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a b s t r a c t

This paper proposes a model order reduction technique for asymptotically stable linear time delay
systems with point-wise delays. The presented delay-dependent approach, which can be regarded as an
extension of existing balancing model order reduction techniques for linear delay-free systems, is based
on energy functionals that characterize observability and controllability properties of the time delay
system. The reduced model obtained by this approach is an asymptotically stable time delay system
of the same type as the original model, meaning that the approach is both stability- and structure-
preserving. It also provides an a priori bound on the reduction error, serving as a measure of the
reduction accuracy. The effectiveness of the proposed method is illustrated by numerical simulations.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Engineering systems such as drilling systems, traffic systems
and electric circuits, as well as phenomena in economics and
biology, can often be described by models in terms of delay
differential equations (Erneux, 2009; Kolmanovskii & Myshkis,
1992). For complex engineering systems, however, such models
might be of high order, i.e., described in terms of a high number
of state variables, which complicates analysis and may prohibit
the design of controllers. For instance, robust control techniques
in, e.g., Gumussoy and Michiels (2011) can be applied effectively
only to low-order delay systems. To address these issues of model
complexity, this paper presents a method for model reduction of
linear time delay systems.

For the problem of model order reduction of systems in terms
of ordinary differential equations, many techniques, such as bal-
anced truncation (Moore, 1981), have been proposed over the
past four decades (for an overview, see Antoulas, 2005). Model or-
der reduction techniques for systems in terms of delay-differential

✩ This research has been carried out in the HYDRA project, which has received
funding from the European Union’s Horizon 2020 research and innovation
program under grant agreement No 675731. The material in this paper was
not presented at any conference. This paper was recommended for publication
in revised form by Associate Editor Zhiyong Chen under the direction of Editor
Richard Middleton.

∗ Corresponding author.
E-mail addresses: s.naderilordejani@tue.nl (S. Naderi Lordejani),

b.besselink@rug.nl (B. Besselink), antoine.chaillet@centralesupelec.fr
(A. Chaillet), n.v.d.wouw@tue.nl (N. van de Wouw).

equations have also been considered, mainly by extending those
of delay-free systems. We may split these into two main cate-
gories: 1) methods approximating the time delay system by a
low-order finite-dimensional model, and 2) structure-preserving
methods that preserve the infinite-dimensional nature of the
delay system. The majority of the existing methods are of the first
category, as analysis and design based on a finite-dimensional
model enables the use of classical well-developed techniques
(e.g., for controller design). The Padé approximation has probably
been the most popular method for finite-dimensional approxima-
tion of delay systems (Lam, 1993). After a Padé approximation,
the resulting finite-dimensional model can be further reduced
using conventional model order reduction methods. In Michiels,
Jarlebring, and Meerbergen (2011), such a finite-dimensional
approximation is obtained by performing a spectral discretiza-
tion and using Krylov subspace projection. Methods based on
series expansions (Glover, Curtain, & Partington, 1988; Makila &
Partington, 1999), including the Padé approximation as a special
case, and formulating the model reduction problem as a H∞- or
H2-norm optimization problem (Duff, Vuillemin, Poussot-Vassal,
Seren, & Briat, 2015; Xu, Lam, Huang, & Yang, 2001) are other
examples from the first category.

In this paper, we are interested in infinite-dimensional, but
low-order, model approximations, because for a given order of
the reduced model, a reduced model in terms of delay differential
equations has in general the potential to be more accurate than
a finite-dimensional approximation of the same order (van de
Wouw, Michiels, & Besselink, 2015). Moreover, the preservation
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of the delay nature enables the preservation of some other desir-
able properties of the model such as stability (Gu, Kharitonov, &
Chen, 2003; Richard, 2003). As another example, wave propaga-
tion effects (Aarsnes & van de Wouw, 2018) can often be captured
through delays that should be preserved in a low-complexity
model. In addition, powerful analysis and controller design tech-
niques are available today for time delay systems, e.g., Michiels
and Niculescu (2014).

We can further divide structure-(i.e. delay-)preserving reduc-
tion methods into two major groups. Firstly, methods exist that
preserve the model structure, but not necessarily stability prop-
erties of the high-order model. As a result, these methods usually
lack a measure on their accuracy, e.g., an error bound. Among
these are position balancing (Jarlebring, Damm, & Michiels, 2013)
and methods that are developed based on series expansions and
Krylov subspace projection, such as Laguerre expansion (Wang,
Jiang, & Kong, 2016) and Laurent series expansion, where the
latter is closely related to moment matching for time delay sys-
tems (Scarciotti & Astolfi, 2016). The second group of methods,
in which the contribution of the current paper also belongs, not
only preserves the model structure, but also preserves stabil-
ity properties and provides computable and guaranteed error
bounds. The method proposed in Xu et al. (2001) is one such
method. However, it is a delay-independent approach applicable
to a limited class of systems. Moreover, it can lead to conservative
model approximations for decreasing delays. A delay-dependent
variant of this method can be found in Lam, Gao, and Wang
(2005). In practice, the applicability of the methods in Lam et al.
(2005) and Xu et al. (2001) is however limited to delay systems
of low order, as the reduction procedure relies on the solution of
sets of non-convex matrix inequalities. The method proposed in
van de Wouw et al. (2015) provides an alternative perspective by
decomposing the delay system into a feedback interconnection of
a high-order delay-free subsystem and a low-dimensional delay-
dependent operator, and employing a conventional model order
reduction method to reduce the system by reducing only the
delay-free subsystem. This method generally leads to conserva-
tive results (especially for increasing delays), as it relies on the
satisfaction of a small-gain condition. Moreover, it is effective if
the delay effects are local, in the sense that the delay only affects
a lower-dimensional part of the state-variables in the right-hand
side of the delay differential equation. The proposed method in
the current paper is not limited by such restrictions.

In this paper, inspired by balanced truncation for finite-
dimensional systems, we define energy functionals that provide a
measure of observability and controllability of delay
systems. However, the exact computation and characterization
of these functionals is challenging, motivating the definition of
computable delay-dependent functionals which, as a contribution
of this paper, are shown to bound the energy functionals. The
delay dependency of these bounds, which are in the form of
Lyapunov–Krasovskii functionals (Fridman, 2014), makes these
tighter than delay-independent variants. Characterized by the so-
lution to matrix inequalities, these quadratic bounds are used to
perform a balancing transformation to sort the state components
of the delay system according to their relative importance from
an input–output perspective.

The main contribution of this work is the development of a
delay-dependent model reduction method for time delay sys-
tems, endowed by taking into account the size of the delay during
the balancing procedure, as an extension to preliminary delay-
independent results in Besselink, Chaillet, and van de Wouw
(2017). The main benefits of this delay-dependent extension are
to, first, enlarge the class of time delay systems that can be
reduced and, second, to reduce the typically large conservatism
of the delay-independent results for small delays, without sacri-
ficing the performance for large delays. We will prove that the

presented model order reduction method preserves both asymp-
totic stability and the infinite-dimensional nature of the time
delay system while also providing an a priori computable, delay-
dependent error bound. This error bound represents a measure of
the accuracy of the model approximation, and it can be used in,
e.g., robustness analyses and design of robust controllers.

Outline. After introducing notation, a problem statement is given
in Section 2, whereas Section 3 introduces and characterizes
the observability and controllability energy functionals. Section 4
is devoted to the description of the proposed delay-dependent
model order reduction procedure. A numerical example is pre-
sented in Section 5 and conclusions are presented in Section 6.

Notation. Throughout the paper, R and C refer to the fields of
real and complex numbers, respectively. The Euclidean norm of
a vector x ∈ Rn is denoted by |x| =

√
xT x. The space of all

functions x : [a, b] → Rn with bounded norm ∥x∥2
2 =

∫ b
a |x(t)|2 dt

is denoted by L2([a, b],Rn), whereas L∞([a, b],Rn) indicates the
space of all bounded piecewise continuous functions mapping
[a, b] into Rn. The notation Cn = C([−τ , 0],Rn) refers to the
Banach space of absolutely continuous functions that map the
interval [−τ , 0] into Rn. Moreover, Wn = W([−τ , 0],Rn) refers to
the space of functions ϕ ∈ Cn with square-integrable derivative,
i.e., ϕ̇ ∈ L2([−τ , 0],Rn) for ϕ ∈ Wn (Kolmanovskii & Myshkis,
1992). A block-diagonal matrix with A1, . . . , Am on the diagonal
is represented as blkdiag{A1, . . . , Am}, and Im denotes the m ×

m identity matrix. The transpose and conjugate transpose of a
matrix A are denoted by AT and AH , respectively. Finally, a star
∗ in a symmetric matrix represents a symmetric term.

2. Problem statement

Consider a time delay system Ω with point-wise delay in the
state variables as

Ω :

⎧⎨⎩
ẋ(t) = Ax(t) + Adx(t − τ ) + Bu(t),
y(t) = Cx(t) + Cdx(t − τ ) + Du(t),
x0 = ϕ,

(1)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp are the state vector,
input and output, respectively, and τ denotes a constant time
delay. We assume there exists a constant τ̄ > 0 such that for
each τ ∈ [0, τ̄ ], the system is asymptotically stable for zero input.
For t ∈ R, the function segment xt : [−τ , 0] → Rn denotes
the state of Ω at the time instance t with xt (θ ) = x(t + θ )
for θ ∈ [−τ , 0]. The initial condition is given by ϕ, such that
x(t) = ϕ(t), t ∈ [−τ , 0].

The objective is to find a reduced-order model Ω̂ that closely
approximates the input–output behaviour of Ω . We emphasize
that due to the fact that the state belongs to Cn, the systemΩ has
an infinite-dimensional nature in addition to the finite number
of dynamical equations describing it. In this paper, model order
reduction is accomplished with regard only to the latter aspect,
i.e., by reducing the number of the dynamical equations of Ω . In
particular, Ω̂ should have the following characteristics:

• k < n, with k the order of the reduced-order model Ω̂;
• the infinite-dimensional nature of Ω is preserved in Ω̂ ,

i.e. Ω̂ is also a time delay system;
• for each τ ∈ [0, τ̄ ], the reduced-order model Ω̂ is asymp-

totically stable in the absence of input (u = 0);
• the error norm |y(t) − ŷ(t)|, with ŷ(t) as the output of Ω̂ ,

is small in some sense, and the corresponding error system
satisfies an a priori computable error bound;

• the approximation procedure entails solving only algebraic
equations.
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3. Characterization of observability and controllability
functionals

In this section, we introduce observability and controllabil-
ity energy functionals for the time delay system (1), and then
provide computable functionals that upper/lower bound those
energy functionals. These energy functionals give some measure
of observability and controllability of the system and their bounds
are used for the purpose of model order reduction by truncation.

Before presenting the results of this section, we present a
technical lemma (see, e.g., Curtain & Zwart, 1995).

Lemma 1. Consider a system of the form (1). If xt0 ∈ Wn for t0 ∈ R
and u ∈ L∞([t0, t1],Rm) for t1 ≥ t0, then xt ∈ Wn for t ∈ [t0, t1].

3.1. Observability functional

The observability energy functional of a system characterizes
the output energy of that system for a non-zero initial condition
and zero input. A formal definition is given below (Besselink et al.,
2017).

Definition 1. The observability functional of the system (1) is the
functional Lo : Cn → R defined as

Lo(ϕ) =

∫
∞

0
|y(t)|2dt, (2)

where y(·) is the output of the system (1) for the initial condition
x0 = ϕ and zero input.

We note that the existence of the observability functional in
(2) is guaranteed by asymptotic stability of the system Ω for
u = 0. Computing the observability functional of this system is,
however, challenging, if not impossible in general. This motivates
the next lemma, that provides a computable delay-dependent
functional shown to upper-bound the observability functional
of Ω .

Lemma 2. Consider the asymptotically stable system (1). If there
exist symmetric matrices Q > 0, Qa ≥ 0, and a scalar αo > 0 such
that

Mo =

⎡⎢⎣ N11 QAd + αoQ CT τATQ
∗ −αoQ − Qa CT

d τAT
dQ

∗ ∗ −Ip 0
∗ ∗ ∗ −α−1

o Q

⎤⎥⎦ ≤ 0, (3)

with N11 = QA + ATQ − αoQ + Qa, then the functional Eo : Wn ×

L2([−τ , 0],Rn) → R defined as

Eo(ϕ, ϕ̇) = E1
o (ϕ) + E2

o (ϕ̇), (4)

with

E1
o (ϕ) = ϕ(0)TQϕ(0) +

∫ 0

−τ

ϕT (s)Qaϕ(s) ds, (5a)

E2
o (ϕ̇) = αoτ

∫ 0

−τ

∫ 0

θ

ϕ̇T (s)Q ϕ̇(s) dsdθ, (5b)

satisfies

Eo(ϕ, ϕ̇) ≥ Lo(ϕ), (6)

for all ϕ ∈ Wn and with Lo as in Definition 1.

Proof. Since ϕ ∈ Wn and u(t) = 0, xt ∈ Wn for all t ≥ 0, due to
Lemma 1. Consequently Eo(xt , ẋt ) is well-defined for each t ≥ 0.
We can compute an upper bound for its time-derivative along the

trajectories of the system (1) for u(t) = 0, t ≥ 0. For E1
o (xt ) from

(5a), we have

Ė1
o (xt ) = ẋT(t)Qx(t) + xT(t)Q ẋ(t) + xT(t)Qax(t)

−xT (t − τ )Qax(t − τ ) =: ξ To (t)N1ξo(t),
(7)

where ξ To (t) := [ xT (t) xT (t − τ ) ] and

N1 =

[
QA + ATQ + Qa QAd

∗ −Qa

]
. (8)

Next, we compute an upper bound for the time-derivative of
E2
o (ẋt ) in (5b) in terms of ξo. From (5b) and the use of the Leibniz

integration rule, we obtain

Ė2
o (ẋt ) = αoτ

∫ 0

−τ

ẋT (t)Q ẋ(t) dθ

− αoτ

∫ 0

−τ

ẋT (t + θ )Q ẋ(t + θ ) dθ

=αoτ
2ẋT (t)Q ẋ(t) −αoτ

∫ 0

−τ

ẋT (t + θ )Q ẋ(t + θ ) dθ.

(9)

Now, we use Jensen’s inequality (Gu, 2000) and the Newton–
Leibniz formula to bound the second term in the right-hand side
of (9), resulting in

−αoτ

∫ t

t−τ
ẋT (s)Q ẋ(s) ds (10a)

≤ −αo

(∫ t

t−τ
ẋT (s) ds

)
Q
(∫ t

t−τ
ẋ(s) ds

)
(10b)

= −αo(x(t) − x(t − τ ))TQ (x(t) − x(t − τ )) (10c)

=: ξ To (t)N2ξo(t), (10d)

where

N2 = αo

[
−Q Q
∗ −Q

]
. (11)

Substituting ẋ(t) from (1), for u = 0, into the first term in the
right-hand side of (9) yields, for K = τ [A Ad],

αoτ
2ẋT (t)Q ẋ(t) =: αoξ

T
o (t)K

TQKξo(t). (12)

The summation of the relations (7), (10d) and (12) leads to an up-
per bound on the time-derivative of Eo(xt , ẋt ) along the solution
of (1) for u = 0 as

Ėo(xt , ẋt ) ≤ ξ To (t)

(
2∑

i=1

Ni + αoK TQK

)
ξo(t). (13)

Considering that |y(t)|2 = |[ C Cd ]ξo|
2, see (1) with u = 0, one

concludes that if
2∑

i=1

Ni + αoK TQK +

[
CT

CT
d

] [
C Cd

]
≤ 0, (14)

then Ėo(xt , ẋt ) ≤ −|y(t)|2. Integration of both sides of this in-
equality over the interval [0, T ] leads to

Eo(xT , ẋT ) − Eo(x0, ẋ0) ≤ −

∫ T

0
|y(t)|2dt. (15)

In this case, recalling the asymptotic stability of the system for
u = 0, that implies that limT→∞ Eo(xT , ẋT ) = 0, and also the fact
that x0 = ϕ, one obtains

Eo(ϕ, ϕ̇) ≥ Lo(ϕ), (16)

as follows from (15) for T → ∞ and Definition 1.
It thus remains to be shown that (3) implies (14). However,

using Schur complements, (3) and (14) can be observed to be
equivalent. This completes the proof. □
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3.2. Controllability functional

A controllability functional characterizes the minimum input
energy required by a system, of the form (1), to reach from
the zero-state to a final state ϕ. A formal definition is provided
below (Besselink et al., 2017).

Definition 2. The controllability functional of the system (1) is
the functional Lc : Dn → R defined as

Lc(ϕ)= inf
u

{∫ 0

−∞

|u(t)|2 dt

⏐⏐⏐⏐⏐u∈ L2 ∩ L∞

(
(−∞, 0],Rm ),

lim
T→∞

x−T = 0, x0 = ϕ

}
,

(17)

where xt is the solution of (1) for u(·) that satisfies the above and
Dn ⊂ Cn is the domain of Lc , that is the space of function segments
ϕ for which Lc is well-defined.

Remark 1. We note that this definition is stated regardless of the
stability properties of the system.

The following lemma provides a computable lower-bound on
the controllability energy functional.

Lemma 3. Consider the system (1). If there exist symmetric matrices
P > 0, Pa ≥ 0, and a scalar αc > 0 such that

Mc =

⎡⎢⎣ M11 AdP + αcP B τPAT

∗ −αcP − Pa 0 τPAT
d

∗ ∗ −Im τBT

∗ ∗ ∗ −α−1
c P

⎤⎥⎦ ≤ 0, (18)

with M11 = AP + PAT
− αcP + Pa, then the functional Ec : Wn ×

L2([−τ , 0],Rn) → R defined as

Ec(ϕ, ϕ̇) = E1
c (ϕ) + E2

c (ϕ̇), (19)

with

E1
c (ϕ) = ϕT (0)Rϕ(0) +

∫ 0

−τ

ϕT (s)Raϕ(s) ds, (20a)

E2
c (ϕ̇) = αcτ

∫ 0

−τ

∫ 0

θ

ϕ̇T (s)Rϕ̇(s) dsdθ, (20b)

R = P−1 and Ra = P−1PaP−1, satisfies

Ec(ϕ, ϕ̇) ≤ Lc(ϕ), (21)

for all ϕ ∈ Dn ∩ Wn and Lc as in Definition 2.

Proof. We first compute the time-derivative of Ec(xt , ẋt ) along
the trajectory of the system (1) for an initial condition belonging
to Wn and bounded piecewise continuous input u(·), such that
Ec(xt , ẋt ) is well-defined due to Lemma 1. For the first component
E1
c (xt ) = xT (t)Rx(t) +

∫ t
t−τ x

T (s)Rax(s) ds, we obtain

Ė1
c (xt ) =: ξ Tc (t)M1ξc(t), (22)

where ξ Tc (t) := [xT (t) xT (t − τ ) uT (t)] and

M1 =

⎡⎣ RA + ATR + Ra RAd RB
∗ −Ra 0
∗ ∗ 0

⎤⎦ .
Next, we consider E2

c (ẋt ) in (20b). Noting that E2
c (ẋt ) = αcτ∫ 0

−τ

∫ t
t+θ ẋ

T (s)Rẋ(s) dsdθ , we obtain

Ė2
c (ẋt )=αcτ

2ẋT(t)Rẋ(t) − αcτ

∫ 0

−τ

ẋT(t + θ )Rẋ(t + θ ) dθ, (23)

where the Leibniz integral rule is employed. Now, we aim to
bound the right-hand side of (23) by some function in terms of
ξc(t). To this end, note that

− αcτ

∫ 0

−τ

ẋT (t + θ )Rẋ(t + θ ) dθ ≤ ξ Tc (t)M2ξc(t), (24)

where a change of the integration variable and Jensen’s inequality
have been used. Moreover, M2 is given by

M2 = blkdiag
{
αc

[
−R R
∗ −R

]
, 0
}
.

Now, substituting ẋ(t) from (1) into the first term on the right-
hand side of (23) yields

αcτ
2ẋT (t)Rẋ(t) =: αcξ

T
c (t)L

TRLξc(t), (25)

where L = τ [ A Ad B ]. Then, the summation of the results in
(22), (24) and (25) gives an upper bound for the time-derivative
of Ec along the trajectories of (1). After adding and subtracting
|u(t)|2, we obtain

Ėc(xt , ẋt ) ≤ ξ Tc (t)

(
3∑

i=1

Mi + αcLTRL

)
ξc(t) + |u(t)|2, (26)

where M3 = blkdiag{0, 0,−Im}. Assume that
3∑

i=1

Mi + αcLTRL ≤ 0, (27)

such that Ėc(xt , ẋt ) ≤ |u(t)|2 along trajectories of (1). In this case,
integration of (26) over [−T , 0] yields

E(x0, ẋ0) − E(x−T , ẋ−T ) ≤

∫ 0

−T
|u(t)|2 dt, (28)

for any u(·) with the aforementioned properties. Now, consider
any such input that, additionally, belongs to L2((−∞, 0],Rm)
such that the corresponding solution of (1) satisfies x0 = ϕ ∈ Wn
and also limT→∞ Ec (x−T , ẋ−T ) = 0. Then, we obtain

Ec(ϕ, ϕ̇) ≤

∫ 0

−∞

|u(t)|2 dt, (29)

such that the result (21) holds as a consequence of Definition 2.
To complete the proof, it remains to be shown that the sat-

isfaction of (18) is equivalent to the satisfaction of (27). To this
end, we define R := P−1, Ra := P−1PaP−1. It is observed that
pre- and post-multiplication of (18) by blkdiag{R, R, Im, R} and the
application of Schur complements to the results lead to (27). □

Remark 2. As the solutions to the matrix inequalities in (3)
and (18) are not unique, we may solve those in the presence
of appropriate cost functions to form optimization problems in-
volving matrix inequalities. In this way, the solution space of
these inequalities can be limited to solutions more suitable for
model reduction. In this paper, we choose the cost functions
to be Jc = trace(P) and Jo = trace(Q ), which is a heuristic
to obtain tight bounds on the observability and controllability
functionals (Sandberg, 2010).

Remark 3. The matrix inequalities in (3) and (18) are similar
to delay-dependent linear matrix inequalities (LMIs) represent-
ing sufficient conditions for asymptotic stability of time delay
systems of the form (1) (see, e.g., Fridman, 2014, Section 3.6.2).
Similar to LMI conditions for stability, inequalities in (3) and (18)
suffer from some degree of conservatism. In general, the feasibil-
ity of those stability LMIs guarantees the existence of solutions
to the inequalities (3) and (18). Moreover, we can show that
for sufficiently small values of τ , these inequalities are always
solvable.
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Before closing this section, we give the following remark.

Remark 4. The delay-independent results of Besselink et al.
(2017) can be considered as a special case of the results of the
current paper. In particular, by considering αo and αc as free
parameters and letting these converge to zero, the inequalities
(3) and (18) become equivalent to their counterparts in Besselink
et al. (2017).

4. Model order reduction by truncation

We are now in a position to explain how a general model
of the form (1) can be reduced through a truncation procedure.
Generally, in a truncation procedure, we consider a partitioned
form of x(t) and xt (and ϕ) as follows:

x(t) =

[
x1(t)
x2(t)

]
, xt =

[
x1,t
x2,t

]
, ϕ =

[
ϕ1
ϕ2

]
, (30)

where x1(t) ∈ Rk and ϕ1 ∈ Wk, with 1 ≤ k < n. The
corresponding partitioning of the system matrices is

A =

[
A11 A12
A21 A22

]
, Ad =

[
Ad,11 Ad,12
Ad,21 Ad,22

]
, B =

[
B1
B2

]
,

C =
[

C1 C2
]
, Cd =

[
Cd,1 Cd,2

]
.

(31)

Using this partitioning, a reduced-order approximation of (1) is
obtained by truncation of the dynamics corresponding to x2. Such
an approximate model reads

Ω̂ :

⎧⎨⎩
ζ̇ (t) = A11ζ (t) + Ad,11ζ (t − τ ) + B1u(t),
ŷ(t) = C1ζ (t) + Cd,1ζ (t − τ ) + Du(t),
ζ0 = ϕ̂,

(32)

where ζ (t) ∈ Rk, ŷ(t) ∈ Rp is an approximate of y(t), and ϕ̂ ∈ Wk
is the initial condition.

The system Ω̂ approximates x1 in the partitioned coordinate.
As can be clearly seen from (32), this model approximation pre-
serves the delay structure. Moreover, if the matrices Q and P
satisfying Lemmas 2 and 3 in Section 3 have a particular structure,
then the described model order reduction method will enjoy
some other important properties. In particular, this will allow us
to guarantee stability preservation and compute an a priori bound
on the reduction error. As a stepping stone, it is shown that the
observability and controllability energy functionals of the reduced
system can be characterized in terms of those of the original
(high-order) system.

Lemma 4. Let condition (3) hold for a scalar αo > 0 and symmetric
matrices Q > 0 and Qa ≥ 0 of the form

Q =

[
Q1 0
0 Q2

]
, Qa =

[
Qa,11 Qa,12
Qa,21 Qa,22

]
, (33)

with Q1,Qa,11 ∈ Rk×k. Then, the observability functional L̂o : Wk →

R of the reduced-order system (32) exists, and the functional Êo :

Wk × L2([−τ , 0],Rk) → R given as

Êo(ϕ̂, ˙̂ϕ) = Ê1
o (ϕ̂) + Ê2

o ( ˙̂ϕ), (34)

with

Ê1
o (ϕ̂) = ϕ̂T (0)Q1ϕ̂(0) +

∫ 0

−τ

ϕ̂T (s)Qa,11ϕ̂(s) ds, (35)

Ê2
o ( ˙̂ϕ) = αoτ

∫ 0

−τ

∫ 0

θ

˙̂ϕ
T
(s)Q1

˙̂ϕ(s) dsdθ, (36)

satisfies Êo(ϕ̂, ˙̂ϕ) ≥ L̂o(ϕ̂) for all ϕ̂ ∈ Wk.

Proof. The matrices Q and Qa and the scalar αo are such that (3)
holds. Thus, for any matrix Ψ of appropriate dimensions it can be
shown that

Ψ TMoΨ ≤ 0, (37)

with Mo as in (3). Choosing Ψ = blkdiag{ψ,ψ, Ip, ψ}, with ψ =

[Ik 0k×(n−k)]
T , and exploiting the block-diagonal structure of Q ,

it is straightforward to show that (37) leads to an inequality of
the form (3), in terms of Q1, Qa,11 and αo, for the reduced-order
system Ω̂ . Given the fact that α−1

o Q1 > 0, this implies that an
inequality of the form (15) holds for the reduced-order system.
Specifically,

Êo(ϕ̂, ˙̂ϕ) ≥

∫ T

0

⏐⏐ŷ(t)⏐⏐2dt + Êo(ζT , ζ̇T ), (38)

holds for any T ≥ 0. Given the fact that Êo(ζt , ζ̇t ) ≥ 0 for all
ζt ∈ Wk, we obtain Êo(ϕ̂, ˙̂ϕ) ≥ L̂o(ϕ̂) for all ϕ̂ ∈ Wk, which is
obtained by considering T → ∞ in (38). This result, with the fact
that Êo(ϕ̂, ˙̂ϕ) is bounded, further implies the existence of L̂o(ϕ̂) for
all ϕ̂ ∈ Wk. □

Analogously, one can use the properties of the controllability
functional of the original system to characterize the controllabil-
ity functional of the reduced system.

Lemma 5. Let condition (18) hold for a scalar αc > 0 and
symmetric matrices P > 0 and Pa ≥ 0 of the form

P =

[
P1 0
0 P2

]
, Pa =

[
Pa,11 Pa,12
Pa,21 Pa,22

]
, (39)

with P1, Pa,11 ∈ Rk×k, and L̂c(ϕ̂) : Dk → R is the controllability
functional of the reduced system (32). Then, the functional Êc :

Wk × L2([−τ , 0],Rk) → R given as

Êc(ϕ̂, ˙̂ϕ) = Ê1
c (ϕ̂) + Ê2

c ( ˙̂ϕ), (40)

with

Ê1
c (ϕ̂) = ϕ̂T (0)R1ϕ̂(0) +

∫ 0

−τ

ϕ̂T (s)Ra,11ϕ̂(s) ds, (41)

Ê2
c ( ˙̂ϕ) = αcτ

∫ 0

−τ

∫ 0

θ

˙̂ϕ
T
(s)R1

˙̂ϕ(s) dsdθ, (42)

R1 = P−1
1 and Ra,11 = P−1

1 Pa,11P−1
1 , satisfies Êc(ϕ̂, ˙̂ϕ) ≤ L̂c(ϕ̂) for all

ϕ̂ ∈ Dk ∩ Wk.

Proof. The proof is similar to that of Lemma 4 and is omitted for
the sake of brevity. □

Lemmas 4 and 5 imply that the observability and controllabil-
ity functionals of the reduced-order system can be obtained by
relevant parts of the energy functionals of the original system (1)
when Q in (5) and P in (20) are block-diagonal as in (33) and (39),
respectively.

Next, we define a partially-balanced realization of a time delay
system. This will enable us to later state the main properties of
the described reduction method.

Definition 3. A realization as in (1) is said to be partially-
balanced if there exists symmetric matrices Q > 0, Qa ≥ 0 and
a scalar αo > 0 satisfying (3), symmetric matrices P > 0, Pa ≥ 0
and a scalar αc > 0 satisfying (18), and, additionally, P and Q are
such that

P= Q = Σ =blkdiag{σ1Im1 , σ2Im2 , . . . , σqImq}. (43)

Here, the constants σi > 0, satisfying σi > σi+1, i ∈ {1, . . . , q−1},
are called singular values and Σq

i=1mi = n.
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The matrices Q and P play a similar role as the Gramians
in balanced truncation for finite-dimensional systems. Therefore,
it is natural to expect that there exists a coordinate transfor-
mation T dependent on Q and P that transforms (1) into a
partially-balanced form. The next lemma states this result in a
formal manner, which can be proved using standard results in,
e.g., Dullerud and Paganini (2010).

Lemma 6. Let there exist symmetric matrices Q > 0 and Qa ≥ 0
and a scalar αo ≥ 0 satisfying (3), and symmetric matrices P > 0
and Pa ≥ 0 and a scalar αc > 0 satisfying (18). Then, there exists a
coordinate transformation x(t) = Tz(t) such that the realization in
the new coordinates is partially-balanced, i.e., the nonsingular matrix
T can be chosen such that T TQT = T−1PT−T

= Σ , with Σ , as in
(43), being the solution (for Q and P simultaneously) of (3) and (18).

In the literature on finite-dimensional systems, a realization
of a system is said to be balanced if 1) the states that are easy to
observe are those which are simultaneously easy to control, and
vice versa, and 2) the state components are absolutely ordered in
terms of their contribution to the input–output behaviour of the
system (Gugercin & Antoulas, 2004). However, the transformed
system due to Lemma 6 does not fully fulfil these properties,
mainly because the balancing procedure is performed only with
respect to x(t) in a finite-dimensional Euclidean space while
the state of a time delay system is a function segment, xt in
this case. For this reason, we use the term ‘‘partially-balanced
realization’’, rather than ‘‘balanced realization’’. It is also worth
noting that since Q and P are dependent on the time delay τ , the
transformation T is delay-dependent.

The model reduction method described here preserves not
only the delay-structure of the system, but also its stability prop-
erties, as stated in the following theorem.

Theorem 1. Let the system (1), which is asymptotically stable for
zero input, be in a partially-balanced realization and consider the
reduced-order system (32) obtained by truncation for k such that
k = Σ r

i=1mi for some r > 0 and mi as in Definition 3. Then, the
reduced-order system Ω̂ is asymptotically stable for zero input.

Proof. The proof can be found in Appendix. □

Remark 5. Choosing the reduction order k as in Theorem 1
ensures that Σ1 ∈ Rk×k and Σ2 ∈ R(n−k)×(n−k), respectively the
upper-left and lower-right blocks ofΣ , have no singular values in
common. IfΣ1 andΣ2 have common singular values, it cannot be
guaranteed that the reduced-order system is asymptotically sta-
ble, i.e., that the state trajectory of reduced system converges to
zero for zero input. For an example of such a case, for delay-free
systems, see Pernebo and Silverman (1982). However, whether or
not Σ1 and Σ2 have common singular values, the convergence of
the output of Ω̂ to zero for zero input is still guaranteed, as a
consequence of Lemma 4.

As stated in the next theorem, an interesting property of the
proposed delay-dependent model order reduction method is the
availability of a guaranteed and a priori error bound, reflecting
the accuracy of approximation.

Theorem 2. Let the asymptotically stable system Ω , as in (1),
be in a partially-balanced realization, as defined in Definition 3,
and consider the reduced-order system Ω̂ , as in (32), obtained by
truncation for k = Σ r

i=1mi for some r > 0. Moreover, let αc =

αo = α. Then, for any common input function u ∈ L2([0, T ],Rm) ∩

L∞([0, T ],Rm) and initial conditions ϕ = 0 and ϕ̂ = 0 for (1) and
(32), respectively,∫ T

0

⏐⏐y(t) − ŷ(t)
⏐⏐2 dt ≤ ε2

∫ T

0
|u(t)|2 dt,

for all T ≥ 0 and where the error bound ε is given as

ε = 2
q∑

i=r+1

σi, (44)

with σi as in (43).

Proof. This can be proved by extending the proof of Theorem 7
in Besselink et al. (2017) to the delay-dependent case. Details are
omitted for brevity. □

Remark 6. Two factors contribute to the error bound ε in (44):
the solution to the matrix inequalities in (3) and (18), and, most
importantly, the reduction order k. Eq. (44) assures that a larger
k, if designed as in Theorem 1, results in a smaller error bound
ε. Moreover, the cost functions mentioned in Remark 2 are just
heuristics and, thus, it may be possible to obtain a smaller ε for
a given k by choosing a different cost function.

Remark 7. Compared to its delay-independent counterpart in
Besselink et al. (2017), the delay-dependent model order re-
duction method in this paper presents an improvement in two
aspects. Firstly, for small delays the new method provides tighter
error bounds and more accurate reduced-order models. This
stems from the fact that the space of feasible P and Q in this
method is larger and less conservative compared to the delay-
independent method, especially for small delays, leading to
tighter bounds on the observability and controllability func-
tionals. Secondly, the class of systems that can be reduced is
extended by relaxing conditions that were necessary for the
delay-independent method to be feasible. For instance, one such
condition was A−Ad being Hurwitz, which is usually not the case
when the delay occurs in the feedback channel of a closed-loop
system. By contrast, it is no more a necessary feasibility condition
for our method.

5. Illustrative examples

This section illustrates the results via examples. The proposed
model order reduction method is compared with the
delay-independent method in Besselink et al. (2017) and a de-
composition method in van de Wouw et al. (2015). All the
involved matrix inequalities are solved by the LMI solver YALMIP
(Löfberg, 2004).

Example 1. We consider a system of the form (1) described by

A =

⎡⎢⎢⎢⎣
−0.91 −0.62 1.61 0.06 0.27 0.38

0.11 −0.18 −0.51 0.04 0.02 −0.08

0.05 0.03 −0.18 0.02 0.06 0.17

0.02 0.29 1.63 −0.80 −0.16 0.05

−0.10 −0.21 0.01 0.14 −0.11 0.25

−0.03 0.46 −0.49 −0.03 −0.12 −1.11

⎤⎥⎥⎥⎦, B =

⎡⎢⎢⎢⎣
0.61

−0.11

0.14

0.31

0.13

−0.27

⎤⎥⎥⎥⎦,

Ad =

⎡⎢⎢⎢⎣
0.74 0.66 −0.34 −0.21 −0.21 0.23

−0.14 −0.26 0.24 0.11 0.21 0.07

0.09 0.04 −0.37 0.05 −0.01 −0.06

−0.35 0.01 −1.01 −0.38 −0.71 −0.65

0.39 0.20 −0.12 0 −0.08 0.15

−0.75 −0.33 1.26 0.07 0.40 0.01

⎤⎥⎥⎥⎦, C =

⎡⎢⎢⎢⎣
3.2

−1

29.5

2

8.4

8.5

⎤⎥⎥⎥⎦
T

,

Cd = [ −4.5 −38.2 −6.5 −5.6 1.7 2 ],D = 0.3 .

In Fig. 1, the left side, the singular values obtained for the
delay-dependent and delay-independent methods are compared
for τ = 1.6 s. It is observed that the former gives smaller
singular values than the latter. Considering the singular values
from the delay-independent method, a fairly sharp decay is ob-
served from the second singular value to the third. Thus, we may
approximate the system with a second-order model (k = 2)
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Fig. 1. Comparison of the delay-dependent and delay-independent methods: (left) singular values for τ = 1.6 s, (right) error bounds as a function of τ for the
reduction order k = 2.

Fig. 2. Comparison of the delay-dependent method with the delay-independent and decomposition methods: (top) magnitude of the frequency response functions,
(bottom) error bounds and the magnitude of the error systems for k = 2.

and still expect a good approximation. For the delay-dependent
approach, a much better accuracy can already be expected at
lower orders, due to the smaller singular values. Next, the error
bounds are compared. As seen from the right plot in Fig. 1, for
k = 2, the delay-dependent method gives much tighter error
bounds ε for small delays. As expected (see Remarks 4 and 7), as
the delay increases, the error bound from the proposed method
converges to that of the delay-independent method. In Fig. 2, the
frequency response function (from input u to output y) of the
original model G(jω) is compared to those of the reduced-order
models, indicated by Ĝ(jω), obtained from the delay-independent,
proposed delay-dependent and the decomposition methods, for
τ = 1.6 s and k = 2. Clearly, the approximation from the delay-
dependent method is more accurate in terms of the H∞-norm
of the error system G(jω) − Ĝ(jω) than for the other methods.
Moreover, the stability of the reduced model from the decompo-
sition method is not guaranteed and no a priori error bound is
given by this method as the required small-gain condition does

not hold. The lower accuracy of this method is because Ad is
full-rank.

Example 2. This example illustrates another benefit of the pro-
posed method: the extension of the class of systems that can be
reduced. To this end, we consider the model reduction problem of
a controlled platoon of eight vehicles from Scarciotti and Astolfi
(2014), yielding a model of the form (1) with τ = 5 ms and
n = 23. This model cannot be reduced by the delay-independent
method because A − Ad is not Hurwitz. Alternatively, we use
the delay-dependent method. The singular values obtained for
the proposed method compared to those for the decomposition
method are plotted on the left side of Fig. 3. A comparison
between the frequency response function G(jω) of the original
model with those, indicated by Ĝ(jω), of the reduced models
for k = 5 is provided on the right side of Fig. 3. Clearly, the
proposed method gives a more accurate model approximation.
Moreover, the error bound ε = 1.66 obtained by the proposed
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Fig. 3. Comparison of the delay-dependent and decomposition methods: (left) singular values, (right) magnitude of the frequency response functions for k = 5.

method is far smaller than ε = 93.55 by the decomposition
method. Further, it turns out that in terms of preserving the
steady-state response, the method in Scarciotti and Astolfi (2014)
yields a better model approximation for k = 5, whereas the
proposed method is superior in terms of the H∞-norm of the
error system.

6. Conclusions

We presented a balancing-type model order reduction
approach for time delay systems based on delay-dependent func-
tionals and matrix inequalities that provide a characterization
of observability and controllability properties of the system. The
solutions to the matrix inequalities are used as a basis to trans-
form the system into a partially-balanced form, where the system
states are sorted in order of their relative contribution to the
input–output behaviour of the system. This approach allows for
reducing the system by truncating the states with the smallest
contribution, while not only preserving stability properties and
the delay structure of the original system but providing an a priori
computable bound on the reduction error. The effectiveness of the
proposed method and the benefits of the delay-dependent nature
of the approach have been illustrated through an illustrative
example.

Appendix. Proof of Theorem 1

We prove this theorem by showing that the reduced model
has no poles in the closed right-half complex plane, using the
counterparts of the inequalities in (3) and (18) for the reduced-
order system Ω̂ in (32). Let λ ∈ C be a root of the characteristic
equation of Ω̂ , i.e.,

det
(
λIk − Â(λ)

)
= 0, (45)

with Â(λ) = A11 + Ad,11e−τλ, and let V ∈ Rk×d be a matrix such
that(
λIk − Â(λ)

)
V = 0. (46)

Here, d is the geometric multiplicity of λ. Next, Lemma 4 im-
plies that the reduced system fulfils the inequality (consider the
counterpart of (14) for the reduced system)[
Σ1A11+ AT

11Σ1+ Qa,11 Σ1Ad,11

∗ −Qa,11

]
+

[
CT
1

CT
d,1

][
C1 Cd,1

]
+ αo

[
−Σ1 Σ1

∗ −Σ1

]
+ αoτ

2
[

AT
11

AT
d,11

]
Σ1
[

A11 Ad,11
]

≤ 0,

where Σ1 ∈ Rk×k is the upper-left block of Σ as in (43). Left and
right multiplication of the above inequality by [Ik Ike−τλH

] and
[Ik Ike−τλH

]
H , and considering λ = µ + jω, with j =

√
−1, we

obtain

ÂH (λ)Σ1 +Σ1Â(λ) + Qa,11
(
1 − e−2µτ )

+

[
Ik Ike−τλH

] [ CT
1

CT
d,1

] [
C1 Cd,1

] [ Ik
Ike−τλ

]
+ αoΣ1

(
e−τλH

+ e−τλ
− 1 − e−2µτ

)
+ αoτ

2ÂH (λ)Σ1Â(λ) ≤ 0.

(47)

Next, multiplying this result with VH , from the left, and V , from
the right, and using Â(λ)V = λV (see (46)), along with the
fact that the fourth term in the left-hand side of (47) is always
non-negative, yields

2µVHΣ1V +
(
1 − e−2µτ ) VHQa,11V

+ αof (ω̄, µ) VHΣ1V ≤ 0,
(48)

where f (ω̄, µ) = 2e−τµ cos(ω̄)− 1− e−2µτ
+ τ 2µ2

+ ω̄2, ω̄ = τω,
which is obtained by using e−τλH

+ e−τλ
= 2e−τµ cos (ωτ) and

λHλ = µ2
+ ω2. It can be shown that, except for the origin

(i.e., λ = 0), when τ > 0, and for the imaginary axis (i.e., λ = jω,
ω ∈ R), when τ = 0, the characteristic equation (45) cannot have
any of its roots in the closed right-half plane, since such roots
cannot satisfy (48).

To complete the proof (considering τ > 0, as a similar
procedure can be followed for τ = 0), it has to be shown that
there are no roots of the reduced system at the origin, i.e., λ = 0
is not a root of (45). Here, we complete the proof by contradiction,
i.e., it is initially assumed that λ = 0 is a root of (45), and then it
is shown that this assumption leads to results that contradict the
asymptotic stability of the original system (1). Now, for λ = 0,
(47) results in

ÂT (0)Σ1+Σ1Â(0)+
(
C1 + Cd,1

)T(C1 + Cd,1
)

+ αoτ
2ÂT (0)Σ1Â(0) ≤ 0.

(49)

Given that αoτ
2ÂT (0)Σ1Â(0) ≥ 0, there exists a matrix C̃1 with ap-

propriate dimensions such that ÂT (0)Σ1 + Σ1Â(0)
+
(
C1 + Cd,1

)T (C1 + Cd,1
)

+ C̃T
1 C̃1 = 0. Now, left and right

multiplication of VH and V by this result and using the fact that
λ = 0, we obtain

(C1 + Cd,1)V = 0, C̃1V = 0. (50)
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Moreover, multiplication from the right of (49) with V and using
(50) yields

ÂT (0)Σ1V + λΣ1V = 0. (51)

Next, we multiply the inequality (18) from the left with
[I2n+m 0(2n+m)×n] and from the right with its transpose to obtain⎡⎣ AΣ +ΣAT

− αcΣ + Pa AdΣ + αcΣ B
∗ −αcΣ − Pa 0
∗ ∗ −Im

⎤⎦ ≤ 0. (52)

Using the Schur complement on the above, and then multiplying
the resulting inequality with [In In] from the left and with its
transpose from the right yields

Σ(A + Ad)
T

+ (A + Ad)Σ + BBT
≤ 0. (53)

Therefore, there must exist a matrix B̃ for which

Σ(A + Ad)
T

+ (A + Ad)Σ + BBT
+ B̃B̃T

= 0. (54)

Likewise, (3) implies there exists a matrix C̃ such that

(A + Ad)
TΣ +Σ (A + Ad)+ (C + Cd)T (C + Cd)

+ C̃T C̃ = 0.
(55)

Now, consider the partitioning in (31) and partition B̃ and C̃
similarly as B̃T

= [B̃T
1 B̃T

2] and C̃ = [C̃1 C̃2]. Then, the upper-left
blocks of (54) can be written as

Σ1ÂT (0) + Â(0)Σ1 + B1BT
1 + B̃1B̃T

1 = 0. (56)

Multiplication of (56) from the left with VHΣ1 and from the right
with Σ1V , hereby exploiting (51), leads to

BT
1Σ1V = 0, B̃T

1Σ1V = 0. (57)

Next, if (56) is multiplied from the right with Σ1V , one immedi-
ately concludes that Â(0)Σ2

1V = λΣ2
1V , where the results in (51)

and (57) are used. This fact, along with (46) for λ = 0, implies
that im(Σ2

1V ) ⊂ imV , leading to the conclusion that there exists
an eigenvector of Σ2

1 in imV , i.e. Σ2
1v = µ2v, with v ∈ imV

and µ2 the corresponding eigenvalue. Considering the definition
of Σ1, it is noted that µ is one of the singular values σ1 to σr in
(43). Next, multiplication of the lower-left block of (55) with v
from the right and that of (54) with Σ1v from the same side, and
then using (50) and (57) result in(

A12 + Ad,12
)T
Σ1v +Σ2

(
A21 + Ad,21

)
v = 0, (58)(

A21 + Ad,21
)
Σ2

1v +Σ2
(
A12 + Ad,12

)T
Σ1v = 0. (59)

After multiplying (58) from the left with Σ2, a comparison of the
results with (59) leads to

Σ2
2

(
A21 + Ad,21

)
v = µ2 (A21 + Ad,21

)
v, (60)

This implies that µ2 is an eigenvalue of Σ2
2 , while the choice of

the reduction order k according to the multiplicities of the param-
eters σi in (43) ensures that the values on the diagonal of Σ2 are
distinct from µ. As a result, (60) implies that

(
A21 + Ad,21

)
v = 0.

Now, from this last result and (46) it is concluded that for λ = 0,(
λI −

[
A11 A12
A21 A22

]
−

[
Ad,11 Ad,12
Ad,21 Ad,22

]
e−λτ

)[
v

0

]
= 0.

This result implies that the original system (1) has a pole at
zero. This, however, contradicts the fact that the original sys-
tem is asymptotically stable. Therefore, the assumption that the
reduced-order system has a pole at zero is not valid, which,
together with the previous results, implies that the poles of the
reduced system all have negative real parts and hence Ω̂ is
asymptotically stable, and this completes the proof.
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