions that may increase
during flow and decrease during jumps, or vice versa, minimal and
maximal average inter-jump time are considered as follows.

Definition 3 (Hespanha et al., 2008).Ahybrid time domain E is said
to have minimal average inter-jump time τ > 0 if there exists
N0 > 0 such that for all (t, j) ∈ E and all (T , J) ∈ E where
T + J ≥ t + j, it holds that J − j ≤ N0 +

T−t
τ

.
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A hybrid time domain E is said to have maximal average inter-
jump time τ > 0, if there exists N0 > 0 such that for all (t, j) ∈ E
and all (T , J) ∈ E where T + J ≥ t+ j, it holds that J− j ≥

T−t
τ

−N0.
We say that a hybrid trajectory ϕq has a minimal or maximal

average inter-jump time if dom ϕq has a minimal or maximal
average inter-jump time, respectively.

The following theorem presents Lyapunov-based sufficient
conditions for the stability of a trajectory ϕx of (1). As we are
interested in stability for given ϕx, these conditions are imposed
only near this trajectory.

Theorem 2. Consider a hybrid system (1) satisfying Assumptions 1
and 2. Let d be given in (2). The trajectory ϕx of system (1) is
asymptotically stable with respect to d if there exist a continuous
function V : Rn

× Rn
→ R≥0, K∞-functions α1, α2, a scalar vL > 0

and scalars λc, λd such that V is continuously differentiable on an
open domain containing VL := V−1([0, vL]) and, for all (t, j) ∈

dom ϕx, it holds that

α1(d(ϕx(t, j), y)) ≤ V (ϕx(t, j), y) ≤ α2(d(ϕx(t, j), y)),
for all y such that (ϕx(t, j), y) ∈ Ce ∪ De, (8)

V (g) ≤ eλdV (q), for all g ∈ Ge(q),
and all y such that q = (ϕx(t, j), y) ∈ De ∩ VL, (9)

∂V
∂q


q
, f

≤ λcV (ϕx(t, j), y) for all f ∈ F̄e(t, q)

and all y such that q = (ϕx(t, j), y) ∈ Ce ∩ VL, (10)

and at least one of the following conditions are satisfied:

(1) λc < 0, λd ≤ 0;
(2) all trajectories of (1) haveminimal average inter-jump time 2τ >

0, λc ≤ 0 and λd + λcτ < 0;
(3) all trajectories of (1) have maximal average inter-jump time

2τ > 0, λd ≤ 0 and λd + λcτ < 0.

When, in addition, (9) and (10) hold for all y such that q =

(ϕx(t, j), y) ∈ De and Ce, respectively, then ϕx is globally asymptoti-
cally stable with respect to d.

Proof. The proof is given in Appendix B. �

Remark 3. The dependency of V on the trajectory ϕx(t, j) implies
that V in Theorem 2 takes the role of a (hybrid) time-dependent
Lyapunov function v(t, j, y) = V (ϕx(t, j), y), with (t, j) ∈ dom ϕx.
In this manner, v(t, j, y) characterises the distance d(y, ϕx(t, j))
between ϕx at (t, j) and y.

The conditions (8)–(10) are closely related to the Lyapunov
conditions used for incremental stability, see e.g. Angeli (2002)
and Rüffer, van de Wouw, and Mueller (2013) for ordinary
differential equations and Li, Phillips, and Sanfelice (2016) for
hybrid systems where incremental stability is defined with
respect to the Euclidean distance, and Zamani, van de Wouw,
and Majumdar (2013) where incremental stability with respect
to non-Euclidean distance functions is investigated for ordinary
differential equations. In fact, if the conditions of Theorem 2 hold
for any solution ϕx(t, j) of (1), then they imply asymptotic stability
of the set A of system (5) and, equivalently, an incremental
stability property of (1) with respect to the distance d. However,
as mentioned above, those conditions need to be satisfied for all
ϕx, which makes them stringent and our result relaxes this by
requiring (8)–(10) to hold for each point in the range of ϕx only.
Consequently, the conditions in Theorem 2 are less restrictive than
the conditions for stability of the set A obtained using the results
of Goebel et al. (2012).

In fact, the stability of the trajectoryϕx considered in Theorem2
is less restrictive than stability of the set A for the dynamics (5)
(or, equivalently, incremental stability of (1)), since the particular
trajectory ϕx is known.

4. Constructive Lyapunov function design for hybrid systems
with affine jump map

In this section we present the design conditions for the
construction of a piecewise quadratic Lyapunov function that,
locally, satisfies the requirements (8) and (9). To be able to write
the stability conditions in terms of Linear Matrix Inequalities, we
need to focus on a class of ‘‘linear’’ hybrid systems: in particular,
having single-valued, affine and invertible jump maps and jump
sets characterised by a hyperplane as follows:

ẋ = f (t, x), x ∈ C, (11a)

x+
= Lx + H, x ∈ D (11b)

with the function f measurable in its first argument and Lipschitz
in its second argument, the matrix L ∈ Rn×n being invertible, and
H ∈ Rn. Furthermore, the sets C and D are nonempty, closed and
satisfy

C ⊆ {x ∈ Rn
| Jx + K ≤ 0∧

(JL−1x + K − JL−1H)s ≤ 0}, (11c)
D := {x ∈ C | Jx + K = 0 ∧ z1x + z2 ≤ 0}, (11d)

where the parameters JT , zT1 ∈ Rn
\ {0}, K , z2 ∈ R characterise the

half hyperplane containing D, and s ∈ {−1, 1} is selected such that
ngd := s(L−1)T JT is a normal vector to G(D) pointing out of C . Let
G(D) ⊂ C and the following assumption hold.

Assumption 3. The data of (11) is such that there exist scalars
z3, z4, z5 > 0 such that

• z1x + z2 ≥ z3 for all x ∈ G(D),
• Jx + K < −z4 for all x ∈ C that satisfy |z1x + z2| ≤ z3,
• for all x ∈ C with z1x + z2 ≤ 0, there exists a y ∈ D such that

Jx + K ≤ −z5∥x − y∥,
• all maximal solutions of (11) are complete.

The first three bullets of this assumption are illustrated in Fig. 1.
Note that this assumption directly implies D ∩ G(D) = ∅, cf.
Assumption 2. All solutions to (11) have a time domain that is
unbounded in t-direction, as, firstly, G(D) ∩ D = ∅ excludes Zeno-
behaviour since D is closed, secondly, G is linear and, thirdly, f
is Lipschitz in its second argument. Hence, Assumption 3 implies
that Assumptions 1 and 2 hold for system (11). In Section 6, we
present an example of a mechanical system that satisfies (11) and
Assumption 3.

In order to present a constructive Lyapunov function design, we
first introduce the function Ḡ : Rn

→ Rn as

Ḡ(x) := Lx + H + M(Jx + K) + sLJT max(0, z1x + z2), (12)

where the parameter M ∈ Rn is to be designed. Note that if x ∈ D,
then Ḡ(x) = G(x) = Lx + H .

Since G(D) ∩ D = ∅, Definition 1 implies that d(x, y) = 0 if
and only if x = y, or x = G(y), or y = G(x). To design a Lyapunov
function V , we note that (8) requires that V (x, y) = 0 if and only if
d(x, y) = 0. Hence, we propose the following piecewise quadratic
Lyapunov function:

V (x, y) = min(∥x − y∥2
P0 , ∥x − Ḡ(y)∥2

Ps , ∥Ḡ(x) − y∥2
Ps), (13)

where the positive definite matrices P0, Ps ∈ Rn×n are to be
designed. While this function is not smooth, we restrict our
attention to a sufficiently small sub-level set where, as we will
show in Lemma 3, the function V is smooth.
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Fig. 1. Pictorial illustration of the phase space of (11) when Assumption 3 is
satisfied. The second and third bullets of this assumption imply that the intersection
between C and the domains depicted in dark grey and light grey, respectively, is
empty.

Design of Lyapunov function parameters

To design the parameters P0, Ps andM of the Lyapunov function
V in (13), we employ the following lemma.

Lemma 3. Consider the hybrid system (11), let M ∈ Rn satisfy
(JL−1M +1)s < 0, let P0, Ps ≻ 0 and let Assumption 3 hold. Consider
the function V in (13). If for some λd ∈ R it holds that

(L + MJ)TPs(L + MJ) ≼ eλdP0, (14)

P0 ≼ eλdPs, (15)

then there exist K∞-functions α1, α2 and vL > 0 such that
the conditions (8) and (9) in Theorem 2 are satisfied with VL =

V−1([0, vL]) and the function V in (13) is smooth on an open domain
containing VL.

Proof. The proof is given in Appendix B. �

This lemma provides sufficient conditions on the hybrid
systems (11) and the Lyapunov function (13) such that the
conditions (8) and (9) are satisfied. In the following section, we
present a tracking control law, and additional conditions onV , such
that the other conditions in Theorem 2 are also satisfied.

5. Tracking control problems

We now employ the results on the asymptotic stability of
jumping hybrid trajectories to solve a tracking problem of a hybrid
trajectory with jumps.

We restrict our attention to tracking control problems for the
class of systems (11) with f (t, x) = Ax + E + Bu(t, x), A ∈

Rn×n, E, B ∈ Rn, with a control law u : [0, ∞) × C →

R to be designed. In the scope of this tracking problem, we
consider a reference trajectory xd, which is a solution to (11) for
a feedforward input signal u(t, x) = uff(t). We assume that y is a
trajectory that is generated by the control signal u(t, y) = uff(t) +

ufb(t, y), and assume that ufb vanishes along the trajectory xd, i.e.
ufb(t, xd(t, j)) = 0 for almost all (t, j) ∈ dom xd (appropriate
designs for ufb will depend on the known trajectory xd). Hence, the
flow map of the extended hybrid system (5) is given by

Fe(t, xd, y) =


Axd + E + B(uff(t) + ufb(t, xd))
Ay + E + B(uff(t) + ufb(t, y))


. (16)

We partition Ce∪De in the three sets S0, S1, S2 where theminimiser
of (13) is ∥x − y∥2

P0
, ∥x − Ḡ(y)∥2

Ps or ∥Ḡ(x) − y∥2
Ps , respectively.
Introducing the function x̄d(t) := xd(t,min(t,j)∈dom xd j), we design
a switching feedback law ufb as:

ufb(t, y) =



−c0(x̄d(t) − y),
for (x̄d(t), y) ∈ S0

−
βT
2

βT
2 β2

β1(t) − c1(x̄d(t) − Ḡ(y)),

for (x̄d(t), y) ∈ S1

−
βT
4

βT
4 β4

β3(t) − c2(Ḡ(x̄d(t)) − y),

for (x̄d(t), y) ∈ S2

(17)

with cT0 , cT1 , cT2 ∈ Rn,

β1(t) =

In −L − MJ

  Ax̄d(t) + Buff(t) + E
AḠ◦(x̄d(t)) + Buff(t) + E


,

β3(t) =

L + MJ −In

  Ax̄d(t) + Buff(t) + E
AḠ(x̄d(t)) + Buff(t) + E


,

β2 = −(L + MJ)B and β4 = −B, where Ḡ◦(x) is designed as
Ḡ◦(x) = (L + MJ)−1(x − H − MK), which, restricted to S1 ∩ VL,
coincides with the inverse of Ḡ.

Using this switched control law, which switches on the basis
of the Lyapunov function designed in (13), we formulate in the
following result explicit conditions on the controller parameters
c0, c1, c2,M, P0 and Ps under which the tracking problem is solved.

Theorem 4. Consider the hybrid system (11) with f (t, x) = Ax +

E + B(uff(t) + ufb(t, x)), for some measurable function uff(t) and let
xd be a solution of (11) for ufb ≡ 0. Let P0, Ps ∈ Rn×n, M ∈ Rn,
consider V as in (13) and let ufb be designed as in (17), with x̄d(t) =

xd(t,min(t,j)∈dom xd j) and cT0 , cT1 , cT2 ∈ Rn. Let L + MJ be invertible
and B ≠ 0.

Let the assumptions of Lemma 3 hold for λd ∈ R, let all trajectories
of (11) have a time domain that is unbounded in t-direction, and
assume

β1(t) ∈ span(β2), and β3(t) ∈ span(β4) (18)

hold for almost all t.
Let, for some λc ∈ R, the following LMIs be satisfied:

(A + Bc0)TP0 + P0(A + Bc0) − λcP0 ≼ 0, (19)

Ps(β2c1 + (L + MJ)A(L + MJ)−1) + (β2c1
+(L + MJ)A(L + MJ)−1)TPs + λcPs ≼ 0, (20)

Ps(A + Bc2) + (A + Bc2)TPs + λcPs ≼ 0. (21)

If either of the following cases holds, then the trajectory xd is
asymptotically stable with respect to d.

(1) λc < 0, λd ≤ 0,
(2) all trajectories of (1) haveminimal average inter-jump time 2τ >

0, λc ≤ 0 and λd + λcτ < 0,
(3) all trajectories of (1) have maximal average inter-jump time

2τ > 0, λd ≤ 0 and λd + λcτ < 0.

Proof. The proof is given in Appendix B. �

6. Example

We now present hybrid system and design a control law for
which amaximal dwell-time argument proves asymptotic stability
of the reference trajectory. Consider a single degree-of-freedom
system with a damper with damping constant c > 0 and a spring
with stiffness k > 0 and unloaded position x = x̄1, as shown in
Fig. 2. Impacts can only occur at the constraint at x1 = 0. Let the
impacts be described by a restitution coefficient ε = 0.9. Hence,
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Fig. 2. Dissipative mechanical system.

the impacts are dissipative, which allows to study the stability
of the trajectory using a maximal average inter-jump time result.
Assuming that finite constraint forces can be ignored, i.e. persistent
contact does not occur, the hybrid system is described by (11) with

A =


0 1

−k −c


, B =


0
1


, E =


0
kx̄1


, L = −εI2,

J =

1 0


, K = 0, H = 0, s = −1,

z1 =

0 1


, z2 = 0

and the set C is selected to exclude the origin. The parameters
x̄1 = 1, k = 1 and c = 0.02 are used.

Let the reference trajectory xd be a solution to (11) for a
feedforward function u = uff(t) = 100 cos(ωt), with ω = 0.4.
This forcing is selected such that the reference trajectory xd with
initial condition xd(0, 0) = (50, 0) has a maximal average inter-
jump time τd > 0. In addition, ∥xd(t, j)∥ > s for all (t, j) ∈ dom xd,
for some s > 0, i.e. xd does not tend to the origin.

We now apply the constructive control law design proposed in
Section 5 to enforce tracking of the trajectory xd. Selecting P0 =
k 0
0 1


and Ps =

1
ε
P0, we observe that the conditions of Lemma 3

are satisfied with λd = log(ε) < 0. In addition, we observe that
c0 = c1 = c2 = 0 can be selected, such that (19)–(21) hold with

λc = 0, as P0A + ATP0 =


0 0
0 −2c


and PsA + ATPs =


0 0

0 −
2c
ε


.

Then, (17) yields the control law:

ufb(t, y) =


0, (x̄d(t), y) ∈ S0

−
1 + ε

ε
(kx̄1 + uff(t)), (x̄d(t), y) ∈ S1

−(1 + ε)(kx̄1 + uff(t)), (x̄d(t), y) ∈ S2.

(22)

As the trajectory xd has a maximal average inter-jump time,
denoted τd, nearby trajectories will have the same behaviour.
Hence, selecting vL > 0 sufficiently small and restricting our
attention to the hybrid system (5) with flow set Ce ∩ VL and jump
set De ∩ VL, with VL = V−1([0, vL]), we conclude that x also
has a maximal average dwell-time τx, with τx close to τd. Hence,
the trajectory of the embedded system (5) has a maximal average
inter-jump time max(τd,τx)

2 > 0. Consequently, case (3) of Theorem4
proves that the trajectory is (locally) asymptotically stabilisedwith
respect to d by the control law (22).

In Fig. 3, the performance of this controller is illustrated and a
trajectory with initial condition x(0, 0) = (100, 0) is shown. The
achieved stability of xd with respect to d clearly corresponds to
desirable behaviour.

From the structure of the control law (22), we observe that no
control is active when V (ϕ̄y(t, j), xd(t, j)) = ∥ϕy(t, j) − xd(t, j)∥2

P0
.

In fact, the dissipative effect of both the damping force cẋ and
the jump map implies that no control is needed during these
time intervals. The control input u only needs to compensate the
destabilising effect of the forcing term E + Buff during the ‘‘peaks’’
of the Euclidean error.

7. Conclusion

In this paper, we considered the stability of time-varying
and jumping trajectories of hybrid systems with state-triggered
jumps. This requires the comparison of different trajectories of
Fig. 3. (a) and (b) Reference trajectory xd and plant trajectory x for the dissipative
mechanical system and periodic forcing. (c) Euclidean tracking error. (d) Distance
function (2). (e) Control force u.

a hybrid system for which we proposed a novel systematic
distance function design, because the standard Euclidean distance
is not adequate. Sufficient conditions for stability in terms of
this distance function were formulated using Lyapunov functions
that can exploit maximum or minimum average inter-jump time
properties and that have sub-level sets that can be partitioned
in disconnected domains. In fact, when the jump map is an
affine function and the jump set a hyperplane, a systematic
design procedure for piecewise quadratic Lyapunov functions was
proposed as well. Based on the general theory and the specific
matrix conditions for the piecewise quadratic Lyapunov function
design, we designed a switched tracking control law for hybrid
systems that only allow control during flow. A numerical example
illustrates the applicability of our results leading to a control law
that achieves accurate tracking. Moreover, the example nicely
shows that the presented distance function and the corresponding
asymptotic stability notion do indeed correspond to desired
tracking behaviour.
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Appendix A. Alternative distance function

The distance function (2) is not necessarily continuous over
jumps when evaluated along solutions to (1). When G is a
single-valued and invertible function, such a continuity property
could be induced by the function:

dQ (x, y) = inf
N∈N

inf
(xi,yi)∈A,i=1,...,N,

y0=x, xN+1=y

N
i=0

∥yi − xi+1
∥,

that coincides with the quotient metric on the quotient space
generated by the equivalence x ∼ y if (x, y) ∈ A. This quotient
space has been suggested in Lygeros, Johansson, Simić, Zhang, and
Sastry (2003) to study hybrid systems.We note thatwhenG is non-
invertible, then dQ (x, y) = 0 ⇔ (x, y) ∈ A may not hold. To allow
for non-invertible jumpmaps, we prefer the distance function d in
(2) over dQ .

Appendix B. Proofs

Proof of Theorem 2. We restrict our attention to maximal trajec-
tories ϕq to (5) that represent ϕx in the first n states. These trajec-
tories always exist, which follows from the comparison of (5) and
(11) and the fact that ϕx is a trajectory to (1). The observation that
ϕ̄y is a reparameterisation of a trajectory ϕy for (1), and both ϕx and
ϕy are unbounded in t-direction by Assumption 2, proves that the
trajectory ϕq is unbounded in t-direction.

We first prove that V (ϕq(t, j)) < vL for all (t, j) ∈ dom ϕq and
all trajectories ϕq of (5) if k̄V (ϕq(t0, 0)) < vL, where k̄ is chosen as
k̄ = 1 if (1) holds, k̄ = eλdN0 if (2) holds and λd ≥ 0, and k̄ = eλcN0τ

if (3) holds and λc ≥ 0, with N0 given in Definition 3. Observe that
if all trajectories of (1) have a minimal or maximal average inter-
jump time 2τ , then (5) has minimal or maximal average interjump
time τ .

To prove that the values of k̄ defined above are appropriate, for
the sake of contradiction, suppose that k̄V (ϕq(t0, 0)) < vL and
there exists a time (t0 + T̄ , J̄) ∈ dom ϕq, T̄ , J̄ ≥ 0, such that
V (ϕq(t0 + T̄ , J̄)) ≥ vL. Hence, there exist T ≤ T̄ and J ≤ J̄ such
that (t0 + T , J) ∈ dom ϕq and

V (ϕq(t0 + T , J)) ≥ vL, (B.1)

but V (ϕq(t, j)) < vL for all (t, j) ∈ R := {(t, j) ∈ dom ϕq | t <
t0 + T ∨ j < J}.

Since ϕq represents ϕx in the first n states, (9)–(10) imply that

V (g) ≤ eλdV (ϕq(t, j)) and


∂V
∂q


ϕq(t,j)

, f


≤ λcV (ϕq(t, j)) hold for

all (t, j) ∈ R, f ∈ F̄e(t, ϕq(t, j)) and g ∈ Ge(ϕq(t, j)).
Analogue to Sanfelice et al. (2014), we study the function

(t, j) → w(t, j) := V (ϕ̄x(t, j), ϕ̄y(t, j)) along the given solution
ϕq over the time domain R and we introduce scalars {tj} such that
R =


j([tj, tj+1] × {j}). As, for each j, the functions ϕ̄x, ϕ̄y are

absolutely continuous in t in the time interval [tj, tj+1]×{j},w(t, j)
is absolutely continuous in t as well. Evaluating ẇ(t, j) =

∂V
∂q f for

some f ∈ F̄e(t,

ϕ̄x(t, j), ϕ̄y(t, j)


), we find with (10) that ẇ(t, j) ≤

λcw(t, j). With the comparison lemma, Khalil (2002, Lemma 3.4),
we find w(tj+1, j) = eλc (tj+1−tj)w(tj, j) for all j. For a subsequent
jump, (9) yields w(tj+1, j + 1) = eλdw(tj+1, j). Applying this result
repetitively, we find

w(t0 + T , j) = V (ϕq(t0 + T , J)) ≤ eλcT+λdJV (ϕq(t0, 0)). (B.2)

If case (1) of the theorem holds, we directly observe V (ϕq(t0 +

T , J)) ≤ V (ϕq(t0, 0)), contradicting (B.1). If λd ≥ 0 and case
(2) holds, then the definition of minimal average inter-jump time
Fig. B.1. The three nodes indicate when x and y may jump provided V (x, y) ≤ vL ,
with vL sufficiently small. When the conditions of Lemma 3 hold and, in addition,
V (x, y) ≤ max(1, e−λd)vL right before a jump, then this jump satisfies the scenarios
depicted by arrows.

yields λcT + λdJ ≤
T
τ
(λcτ + λd) + λdN0 ≤ λdN0, such that with

(B.2) we find V (ϕq(t0 + T , J)) ≤ k̄V (ϕq(t0, 0)) < vL, contradicting
(B.1). If λc ≥ 0 and case (3) holds, then applying the definition of
maximal average inter-jump time, we observe that λcT + λdJ ≤

(λd + λcτ)J + τN0λc ≤ λcτN0. Substituting this inequality in (B.2)
we find V (ϕq(t0 + T , J)) ≤ k̄V (ϕq(t0, 0)) < vL, contradicting (B.1).
A contradiction has been obtained in all three cases, proving that
k̄V (ϕq(t0, 0)) < vL implies ϕq(t, j) ∈ VL for all (t, j) ∈ dom ϕq.
Hence, V (ϕq(t0, 0)) ≤

vL
k̄
implies that, for all (t0 + t, j) ∈ dom ϕq,

V (ϕq(t0 + t, j)) ≤ eλc t+λdjV (ϕq(t0, 0)).
Assumption 2 states that all trajectories of (1) are unbounded

in t-direction, which implies G(D) ⊆ C ∪ D. Hence, we find
ϕq(t0 + t, j) ∈ Ce ∪ De for all (t0 + t, j) ∈ dom ϕq, and we can use
(8). Consequently, d(ϕq(t0 + t, j)) ≤ α−1

1 (eλc t+λdjα2(d(ϕq(t0, 0)))).
With the inequalities for λc t + λdj derived above, we conclude
that in any of the three cases of the theorem, d(ϕq(t0 + t, j)) ≤

α−1
1 (k̄α2(d(ϕq(t0, 0)))), proving stability with respect to d. Again

using the mentioned inequalities, we observe that λc t + λdj →

−∞ along the solutions (this limit can be used since all trajectories
are unbounded in t-direction, cf. Assumption 2), such that
d(ϕq(t0 + t, j)) → 0. This proves asymptotic stability.

When (9) and (10) hold for all y such that (ϕx(t, j), y) ∈ Ce ∪De,
then the upper bounds on d(ϕq(t0 + t, j)) prove global asymptotic
stability. �

The proof of Lemma 3 employs Lemmas 3 and 7 in Benjamin
Biemond, Heemels, Sanfelice, and van de Wouw (2014), which
hinge on the observation in Biemond et al. (2014) that the set
VL can be partitioned in three separated sets S0, S1, S2 where the
minimiser of (13) is ∥x − y∥2

P0
, ∥x − Ḡ(y)∥2

Ps or ∥Ḡ(x) − y∥2
Ps ,

respectively, and, in addition, the jumps of the system (5) are
restricted to the scenarios in Fig. B.1. Hence, Lemma 3 is proven
by checking (9) along the scenarios in Fig. B.1.

Proof of Lemma 3. To prove the lemma, first, we observe that
Biemond et al. (2014, Lemma7) directly guarantees that there exist
functions α1, α2 satisfying (8). In addition, Biemond et al. (2014,
Lemma 3) directly proves that there exists a sufficiently small vL >
0 such thatV is smooth in an open domain containingVL. It remains
to be proven that (14)–(15) imply (9).

Jumps of (11) may trigger jumps between the sets S0, S1 and
S2. From item (2) in Biemond et al. (2014, Lemma 3), we observe
that for (x, y) ∈ S1 ∩ VL and (x, y) ∈ S2 ∩ VL jumps of x and y,
respectively, are not feasible. Consequently, when (x, y) ∈ S0, both
x and y can jump,while from (x, y) ∈ S1, only a jumpof y is feasible,
and (x, y) ∈ S2 implies x ∉ D. We will now prove that (9) holds
along these four jumps:

(a) We first study the jump (x, y) → (G(x), y), with (x, y) ∈

S0. Since (3) of Biemond et al. (2014, Lemma 3) implies that
Ḡ(y) = (L + MJ)y + H + MK as z1y + z2 ≤ 0 and x ∈ D
implies Ḡ(x) = G(x) = (L + MJ)x + H + MK , we observe
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that V (G(x), y) ≤ ∥G(x) − Ḡ(y)∥2
Ps = ∥Ḡ(x) − Ḡ(y)∥2

Ps =

(x − y)T (L + MJ)TPs(L + MJ)(x − y), such that (14) implies
that (9) holds.

(b) For a jump (x, y) → (x,G(y)) with (x, y) ∈ S1, we observe
V (x,G(y)) ≤ ∥x − G(y)∥2

P0
= ∥x − Ḡ(y)∥2

P0
, as y ∈ D. Hence,

(15) implies (9) in this case.
(c) For a jump (x, y) → (x,G(y)), with (x, y) ∈ S0, (9) directly

follows from combining (a) with the symmetry relation
V (x, y) = V (y, x).

(d) For a jump (x, y) → (G(x), y) with (x, y) ∈ S2, symmetry of V
and (b) imply (9).

Hence, we have proven that (9) holds over all feasible jumps,
therewith concluding the proof of the lemma. �

Proof of Theorem 4. We prove this theorem by application of
Theorem 2. Lemma 3 proves that (8) and (9) hold for some vL > 0.
Hence, we now show that the assumptions in the theorem prove
that (10) is satisfied in the sub-level set VL = V−1([0, vL]).

According to Lemma 3, V is differentiable in VL, such that
we evaluate ⟨

∂V
∂q


q
, f ⟩ for f ∈ F̄e(t, xd(t, j), y) only when q =

(xd(t, j), y) ∈ VL ∩ Ce, where, for almost all t , F̄e is single-valued,
andwe distinguish the three cases given by theminimisers of (13).
If (xd(t, j), y) ∈ S0 ∩ VL, then

∂V
∂q

= 2(xd(t, j) − y)TP0

In −In


and

F̄e =


Axd(t, j) + E + Buff(t)

Ay + E + B(uff(t) − c0(xd(t, j) − y))


,

such that (10) is guaranteed by (19).
If (xd(t, j), y) ∈ S1∩VL, then (3) of Biemond et al. (2014, Lemma

3) implies Ḡ(y) = (L + MJ)y + H + MK . Consequently
∂V
∂q = 2sT1Ps


In −(L + MJ)


and

F̄e(t, xd(t, j), y) =


Axd(t, j) + E + Buff(t)

Ay + E + B(uff(t) −
βT
2 β1(t)

βT
2 β2

− c1s1)


with s1 = xd(t, j) − Ḡ(y) holds. Hence, we obtain ∂V

∂q F̄e(t, x, y) =

2sT1Ps(Axd(t, j) + E + Buff(t)) − (L + MJ)Ay − (L + MJ)E −

(L + MJ)Buff(t) −
β2β

T
2

βT
2 β2

β1(t) − (L + MJ)Bc1s1. With (18), we find

β2β
T
2

βT
2 β2

β1(t) = β1(t), such that

∂V
∂q F̄e(t, xd(t, j), y)

= 2sT1Ps(Axd(t, j) + (I − L − MJ)(E + Buff(t))
− (L + MJ)Ay − β1(t) + β2c1s1). (B.3)

Since y = (L+MJ)−1(−s1+xd(t, j)−H−MK) = −(L+MJ)−1s1+

Ḡ◦(xd(t, j)), we obtain
∂V
∂q F̄e(t, xd(t, j), y)

= 2sT1Ps((L + MJ)A(L + MJ)−1
+ β2c1)s1, (B.4)

where we used the design of β1. Hence, (20) guarantees that (10)
holds in this case.

Now, we focus on the case (xd(t, j), y) ∈ S2 ∩ VL. In that
case, from (3) of Biemond et al. (2014, Lemma 3), we observe that
max(0, z1y + z2) = 0 follows from (xd(t, j), y) ∈ S2 ∩ VL. Hence,

∂V
∂q

= 2sT2Ps

L + MJ −In



and

F̄e(t, xd(t, j), y) =

 Axd(t, j) + E + Buff(t)

Ay + E + B

uff(t) −

βT
4 β3(t)
βT
4 β4

+ c2s2


with s2 = Ḡ(xd(t, j)) − y. From (18) follows β4β

T
4

βT
4 β4

β3(t) = β3(t),

such that ∂V
∂q F̄e(t, xd(t, j), y) = 2sT2Ps


As2 −β3(t)+


L + MJ −In


Axd(t, j) + Buff(t) + E

AḠ(xd(t, j)) + Buff(t) + E


+Bc2s2


, wherewe used y = Ḡ(xd(t, j))−s2.

With the design of β3, β4, we find
∂V
∂q F̄e(t, xd(t, j), y) = 2sT2Ps(A + β4c2)s2, (B.5)

such that (21) proves that (10) holds in this case. Consequently, if
(19)–(21) hold, (10) is obtained. Hence, Theorem 2 proves that xd
is asymptotically stable with respect to d. �
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