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a b s t r a c t

The potential of reset controllers to improve the transient performance of linear (motion) systems has
been extensively demonstrated in the literature. The design and stability analysis of these reset controllers
generally rely on the availability of parametric models and on the numerical solution of linear matrix
inequalities. Both these aspects may hamper the application of reset control in industrial settings. To
remove these hurdles and stimulate broader application of reset control techniques in practice,wepresent
new sufficient conditions, based on measured frequency response data of the system to be controlled,
to guarantee the stability of closed-loop reset control systems. The effectiveness of these conditions is
demonstrated through experiments on an industrial piezo-actuated motion system.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

A reset controller is a linear time-invariant (LTI) control system
of which the state, or a part of the state is reset to a certain value
(usually zero) whenever appropriate algebraic conditions on its
input and output are satisfied. Reset controllers were proposed
in 1958, see Clegg (1958), in order to overcome the inherent
performance limitations of linear feedback controllers imposed by
Bode’s gain–phase relationship. Especially in the last two decades,
reset control has regained attention from the control community in
both theoretically oriented research, see e.g., Aangenent, Witvoet,
Heemels, van de Molengraft, and Steinbuch (2010), Baños and
Barreiro (2012), Beker, Hollot, and Chait (2001); Beker, Hollot,
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Chait, and Han (2004), Nešić, Teel, and Zaccarian (2011); Nešić,
Zaccarian, and Teel (2008), Prieur, Tarbouriech, and Zaccarian
(2013) and Zhao and Wang (2016), as well as in applications
(Baños & Barreiro, 2012; Heertjes, Gruntjens, van Loon, Kontaras, &
Heemels, 2015; Panni, Waschl, Alberer, & Zaccarian, 2014; Zheng,
Chait, Hollot, Steinbuch, & Norg, 2000). However, despite the
potential of a reset controller to improve the transient performance
of linear systems, reset controllers are often not so easily embraced
by (motion) control engineers in industry. To a large extent, this
is caused by the fact that the vast majority of existing tools for
the stability analysis and the design of reset controllers rely on
parametric models and on solving linear matrix inequalities using
those models. As such, they do not interface well with the current
industrial (motion) control design practice, in which typically
frequency-domain tools and non-parametricmodels are exploited,
see, e.g., Butler (2011). Therefore, an important open problem is to
obtain easy-to-use, ‘industry-friendly’ design tools for reset control
systems using frequency-domain techniques as a basis.

In this paper, we contribute to solving this important open
problem and focus, in particular, on deriving stability conditions
that are graphically verifiable on the basis of measured frequency
response data concerning the system dynamics. These conditions
apply, amongst others, to the reset condition employed in
Aangenent et al. (2010), Forni, Nešić, and Zaccarian (2011), Nešić
et al. (2008) and Zaccarian, Nešić, and Teel (2011), and have some
connections to recent developments in variable gain control (VGC),
see, e.g., Heertjes and Steinbuch (2004), Hunnekens, van deWouw,
Heertjes, andNijmeijer (2015) and van deWouw, Pastink, Heertjes,
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Pavlov, and Nijmeijer (2008). In VGC, the use of the circle criterion,
see, e.g., Khalil (2000), is central in obtaining stability conditions
based on frequency-domain system models. A key step in the
approach for VGC is to write the closed-loop system as a so-called
Lur’e-type system, i.e., a feedback interconnection of an LTI
dynamical system and a static memoryless nonlinearity, see
Khalil (2000). Unfortunately, such an approach does not transfer
easily to reset controllers as the closed-loop system would be an
interconnection of an LTI dynamical system and a reset controller.
This is not a (true) Lur’e-type system as the reset controller (as
opposed to the VGC element) consists of a dynamical system that
exhibits discontinuities (jumps) in the state variables rather than a
static memoryless element. As such, applying Lur’e-type stability
arguments calls for a new perspective on reset control systems,
which we will provide in this paper by abstracting away from the
internal dynamics of the reset controller and focusing instead on
its input/output behavior, that can be confined to a certain sector
bound, see Khalil (2000). This sector bound can subsequently be
employed in a circle criterion-like condition. We will formally
prove that this will yield sufficient conditions to assess input-to-
state stability (ISS), see Cai and Teel (2009) and Sontag and Wang
(1995), of reset control systems (including the internal dynamics)
by evaluating (measured) frequency response data. In addition, this
new perspective on reset control can also be directly used for the
design of such controllers.

The results presented in this paper are not the first stability
conditions for reset control systems that are graphically verifiable
on the basis ofmeasured frequency response data. In Beker, Hollot,
Chen, and Chait (1999), see also Beker et al. (2004) containing
an overview of the work on reset control until the mid 2000s,
the Hβ-condition was developed involving a strictly positive real
condition to guarantee closed-loop stability of a class of reset
control systems. However, the result still required a parametric
model for the search of both a positive definite matrix and a
vector (both of size equal to the dimension of the states of the
controller that are reset) defining the output of the transfer matrix
that has to be strictly positive real. In this paper, we aim for
frequency-domain conditions for the analysis and design of reset
control systems, i.e., employing measured data instead of using
parametric models, with the additional advantage that the linear
part of the controller design and analysis can be performed by
shaping the frequency response of the open-loop and/or closed-
loop transfer functions, see Steinbuch andNorg (1998). In Carrasco,
Baños, and vander Schaft (2010) and Forni et al. (2011), the concept
of passivity has been used to analyze stability of reset systems. Key
in the work of Carrasco et al. (2010) is that a (full) reset system
retains the passivity properties of its underlying base system,
i.e., the system without the reset part. As a result, L2-stability
conditions can be verified in the frequency domain. In addition,
the results in Forni et al. (2011) can be seen as a generalization
of the results in Carrasco et al. (2010). The novelty in our stability
results compared to Carrasco et al. (2010) and Forni et al. (2011) is
the link to the circle criterion, resulting in less strict conditions on
the underlying base system. The relaxation lies in the fact that the
underlying linear system does not need to be strictly positive real
(as in Carrasco et al., 2010; Forni et al., 2011) but should satisfy
less stringent (circle-criterion) conditions. This fact significantly
widens the applicability scope of the results. An important class of
systems for which such relaxation is essential for the application
of reset control, is the class of motion control systems as studied as
a central application in this paper.

The outline of this paper is as follows. In Section 2, we present
the control architecture. In Section 3, we present our main results.
In Section 4, we discuss an industrial case study and demonstrate
the applicability of the presented results in practice. Finally in
Section 5, we provide the conclusions.
1.1. Nomenclature

The following notational conventions will be used. Let N, R,
R≥0, C denote the set of non-negative integers, real numbers,
nonnegative real numbers and complex numbers, respectively. The
Laplace transform of a signal x : R≥0 → Rn is denoted by L{x} and
s ∈ C denotes the Laplace variable. Some further hybrid system
notations from Goebel, Sanfelice, and Teel (2012) can be found in
the Appendix.

2. System description and problem formulation

In this section, we will formally introduce the reset control
system as considered in this paper and derive a closed-loop hybrid
model. In addition, we pose a problem formulation.

2.1. Hybrid closed-loop model

We will mainly focus on the single-input–single-output (SISO)
control architecture as depicted in Fig. 1, although our results
are applicable to other configurations as well, see Remark 8. The
closed-loop system in Fig. 1 consists of a linear time-invariant (LTI)
plant given by the transfer function P (s), s ∈ C, a nominal LTI
controller with transfer function C(s), reference r ∈ R, output
yp ∈ R, tracking error e := r − yp ∈ R and an external disturbance
d ∈ R. In this figure,R denotes a reset controller, which ismodeled
in terms of the hybrid system formalism of Goebel et al. (2012) as

R :

 ẋr = Arxr + Bre if (e, −u) ∈ F
x+

r = 0 if (e, −u) ∈ J
u = −Crxr

(1)

with state xr ∈ Rnr , controller output u ∈ R, and Ar , Br , Cr are
constant realmatrices of appropriate dimensions. In (1), flowof the
reset controller state xr occurs when the input/output pair (e, −u)
is in the flow set F given by

F :=

(e, −u) ∈ R2

| eu ≤ −
1
α
u2 (2a)

with α ∈ (0, ∞), and state resets occur when the input/output
pair (e, −u) is in the jump set J given by

J :=

(e, −u) ∈ R2

| eu ≥ −
1
α
u2 . (2b)

A schematic representation of the flow set F and the jump set J
can be found in Fig. 2(a). Later, the concept of hybrid time domains
and solutions (solution pairs) of hybrid systems of the form (1),
(2) will be used, which are defined for a general class of hybrid
systemswith inputs in the Appendix for convenience of the reader.
For more details on this hybrid modeling framework we refer the
reader to Cai and Teel (2009) and Goebel et al. (2012).

Remark 1. The general class of reset controllers in (1), (2)
encompasses two of the most well-known reset controllers in
the literature, i.e., the Clegg integrator (Clegg, 1958) and the
First-Order-Reset-Element (FORE) (Horowitz & Rosenbaum, 1975).
Indeed, these can be modeled as in (1) using

Clegg integrator : (Ar , Br , Cr) = (0, ωi, 1), (3)
FORE : (Ar , Br , Cr) = (β, ωi, 1), (4)

in which nr = 1, ωi ∈ R≥0 represents the integrator gain, and
β ∈ R denotes the single pole of the FORE, see, e.g., Zaccarian,
Nešić, and Teel (2005) and the references therein.

Let us adopt the following assumption on the reset controller (1),
(2).

Assumption 2. The pair (Ar , Cr) is detectable.
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Fig. 1. Schematic representation of a reset control scheme.

Fig. 2. (a) Schematic representation of the flow setF and jump set J. (b) Feedback
interconnection between an LTI dynamical system H as in (5) and R as in (1), (2).

Remark 3. Note that Assumption 2 is trivially satisfied for the
Clegg integrator and the FORE because they are both one-
dimensional systems (nr = 1) and Cr ≠ 0.

The closed-loop system in Fig. 1 can be written as a feedback
interconnection between an LTI dynamical systemH and the reset
controller R, as depicted in Fig. 2(b). In Fig. 2(b), the LTI dynamical
system H is given by

H :


ξ̇ = Aξ + Bu + Bww (a)
e = Cξ + Dww (b) (5)

with state ξ ∈ Rnξ containing the states of both the plant P (s) as
well as those of the nominal LTI controller C(s), and the external
inputs are denoted by w = [r d]⊤ ∈ R2. Moreover, it is assumed
that (A, B, C) is minimal such that

L{e} = Geu(s)L{u} + Gew(s)L{w}, (6)

in which the transfer function between ‘input’ u and ‘output’ e, see
Fig. 2(b), is given by

Geu(s) = C(sI − A)−1B =
P (s)C(s)

1 + P (s)C(s)
, (7)

and the transfer function between the external inputs w and e is
given by

Gew(s) = C(sI − A)−1Bw + Dw

=


1

1 + P (s)C(s)
−P (s)

1 + P (s)C(s)


. (8)

The closed-loop system in Fig. 2(b) with H as in (5), and R as in
(1), (2), can be written as the hybrid model

Σr :


ẋ = Āx + B̄w, if (e, −u) ∈ F , (a)

x+
= Ārx, if (e, −u) ∈ J, (b)

u = −C̄rx (c)
e = C̄x + Dww (d)

(9)

with augmented state vector x := [ξ⊤ x⊤
r ]

⊤
∈ Rnx , nx = nξ + nr ,

and

Ā =


A −BCr

BrC Ar


, B̄ =


Bw

BrDw


, Ār =


Inξ

0
0 0


,

C̄r =

0 Cr


, and C̄ =


C 0


. (9e)
2.2. Problem formulation

The objective of this paper is to derive sufficient conditions to
assess (input-to-state) stability of the hybrid system (9) with (2),
based on (measured) frequency response data of the linear part
Geu(jω), ω ∈ R, of the closed-loop system dynamics.

Definition 4. The closed-loop hybrid system Σr as in (9) with (2),
is said to be pre-input-to-state stable (pre-ISS), if there exist a
KL-function β and K-function γ such that for any solution pair
(x, w) to (9), (2) with w ∈ L∞ it holds that

∥x(t, j)∥ ≤ β(∥x(0, 0)∥, t) + γ (∥w∥∞) (10)

for all (t, j) ∈ dom x.

Remark 5. Our definition of pre-ISS differs from the definition
of ISS for hybrid systems as in Cai and Teel (2009). First, we
are primarily interested in the evolution of the state x over
continuous time t , and less in the number of ‘resets/jumps’ the
solution has experienced, see Cai and Teel (2009) and Goebel et al.
(2012). Second, in line with the notions of pre-attractivity and
pre-asymptotic stability in Goebel et al. (2012), we adopt here
pre-ISS (as opposed to ISS) to indicate the possibility of maximal
solutions not being complete (e.g., not having solutions with
domains that are unbounded in the t-direction). As argued in
Goebel et al. (2012, Sec. 3.1), allowing this phenomenon separates
conditions for completeness of solutions (having unbounded
hybrid time-domains), which is related to questions on global
existence of solutions (see Baños,Mulero, Barreiro &Davó, 2016 for
a recent study) from conditions for stability and ISS. In this paper,
existence and t-completeness of solutions are implicitly assumed.
For closed-loop reset control systems in which this is not satisfied,
a good solution is the inclusion of temporal regularization, see, e.g.,
Forni et al. (2011), Nešić et al. (2008) and Zaccarian et al. (2011),
in (1), (2) in which a positive minimal time is enforced between
two resets and existence and t-completeness will follow from pre-
ISS and will result in standard ISS. Including time regularization
is beyond the scope of the current paper and is a topic of future
work, which can be based on the new idea in this paper that
leads to novel frequency-domain conditions. Moreover, the fact
that any practical digital implementation of the proposed control
strategy employs sampling andholdmechanisms could also lead to
resolving the absence of t-completeness. This is further supported
by the experimental results presented in Section 4. In any case, the
results in this paper guarantee the property (10) for any t-complete
solution.

3. Frequency-domain tools for stability analysis

In this section, we present our main result in the form of a
theorem consisting of novel data-based conditions guaranteeing
pre-ISS for reset control systems described by (9) with (2).

Theorem 6. Consider the hybrid system Σr as in (9) with (2) and
fixed α ∈ (0, ∞), and let Assumption 2 hold. Then, Σr is pre-ISS
according to Definition 4 if the following conditions are satisfied:

(I) The system matrix A of (5) is Hurwitz;
(II) The transfer function Geu(s) as in (8) satisfies

1
α

+ Re( lim
ω→∞

Geu(jω)) > 0 (11)

and
1
α

+ Re(Geu(jω)) > 0 for all ω ∈ R. (12)
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Proof. The proof is based on constructing an ISS Lyapunov (ISSLF),
see Cai and Teel (2009), for the hybrid systemΣr , which is a smooth
function W : Rnx → R satisfying, for κi > 0, i = 1, 2, 3, 4, the
following conditions

κ1∥x∥2
≤ W (x) ≤ κ2∥x∥2 (13a)

Ẇ (x) ≤ −κ3∥x∥2
+ κ4∥w∥

2 when (e, −u) ∈ F (13b)

W (x+) ≤ W (x) when (e, −u) ∈ J. (13c)

We do this following four steps:

• Step 1:We disregard the internal dynamics ofR and exploit the
fact that the input/output pairs (e, −u) of R satisfy the sector
condition eu ≤ −

1
α
u2 by the grace of the form of F and J in

(2). Moreover, note that the hypothesis of the theorem implies
strict positive realness of the transfer function

G̃eu(s) := Geu(s) +
1
α

= C(sI − A)−1B +
1
α
. (14)

This knowledge will be combined with a circle criterion
reasoning to prove that the system (5) together with the sector
condition eu ≤ −

1
α
u2 admits an ISS Lyapunov function (ISSLF)

V : Rnξ → R, see Sontag and Wang (1995);
• Step 2: We show that the detectability condition in Assump-

tion 2 can be converted to a Lyapunov-like function Vr : Rnr →

R;
• Step 3: We show that the functions V of Step 1 and Vr of Step

2 can be combined into a function W : Rnx → R, and that we
satisfy condition (13b) during flow;

• Step 4: We show that the ISSLF constructed in Step 3 does
not increase during resets, thereby also satisfying the ISSLF
condition during jumps, i.e., (13c). This allows us to construct
a bound on the norm of the total state as in (10).

Step 1: Using the Kalman–Yakubovich–Popov lemma, see Khalil
(2000), under hypotheses (I) and (II) of the theoremandminimality
of (A, B, C) (and thus strict positive realness of (14)), there exist
matrices L, H , P = P⊤

≻ 0, and a positive constant ε such that

A⊤P + PA = −L⊤L − εP (15a)

PB = C⊤
−


2
α
L⊤ (15b)

H⊤H =
2
α
. (15c)

Let us take V (ξ) =
1
2ξ

⊤Pξ as a candidate ISSLF, satisfying

λmin(P)∥ξ∥
2

≤ V (ξ) ≤ λmax(P)∥ξ∥
2, (16)

in which λmin(P) and λmax(P) denote the minimum and the
maximum eigenvalue of P , respectively, and for which the time
derivative along solutions of (5) satisfies

V̇ =
1
2ξ

⊤(A⊤P + PA)ξ + ξ⊤PBu + ξ⊤PBww

(15)
= −

ε
2V −

1
2ξ

⊤L⊤Lξ + ξ⊤


C⊤

− L⊤


2
α


u + ξ⊤PBww

(5)(b)
= −

ε
2V −

1
2ξ

⊤L⊤Lξ −


2
α
ξ⊤L⊤u + eu

+

ξ⊤PBw − uDw


w

≤ −
ε
2V −

1
2ξ

⊤L⊤Lξ −


2
α
ξ⊤L⊤u −

1
α
u2

+

ξ⊤PBw − uDw


w

= −
ε
2V −

1
2


Lξ +


2
α
u
⊤ 

Lξ +


2
α
u


+

ξ⊤PBw − uDw


w

≤ −
ε
2V +


ξ⊤PBw − uDw


w (17)
in which we have used the sector condition, i.e., eu ≤ −
1
α
u2.

Moreover, note that
ξ⊤PBw − uDw


w

≤ λmax(P)∥Bw∥ ∥w∥ ∥ξ∥ + ∥Dw∥ ∥u∥ ∥w∥

≤ λmax(P)∥Bw∥ ∥w∥ ∥ξ∥ + α∥Dw∥ ∥Cξ + Dww∥ ∥w∥

≤ c1∥w∥ ∥ξ∥ + c2∥w∥
2

≤
1
δ1

∥ξ∥
2
+ (c21δ1 + c2)∥w∥

2, (18)

for any δ1 > 0, in which c1 := (λmax(P)∥Bw∥ + α∥Dw∥ ∥C∥) > 0
and c2 := α∥Dw∥

2 > 0. Note that we explicitly used ∥u∥ ≤ α∥e∥
and (5)(b) in the second inequality. Using (18) in (17) yields

V̇ ≤ −c3∥ξ∥
2
+ c4∥w∥

2 (19)

with c3 :=


ελmin(P)

2 −
1
δ1


and c4 := (c21δ1 + c2). Note that c3 and

c4 are both positive if δ1 is taken sufficiently large.
Step 2: Assumption 2 implies that there exists a matrix K such

that Ar + KCr is Hurwitz, see, e.g., Hespanha (2009). Consequently,
there exists a Pr = P⊤

r ≻ 0 such that the following Lyapunov
equality holds

(Ar + KCr)
⊤Pr + Pr(Ar + KCr) = −I. (20)

Let us take Vr(xr) = x⊤
r Prxr as a Lyapunov-like function for the

system (1) with input e during flow, satisfying for all xr ∈ Rnr

λmin(Pr)∥xr∥2
≤ Vr(xr) ≤ λmax(Pr)∥xr∥2. (21)

The time-derivative of Vr along the flow dynamics of R in (1)
satisfies

V̇r = x⊤

r


A⊤

r Pr + PrAr

xr + 2x⊤

r PrBre. (22)

Note that (20) implies

x⊤

r


A⊤

r Pr + PrAr

xr = −∥xr∥2

− 2x⊤

r C
⊤

r K⊤Prxr

= −∥xr∥2
+ 2u⊤K⊤Prxr

≤ −c5∥xr∥2
+ c6∥u∥2 (23)

with c5 := (1 −
1
δ2

) > 0, c6 := (2λmax(Pr)∥K∥)2δ2 > 0 for δ2 > 1.
Using (23) in (22) yields

V̇r ≤ −c5∥xr∥2
+ c6∥u∥2

+ 2x⊤

r PrBre

≤ −c7∥xr∥2
+ c6∥u∥2

+ c8∥e∥2 (24)

with c7 := (c5−
1
δ3

) > 0, c8 := (2λmax(Pr)∥Br∥)
2δ3 > 0 for δ3 > 0.

Using again ∥u∥ ≤ α∥e∥, this yields

V̇r ≤ −c7∥xr∥2
+ c9∥e∥2

(5)(b)
≤ −c7∥xr∥2

+ c10∥ξ∥
2
+ c11∥w∥

2 (25)

with c9 =: (α2c6 + c27δ3) > 0, c10 := c9(∥C∥
2

+
1
δ4

) > 0 and
c11 := c9(4δ4∥C∥

2
∥Dw∥

2
+ ∥Dw∥

2) > 0 for δ4 > 0.
Step 3: Let us construct the following candidate ISSLF

W (ξ , xr) = V (ξ) + µVr(xr) = x⊤Pwx, (26)

for some µ > 0 and Pw = diag(P, µPr), satisfying (13a) with
κ1 = λmin(Pw) and κ2 = λmax(Pw). The time-derivative ofW along
flow of (9), (2) satisfies

Ẇ = V̇ + µV̇r

≤ −(c3 − µc10)∥ξ∥
2
− µc7∥xr∥2

+ (c4 + µc11)∥w∥
2

≤ −κ3∥x∥2
+ κ4∥w∥

2 (27)

with κ3 := min((c3 − µc10), µc7), κ4 := c4 + µc11, and for
sufficiently small µ such that (c3 − µc10) > 0. Hence, W satisfies
(13b).
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Fig. 3. Schematic representation of a reset control scheme.

Step 4: Due to (1) the functionW constructed in Step 3 satisfies

W (ξ+, 0) ≤ W (ξ , xr) (28)

during jumps of (9), (2). Consequently, for a solution pair (x, w) to
(9), (2), with input disturbancew ∈ L∞, we obtain from (13a), (27)
and (28), and using similar arguments as in Cai and Teel (2009) and
Sontag and Wang (1995), for (t, j) ∈ dom x that

Ẇ ≤ −σ1W when ∥x∥ ≥ σ2∥w∥ (29)

withσ1 :=
κ3
2κ2

andσ2 :=


2κ4
κ3

. Consequently, for all (t, j) ∈ dom x
we have

∥x(t, j)∥ ≤


κ2
κ1
e−

σ1
2 t

∥x(0, 0)∥ +


κ2
κ1

σ2∥w∥∞. (30)

The latter inequality shows that the system (9), (2) is pre-ISS
according to Definition 4. This completes the proof. �

Remark 7. Considering the conditions in Theorem6, the following
remarks are in order:

(1) Condition (I) will be satisfied by the design of a stabilizing
feedback controller C(s), i.e., an LTI controller designed to
stabilize the LTI plant P (s). This is due to the fact that if the
open-loop P (s)C(s) satisfies the Nyquist stability criterion,
see, e.g., Skogestad and Postlethwaite (2005), Geu(s) as in (8)
(which represents the complementary sensitivity function) has
all its poles located in the complex left half plane (LHP) and the
system matrix A of (5) will be Hurwitz (under minimality);

(2) For many (motion) systems Geu(jω) → 0 for |ω| → ∞,
resulting in condition (11) being satisfied automatically;

(3) The frequency-domain circle-criterion condition (12) can be
verified graphically in a Nyquist diagram using (measured)
frequency response data. We care to stress that this represents
the power of the conditions in Theorem 6 in terms of practical
applicability, which will be illustrated using an industrial case
study in Section 4.

Note that under the hypothesis of the theorem, the closed-loop
reset control system is pre-ISS and the values of (Ar , Br , Cr) as in
(1) will only affect the performance.

Remark 8. Note that our conditions are not limited to control
configurations as depicted in Fig. 1. Consider, for instance, the
configuration as in Fig. 3, which is commonly used in the literature,
see, e.g., Aangenent et al. (2010), Beker et al. (2004), Nešić et al.
(2008) and Zaccarian et al. (2011). In such a case, the conditions of
Theorem 6 still apply for Geu(s) = P (s)C(s).

4. Case-study on an industrial piezo-actuated motion system

In this section, we demonstrate the effectiveness of our newly
proposed stability conditions by considering an industrial case
study of the control of the z-axis of a piezo-actuatedmotion system
that is used in the lithography industry.

4.1. Problem setting

During the process of wafer scanning, light from an (extreme)
ultra-violate source travels through an optical path, see, e.g., Butler
Fig. 4. Measured frequency response function of the lens system in z-direction.

(2011). This optical path includes a reticle, containing a blueprint
of the integrated circuits to be processed, and a lens system. The
lens system consists of several lens elements that are individually
controlled by piezo actuators during the scanning process. Due to
the limited stroke of the piezo actuators, a calibration, or so-called
‘shuffle motion’, needs to be performed whenever stroke limita-
tions occur (whichmay happenmore than once during a full wafer
exposure). The duration of such a shuffle motion should be kept
as small as possible because it compromises machine throughput,
i.e., the amount of wafers that can be processed per unit of time
is decreased because the scanning process is interrupted during
a shuffle motion. Moreover, also from a control point-of-view the
occurrence of a shuffle motion poses potential problems. Namely,
during a shuffle motion the piezo-actuated system operates in an
open-loop mode such that after the shuffle, i.e., when closing the
loop again, the motion system (which then operates in scanning
mode) suffers from an initial value problem. This problembecomes
evenmorepronounced in viewof the disturbance rejectionproper-
ties required during scanningmode, forwhich a proportional (dou-
ble) integral controller (PI2D), i.e., a controllerwith two integrators,
is preferred over PID controlwith one integrator,while (additional)
integral action deteriorates the transient performance to errors in-
duced by the shuffle motion.

4.2. Controller design

In this section, we will design a reset controller of the form
(1), (2), which consists of an LTI controller with integral action
combined with an additional Clegg integrator. The motivation for
such a reset controller stems from the problem setting, i.e., due
to the double integral action it is expected that good disturbance
attenuation properties are maintained during a scanning motion,
while the transient behavior is expected to be improved compared
to a PI2D controller because one of the two integrators is allowed to
reset its buffer. In order to compare the obtained results, also two
LTI controllers are designed, namely, a PID and a PI2D controller. All
three controllers can be implemented in the control architecture
as in Fig. 1, while the design process (of all three considered
controllers) will be entirely based onmeasured frequency-domain
data. Herewewant to emphasize that the newperspective on reset
control systems as presented in this paper allows for such favorable
design properties for reset controllers.

Consider Fig. 4,which depicts themeasured frequency response
function (FRF) of the plant P (jω), ω ∈ R. Based on this plant
FRF, the nominal controller C(s), s ∈ C, of Fig. 1 is designed
using classical loop-shaping techniques, see, e.g., Skogestad and
Postlethwaite (2005) and Steinbuch and Norg (1998), and is given
by
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Fig. 5. Nyquist diagram of Geu(jω) showing that the circle criterion condition
Re(Geu(jω)) > −

1
α
, is met for all ω ∈ R with α = 2.17.

C(s) = Cpid(s)Cn,1(s)Cn,2(s)Clp(s), (31)

which consists of a series connection of a PID controllerCpid(s), two
notch filters Cn,i(s), i = 1, 2, and a second-order low-pass filter
Clp(s). We consider the following three controllers:
(1) An LTI PID-type controllerCPID(s) := C(s), withC(s) as in (31).

This results in the control architecture as in Fig. 1 in which R
is absent;

(2) An LTI PI2D-type controller CPI2D(s) := Ci(s)C(s), with C(s) as
in (31) designed in series with an additional lag filter

Ci(s) =
s + ωi

s
=

ωi

s
+ 1, (32)

in which ωi ∈ R>0 denotes the integrator cut-off frequency.
This results in the control architecture as in Fig. 1 in which
R =

ωi
s (and thus represents an LTI integrator without any

reset action);
(3) A reset controller CR . In its basis, this controller is similar to

the CPI2D(s) controller (thus with the same ωi ∈ R>0 and
C(s) as in (31)), with the essential difference that R is not
LTI but represents a Clegg integrator. This yields the control
architecture as in Fig. 1 with R given by (1), (2), in which α ∈

(0, ∞) is yet to be determined and (Ar , Br , Cr) = (0, ωi, 1),
see, e.g., (3).

Closed-loop stability using both LTI controllers, i.e., the CPID(s)
and CPI2D(s) controller, can be verified using standard linear
arguments, e.g., using the Nyquist stability criterion, see Skogestad
and Postlethwaite (2005). Here, we will only discuss how our
newly proposed conditions in Theorem 6 can help in assessing
closed-loop stability for the controller CR . These conditions are
verified as follows: the satisfaction of Assumption 2 is rather
trivial, since the Clegg integrator is a one-dimensional system.
Condition (I) will be satisfied by design of a stabilizing feedback
controller C(s) as in (31), see also Remark 7. The first requirement
of condition (II), i.e., (11), is satisfied as Geu(jω) → 0 for ω →

∞. Finally, the circle criterion condition (12), which is verified by
means of the Nyquist diagramofGeu(jω) in Fig. 5. This figure shows
that Re(Geu(jω)) > −

1
α
, for α ∈ (0, 2.17] is met for all ω ∈ R. In

the remainder of this case study, we take α = 2.17 resulting that
the input/output pair (e, −u) of R as in (1), (2) is confined to the
sector [0, 2.17].

4.3. Experimental verification

In this section, we present experimental results in the form of
themoving average (MA) filtered error response,2 which is defined

2 The use of MA filtered error responses is common practice in the lithography
industry, see, e.g., Butler (2011). Note, however, that the actual time instances of
resets are not immediately detectable from these filtered error responses.
Fig. 6. Moving average (MA) filtered error responses during a scanning motion
under different controller configurations. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Moving average (MA) filtered error responses during a shufflemotion under
different controller configurations.

as

MA :=
1
Te

 Te
2

−
Te
2

e(t)dt, (33)

in which Te represents the exposure time, and e(t) represents the
position error of the z-axis as a function of time t .

Consider Figs. 6 and 7 in which the measurement results are
depicted during scanning motion and shuffle motion, respectively.
Both figures show theMA filtered error responses for four different
controller configurations, namely: CPID(s), CPI2D(s), and CR with
α ∈ {2.17, ∞}. Fig. 8 depicts the control signals for the
four controller configurations after a shuffle motion. This figure
demonstrates the ability of the reset integrators to reset their
buffer whenever eu ≥ −

1
α
u2, thereby allowing to enhance the

transient performance. Moreover, note that for the considered
trajectories the reset times are indeed far apart and Zeno behavior
is not appearing. Hence, the pre-ISS results indeed apply to these
t-complete solutions (see also Remark 5).

Let us now focus on the resulting error responses using both
linear controllers. During scanning motion CPI2D(s) clearly shows
favorable disturbance rejection properties as the resulting MA
filtered error response is much smaller during the evaluation
window (this window is directly linked to the exposure of one
exposure area on the wafer (Butler, 2011), and is indicated by
the yellow surface in Fig. 6). However, during a shuffle motion,
the CPI2D(s) controller induces significantly more overshoot and a
larger settling time compared to the CPID(s) controller, as depicted
in Fig. 7.

These results are typical for one of the most well-known
linear control design trade-offs, i.e., adding integral action to
a feedback control system improves the disturbance rejection
properties at a cost of a decrease in transient performance (in
terms of an increase in overshoot and settling time), see, e.g.,
Seron, Braslavsky, andGoodwin (1997). By consideringCR instead,
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Fig. 8. Control signals after a shuffle motion under different controller
configurations.

and hence, allowing one of the integrators to reset its buffer (see
Fig. 8) whenever eu ≥ −

1
α
u2, we aim to achieve ‘the best of

both worlds’, i.e., maintaining the disturbance rejection properties
associated with a double integrator, while the transient response
is comparable to a controller with a single integrator. Consider
therefore again Figs. 6 and 7. These figures reveal that CR with
α = ∞ results in comparable disturbance rejection properties as
CPI2D(s), while its overshoot and settling behavior is much better.
However, closed-loop stability is only guaranteed for all α ∈

(0, 2.17], based on the sufficient conditions in Theorem 6. So let us
focus on theMA filtered error responses ofCR withα = 2.17. Fig. 7
shows that the overshoot and settling is comparable to CR with
α = ∞, but its disturbance rejection properties are worse. This
can be explained by the fact that a smaller value ofα typically leads
to the reset controller resetting its buffer sooner, see Fig. 8, while
this buffer (integral action) is actually necessary to suppress the
effect of the disturbance. Nevertheless, the disturbance rejection
properties are still considerably better compared to the CPID(s)
controller, while the control signals of both reset controllers show
that the time between two consecutive resets is larger than the
sampling time of 2 · 10−4 s and no Zeno event occurs.

5. Conclusions

In this paper, we presented novel conditions for the stability
of reset control systems that can be verified based on (measured)
frequency response data of the linear part of the closed-loop
system. As the stability conditions are based on easy-to-obtain
frequency response data, and hence, without the necessity of an
(accurate) parametric systemmodel and numerically solving LMIs,
they interface well with the current industrial (motion) control
design practice. We illustrated this also via experimental results
on an industrial piezo-actuatedmotion system. As such, these new
results may contribute to the (further) industrial acceptance of
reset controllers, which in itself provide great opportunities in
increasing the performance of many linear (motion) systems.

Appendix. Hybrid system notation

According toGoebel et al. (2012), solutions of (9), (2) are defined
on hybrid time domains. A compact hybrid time domain is a set
E =

J−1
j=0 [tj, tj+1] × {j} ⊂ R≥0 × N with J ∈ N>0 and 0 = t0 ≤

t1 ≤ · · · ≤ tJ . A hybrid time domain is a set E ⊂ R≥0 × N such
that E ∩ ([0, T ] × {0, 1, . . . , J}) is a compact hybrid time domain
for each (T , J) ∈ E. A hybrid signal is a function defined on a hybrid
time domain. A hybrid signalw : domw → Rnw is a hybrid input if
w(·, j) is Lebesgue measurable and locally essentially bounded for
each j. We write for a hybrid input signal thatw ∈ L∞ if ∥w∥∞ :=

ess sup(t,j)∈domw ∥w(t, j)∥ < ∞. A hybrid signal x : dom x → Rnx

is a hybrid arc if x(·, j) is locally absolutely continuous for each j.
A hybrid arc x : dom x → Rnx and a hybrid inputw : domw →

Rnw form a solution pair (x, w) to (9), (2) if dom x = domw,
(e(0, 0), −u(0, 0)) ∈ F ∪ J, and
(1) for all j ∈ N and almost all (t, j) ∈ dom x

ẋ(t, j) = Āx(t, j) + B̄w(t, j), and (x(t, j), w(t, j)) ∈ F̃

(2) for all (t, j) ∈ dom x such that (t, j + 1) ∈ dom x

x(t, j + 1) = Ārx(t, j), and (x(t, j), w(t, j)) ∈ J̃

with F̃ := {(x, w) ∈ Rnx ×Rnw | (e, −u) ∈ F } and J̃ := {(x, w) ∈

Rnx × Rnw | (e, −u) ∈ J}.
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