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a b s t r a c t

Model reduction by time-domain moment matching naturally extends to nonlinear models, where the
notion of moments has a local nature stemming from the center manifold theorem. In this paper,
the notion of moments of nonlinear models is extended to the global case and is, subsequently,
utilized for model order reduction of convergent Lur’e-type nonlinear models. This model order
reduction approach preserves the Lur’e-type model structure, inherits the frequency-response function
interpretation of moment matching, preserves the convergence property, and allows formulating a
posteriori error bound. By the grace of the preservation of the convergence property, the reduced-order
Lur’e-type model can be reliably used for generalized excitation signals without exhibiting instability
issues. In a case study, the reduced-order model accurately matches the moment of the full-order
Lur’e-type model and accurately describes the steady-state model response under input variations.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

High-fidelity dynamical models of systems are essential in
any engineering applications for analysis, prediction, and con-

rol design. Such models are typically described by a large number
f coupled first-order differential equations, making model simu-
ation computationally expensive and, sometimes, even infeasible
ue to limited computational and data storage capabilities. To
educe the computational cost and make model simulation fea-
ible, the full-order model is replaced by a reduced-order model
hat resembles the behavior of the full-order model and pre-
erves some key properties of the full-order model, e.g., stability
roperties. Techniques for finding a reduced-order model from a
ull-order model are called model order reduction techniques.

For the class of linear time-invariant (LTI) models, several
eduction methods such as balanced truncation (Moore, 1981),
ankel-norm approximations (Glover, 1984), and the interpo-
ation approach (Gallivan, Vandendorpe, & Van Dooren, 2004)
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have been proposed in the literature. However, most systems are
essentially nonlinear and their models are, consequently, nonlin-
ear too. The moment matching approach for LTI models, which
belongs to the class of the interpolation approaches, has a nat-
ural extension to nonlinear models. Moments of LTI models are
defined as the coefficients of the Laurent series expansion of the
transfer function at a complex interpolation point, see Antoulas
(2005), and the reduction method aims to match the moments of
the reduced-order model to those of the full-order model. In As-
tolfi (2007), a time-domain interpretation of moment matching
is given, which has naturally led to the definition of moments
for nonlinear models consistent with the one for LTI models, and
to reduced-order nonlinear models that achieve moment match-
ing (Astolfi, 2010; Scarciotti & Astolfi, 2017a, 2017b). In these
works, the definition of moments for nonlinear models makes
use of the center manifold theorem and is, therefore, defined
only locally in the neighborhood of the origin. Consequently,
the formulated reduced-order model is by definition only an
approximation of the full-order model in the neighborhood of the
origin. In general, an estimate of the size of the neighborhood of
the origin is lacking, an error bound is lacking as well and, by the
same token, the reduction methods do not preserve the model
structure of the full-order model.

Reduction methods that do preserve a global form of nonlinear
model stability, e.g., incremental stability, and are equipped with

error bounds, have also been proposed in the literature. The

icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ethods in Besselink, van de Wouw, Scherpen, and Nijmeijer
2014), Kawano (2021), Kawano and Scherpen (2016, 2017) and
arkar and Scherpen (2022) use generalized and extended differ-
ntial balancing to truncate less important states of a nonlinear
odel, thereby preserving model stability and providing error
ounds at the expense of losing model structure. Structure- and
tability-preserving approaches have been proposed in Besselink,
an de Wouw, and Nijmeijer (2011, 2013) and Padoan, Forni, and
epulchre (2021) for nonlinear models that can be decomposed
nto a feedback interconnection of an LTI block with a static
r dynamic nonlinear block. These methods reduce the state
imension of the LTI block using balanced truncation, formulate
onditions for stability preservation (convergence in Besselink
t al. (2011), incremental stability in Besselink et al. (2013), and
ominance in Padoan et al. (2021)), and provide a priori error
ounds. By employing bounded real balancing (Opdenacker &
onckheere, 1988), the method in Besselink et al. (2013) pro-
ides a priori guaranteed stability preservation at the expense
f accuracy. The methods in Besselink et al. (2013) and Padoan
t al. (2021) preserve the stability property only if the reduction
rror is sufficiently small, thus prohibiting the reduction to an
rbitrarily small order. The work in Padoan (2023) introduces an
pproximate moment matching framework in which an excessive
umber of moments are approximated. It is an open problem how
his framework can be used to construct structure- and stability-
reserving reduced-order nonlinear models. Although most of
he above methods provide error bounds, in general, these error
ounds cannot be trivially influenced in any way other than the
rder selection for the reduced-order model.
In this paper, the notion of moment of a nonlinear model is

xtended from the local context, as in Astolfi (2010) and Scarciotti
nd Astolfi (2017a, 2017b), to the global context for convergent
onlinear models. Hereto, the local center manifold theorem used
n Astolfi (2010) and Scarciotti and Astolfi (2017a, 2017b) is
eplaced with a global invariant manifold result from Pavlov,
an de Wouw, and Nijmeijer (2006). Convergent nonlinear mod-
ls exhibit a strong form of model stability; namely, for any
ounded input, a convergent model exhibits a bounded and glob-
lly asymptotically stable steady-state solution, implying that the
ffect of the initial condition fades out. Using the proposed global
otion of moments, a constructive reduction method for the class
f convergent Lur’e-type models is presented. Lur’e-type models,
ee Fig. 1, consist of LTI dynamics placed in feedback with a
tatic nonlinearity, and arise naturally in problems with localized
onlinearities (Khalil, 1996), making them practically relevant.
The reduction method for Lur’e-type models only reduces the

tate dimension of the LTI block and inherits the static nonlin-
arity of the full-order model, which preserves the Lur’e-type
odel structure. A benefit of such structure preservation is that

t also preserves the physical interpretation of the Lur’e-type
odel. In addition, a rich array of analysis and design tools are
vailable for the class of Lur’e-type models, see, e.g., Khalil (1996),
hich are then compatible with the reduced-order model. To
chieve moment matching and to preserve the Lur’e-type model
tructure including the static nonlinearity, the transfer function
f the LTI dynamics should match at an infinite number of inter-
olation points, which is generally not possible when the model
rder is reduced. Therefore, the proposed reduction methodol-
gy matches the transfer function only at a finite number of
nterpolation points, thereby approximating the moment of the
full-order model. The proposed reduction method enjoys several
benefits besides (Lur’e-type) structure preservation: namely, it
preserves the convergence property (which implies preservation
of global, as opposed to local, stability properties), it inherits the
FRF interpretation of moment matching, it provides a computable

a posteriori error bound, and it enables reduction of this error

2

Fig. 1. Full-order (left) and reduced-order (right) Lur’e-type model. Only the
dimension of the LTI block is reduced.

bound. This error bound is on the L2-norm of the difference
between the moment of the full-order and reduced-order models
and also generalizes to the steady-state mismatch between the
responses of the full-order and reduced-order Lur’e-type models
for generalized periodic inputs. By solving an optimization prob-
lem, the proposed approach aims to find the reduced-order model
that minimizes the error bound and hence the reduction error.

To summarize, the main contributions of this paper are (i)
the extension of the notion of moments to the global case for a
generic class of convergent nonlinear models; and (ii) a construc-
tive model order reduction approach for convergent Lur’e-type
models that preserves the convergence property in addition to
preserving the Lur’e-type model structure. Furthermore, this re-
duction approach has an FRF interpretation and is equipped with
a corresponding error bound that is minimized. The methods
developed in this paper are quantitatively analyzed in a case
study on a flexible beam.

A preliminary part of the reduction method in this paper
has been presented in Shakib, Scarciotti, Pogromsky, Pavlov, and
van de Wouw (2021). Compared to Shakib et al. (2021), the
current paper considers an extended class of Lur’e-type models
and includes the definition of moments of generic nonlinear
convergent models in the global context. Furthermore, this paper
provides an error bound for the reduction method for Lur’e-type
models and includes a novel numerical case study.

The remainder of this paper is structured as follows. The end
of Section 1 introduces the notation used throughout the rest
of this paper. Section 2 extends the notion of moments to the
global case for generic convergent nonlinear models and formally
introduces the model order reduction problem for convergent
Lur’e-type models. Section 3 proposes an approach to the model
order reduction of Lur’e-type models. Section 4 describes the
results of a case study that illustrates the application and benefits
of the proposed model-order reduction approach. Section 5 gives
the concluding remarks.

Notation and preliminaries Throughout this paper, the fol-
lowing notation is used. By Z,Z≥0R,R≥0,C, C0,C− we, respec-
tively, denote the set of integers, non-negative integers, real
numbers, non-negative real numbers, complex numbers, complex
numbers with zero real part and complex numbers with a nega-
tive real part. For a vector x ∈ Rn, we denote the Euclidean norm
by |x| :=

√
x⊤x. The set of eigenvalues of a matrix A ∈ Rn×n is

enoted by σ (A) and the matrix A is positive (negative) definite,
enoted by A ≻ 0 (A ≺ 0), if all its eigenvalues are positive
negative). A continuous function α : [0, a) → [0,+∞) is said to
elong to class K if it is strictly increasing and α(0) = 0. It is said
o belong to class K∞ if a = +∞ and α(r) → +∞ as r → +∞.
continuous function β : [0, a) × [0,+∞) → [0,+∞) is said

o belong to class KL if, for each fixed s, the mapping β(r, s)
elongs to class K with respect to r and, for each fixed r , the
apping β(r, s) is decreasing with respect to s and β(r, s) → 0 as
→ ∞. By L2(T ) we denote the space of continuous real-valued
-periodic scalar functions y(t) satisfying ∥y∥L2 < +∞, where
y∥2

:=
1 ∫ T

|y(t)|2dt is the L -norm.
L2 T 0 2
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. Problem statement

Consider a single-input, single-output (SISO), continuous-time
inimal nonlinear model described by the equations

˙ = f (x, u), y = h(x) (1)

ith x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R, the mapping f locally
Lipschitz in x and continuous in u and the mapping h locally
Lipschitz in x. Moments of the nonlinear model (1) are defined
in the literature based on the existence of a solution to a partial
differential equation (PDE) which characterizes a center manifold
that is only defined locally. In this paper, based on the stability
notion of convergence, we introduce in Section 2.1 a global in-
variant manifold theorem (Pavlov et al., 2006) that replaces the
center manifold theorem, thereby allowing for defining moments
in a global context for the generic class of convergent nonlinear
models.

After that, Section 2.2 presents tractable conditions for con-
vergence of Lur’e-type models under which moments are well-
defined. A Lur’e-type model consists of a static nonlinear block
placed in feedback with an LTI block, see Fig. 1, and is described
by the following state–space equations:

Σ :

ẋ = Ax + B1u + B2ϕ(y),
y = C1x,
z = C2x,

(2)

where x(t) ∈ Rn is the state, u(t) ∈ R is the input, y(t) ∈ R is the
input to the nonlinear mapping ϕ : R → R, z(t) ∈ R is the output
nd model matrices A ∈ Rn×n, B1, B2 ∈ Rn×1, C1, C2 ∈ R1×n.
Subsequently, Section 2.3 introduces the problem of finding

a reduced-order model for (2) that achieves moment matching.
Here, the class of reduced-order models Σr of order ν is defined
as follows:

Σr :

ξ̇ = Fξ + G1u + G2ϕ(ρ),
ρ = H1ξ,

ζ = H2ξ,

(3)

where ξ (t) ∈ Rν is the state, u(t) ∈ R is the input, ρ(t) ∈ R is the
input to the same nonlinear mapping ϕ : R → R as in (2), ζ (t) ∈

R is the output and the model matrices are F ∈ Rν×ν,G1,G2 ∈

Rν×1,H1,H2 ∈ R1×ν . In this problem, the Lur’e-type model struc-
ture, the nonlinear mapping ϕ, and the convergence property of
the full-order model Σ in (2) are preserved for the reduced-order
model Σr in (3). As is detailed in Section 2.3, in general, it is not
possible to exactly match the moment ofΣ in (2) in this problem,
hence leading to the notion of approximate moment matching
problem. Finally, Section 2.4 formalizes the approximate moment
matching problem as a constrained optimization problem.

2.1. Moments of generic nonlinear models

Consider a signal generator described by the equations

τ̇ = s(τ ), u = l(τ ) (4)

with τ (t) ∈ Rν , the mappings s and l locally Lipschitz in τ and
we assume that the solutions of (4) exist on the whole time axis
R, which is the case, e.g., if s is globally Lipschitz in τ . Moreover,
consider its interconnection with (1), defined as follows:

τ̇ = s(τ ), ẋ = f (x, l(τ )), y = h(x). (5)

Prior to defining the moments, we define the notion of observ-
ability.

Definition 1 (Scarciotti & Astolfi, 2017b). The signal generator (4),
characterized by the pair (s, l), is observable if for any pair of
initial conditions τa(0) ∈ Rν and τb(0) ∈ Rν , such that τa(0) ̸=

τb(0), the corresponding output trajectories l(τa(t)) and l(τb(t)) are
such that l(τ (t)) − l(τ (t)) ̸≡ 0.
a b a

3

Definition 2. Consider the interconnected model (5) and sup-
pose that the pair (s, l) is observable according to Definition 1.
Suppose there exists a unique function π : Rν → Rn

: τ ↦→ π (τ )
such that the graph

M := {(τ , x) : x = π (τ ), τ ∈ Rν} (6)

is invariant with respect to the interconnected model (5). Then,
the function h ◦ π is called the moment of the model (1) at (s, l).

The definition of moments in Definition 2 is consistent with its
counterpart for LTI models (Scarciotti & Astolfi, 2017b), though
different from Astolfi (2010) and Scarciotti and Astolfi (2017a,
2017b), see Remark 6. Different types of sufficient conditions are
formulated in the literature for the function π to exist and be
unique, see, e.g., Isidori, Sontag, and Thoma (1995) and Khalil
(1996). In the scope of this work, we pose two assumptions that
guarantee the existence and uniqueness of π .

Assumption 1. For any a > 0, there exists a b > 0 such that
the initial condition |τ (0)| ≤ a implies that the state evolution
τ (t) ∈ Rν of the signal generator (4) satisfies |τ (t)| ≤ b for all
t ∈ (−∞,∞). Furthermore, the signal generator (4) is observable
according to Definition 1.

Next, we pose an assumption on the stability properties of the
nonlinear model (1). Hereto, define U as the set of piecewise-
continuous functions u(t) ∈ R that are defined and bounded on
t ∈ R.

Definition 3 (Pavlov et al., 2006). The model (1) is said to be
globally (uniformly, exponentially) convergent if for every input
u ∈ U , there exists a solution x̄u to (1) satisfying the following
conditions:

• x̄u is defined and bounded on t ∈ R,
• x̄u is globally (uniformly asymptotically, exponentially) sta-

ble.

The solution x̄u is called the steady-state solution. The no-
tion of input-to-state convergence is an even stronger stability
property and is defined as follows.

Definition 4 (Pavlov et al., 2006). Model (1) is said to be input-
to-state convergent if it is globally uniformly convergent for the
class of inputs U and for every input u ∈ U , model (1) is input-
to-state stable with respect to the steady-state solution x̄u(t),
i.e., there exist a KL-function β(r, s) and a K∞-function γ (r) such
that any solution x(t) of model (1) corresponding to some input
û(t) := u(t) +∆u(t) satisfies

x(t) − x̄u(t)| ≤ β(|x(t0) − x̄(t0)|, t − t0)

+ γ

(
sup

t0≤τ≤t
|∆u(τ )|

)
(7)

or all t, t0 ∈ R, t ≥ t0. The functions β(r, s) and γ (r) may depend
n the particular input u.

Convergent models forget their initial condition and converge
o the uniquely defined steady-state solution x̄u. In addition, as
videnced from (7), input-to-state convergent models are ro-
ust against input variations, because the steady-state differ-
nce |x(t) − x̄u(t)| increases monotonically with |∆u(t)|, imply-
ng that small values |∆u(t)| result in small steady-state values
x(t) − x̄u(t)|.

ssumption 2. The model (1) is input-to-state convergent

ccording to Definition 4.



M.F. Shakib, G. Scarciotti, A.Y. Pogromsky et al. Automatica 157 (2023) 111227

a
f
l

L
e

r
a
i
p

w
t
g
s
o
t
M
&
c
c
m
p
t

R
i
2
C
I
t
d
T
b
i
A

R
(
f
t
r
m
r
e
s

2

Φ

T
o

T
f
f

|

D
P

P

h
t
t

g
a
t
i
i
m
t
(
H
i

s

I
m

F
s

τ

w
a
A

A
a
o

A

A
o

t
D

2

r
i
m
a
m
t
L
m

m
r
t

Assumptions 1 and 2 guarantee the existence of a globally
symptotically stable invariant manifold. This invariant mani-
old is the counterpart of the center manifold used in previous
iterature (Astolfi, 2010; Scarciotti & Astolfi, 2017a, 2017b).

emma 5 (Pavlov et al., 2006). Under Assumptions 1 and 2, there
xists a unique, continuous function π as in Definition 2, such that
the graph M in (6) is invariant with respect to the interconnected
model (5). Moreover, for every input u(t) generated by (4), the cor-
esponding steady-state solution of (5) is given by x̄u(t) = π (τ (t))
nd is globally uniformly asymptotically stable. Furthermore, if π (τ )
s continuously differentiable, i.e., π (τ ) ∈ C1, then π (τ ) solves the
artial differential equation
∂π (τ )
∂τ

s(τ ) = f (π (τ ), l(τ )), τ (t) ∈ Rν . (8)

Lemma 5 guarantees that moment h ◦ π , see Definition 2, is
ell-defined (also non-locally) for nonlinear models that enjoy
he input-to-state convergence property. Furthermore, since the
raph M in (6) is described by the globally asymptotically stable
teady-state solution x̄u, it can be found by computer simulation
f the dynamics of the interconnected dynamics (5). For example,
he graph M can be computed efficiently using the so-called
TF simulation algorithm (Pavlov, Hunnekens, van de Wouw,
Nijmeijer, 2013) for the class of Lur’e-type models. Remark 7

omments on finding reduced-order models that preserve the
onvergence property. The notion of a moment of a nonlinear
odel in a global context is employed in the remainder of this
aper to devise a numerically tractable reduction approach for
he class of convergent Lur’e-type models.

emark 6. The notion of a moment of nonlinear models has been
ntroduced in Astolfi (2010), see also Scarciotti and Astolfi (2017a,
017b), based on the solution of the PDE (8), given that π (τ ) is
1 in the neighborhood of the origin (under certain assumptions).
n our paper, however, Assumptions 1 and 2 do not guarantee
hat π (τ ) is C1, but only guarantee that the invariant manifold
escribed by the graph M in (6) exists, is unique and continuous.
herefore, the notion of a moment as in Definition 2, is solely
ased on M in (6). A definition of moments based on a similar
nvariant set as in (6) was introduced in Scarciotti, Teel, and
stolfi (2017) for linear differential inclusions.

emark 7. Combining the results in Scarciotti and Astolfi
2017b) with the insight that the convergence property allows
or the well-defined global definition of moments (as in Defini-
ion 2 of the current paper), an extension towards a family of
educed-order models can be formulated that achieves moment
atching in the global context. To preserve convergence, the

educed-order model should satisfy conditions for convergence,
.g., the so-called Demidovich’s condition resulting in input-to-
tate convergence, see Pavlov et al. (2006, Theorem 2.29).

.2. Moments of convergent Lur’e-type models

Consider a Lur’e-type model Σ in (2) and denote by
(i,k)(jω), i, k ∈ {1, 2} the FRF associated to its LTI part, which

is defined as follows:

Φ(i,k)(jω) := Ci(jωI − A)−1Bk, for i, k ∈ {1, 2}. (9)

he following theorem presents conditions for the convergence
f the Lur’e-type model (2).

heorem 8 (Pavlov et al., 2006). Consider model (2). Suppose that
or some constant γ > 0 the nonlinear function ϕ satisfies the
ollowing incremental sector condition:

ϕ(y ) − ϕ(y )| ≤ γ |y − y |, ∀ y , y ∈ R. (10)
2 1 2 1 1 2 Γ

4

enote A−
γ := A − γ B2C1 and A+

γ := A + γ B2C1. If there exists a
= P⊤

≻ 0 such that

A−

γ + (A−

γ )
⊤P ≺ 0 and PA+

γ + (A+

γ )
⊤P ≺ 0 (11)

old, then model (2) is globally exponentially convergent according
o Definition 3 and input-to-state convergent according to Defini-
ion 4.

From here onwards, we simply say that a model is conver-
ent to imply that the model is both exponentially convergent
ccording to Definition 3 and input-to-state convergent according
o Definition 4. Since the dimension n of the full-order model
s assumed large, it is not practical to solve the linear matrix
nequalities (LMIs) in Theorem 8 to verify whether the full-order
odel is convergent. Alternatively, one can equivalently verify

he following three conditions (see, e.g., Pavlov et al. (2006)):
1) the incremental sector condition (10); (2) the matrix A being
urwitz, i.e., σ (A) ∈ C−; and (3) satisfaction of the following
nequality:

up
ω∈R

⏐⏐Φ(1,2)(jω)
⏐⏐ = sup

ω∈R

⏐⏐C1(jωI − A)−1B2
⏐⏐ < 1

γ
. (12)

nequality (12) can be verified graphically, e.g., using the Bode
agnitude plot of Φ(1,2)(jω).
The reduction method to be presented in Section 3 inherits the

RF interpretation of LTI moment matching thanks to using linear
ignal generators:

˙ = Sτ , u = Lτ (13)

ith state τ (t) ∈ Rν , output u(t) ∈ R and matrices S ∈ Rν×ν
nd L ∈ R1×ν . The next assumption guarantees the satisfaction of
ssumption 1.

ssumption 3. The matrix S of (13) has simple eigenvalues that
re located on the imaginary axis. In addition, the pair (S, L) is
bservable.

Finally, the next assumption guarantees the satisfaction of
ssumption 2.

ssumption 4. The Lur’e-type model (2) satisfies the conditions
f Theorem 8 for γ = γ ⋆ for some γ ⋆ > 0 and is, therefore,

convergent.

Because Assumptions 1 and 2 are implied by Assumptions 3
and 4, application of Lemma 5 guarantees that the moment of the
Lur’e-type model is well-defined, i.e., it guarantees the existence
of a globally exponentially stable invariant manifold described by
x̄u(t) = π (τ (t)) with π : Rv → Rn

: τ ↦→ π (τ ). The moment of
he full-order model (2) at (S, L) is denoted by C2π with π as in
efinition 2.

.3. Approximate moment matching problem

Model order reduction of Lur’e-type models boils down to
educing the state dimension of the LTI block since all the dynam-
cs are captured therein. Consequently, the proposed reduction
ethod preserves the Lur’e-type structure of the full-order model
nd inherits the FRF interpretation that is characteristic of mo-
ent matching for LTI models. Solely reducing the dimension of

he LTI block results inevitably in the moments of the full-order
ur’e-type model being approximated rather than being exactly
atched, which is further explained below.
Consider the class of models Σr in (3). The moment of this

odel at (S, L) is denoted by H2p, where the function p plays the
ole of the function π in Definition 2. The FRFs associated with
he LTI part of (3) read as:

−1

(i,k)(jω) := Hi(jωI − F ) Gk for i, k ∈ {1, 2}. (14)
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The main obstacle in achieving moment matching is that the
steady-state output z̄u of the full-order model, related to the mo-
ment via z̄u = C2x̄u = C2π (τ (t)), typically consists of an infinite
number of harmonics due to the nonlinear feedback ϕ. Therefore,
o match the steady-state output z̄u of the full-order model by
he steady-state output ζ̄u of the reduced-order model, a match
hould be achieved between the FRFs of the LTI part of the full-
rder and the reduced-order models at an infinite number of
nterpolation frequencies. Even though some methods have been
roposed to match moments at infinitely many interpolation
oints, see Scarciotti and Astolfi (2017b), these cannot be trivially
eneralized to the current setting without losing model structure.
herefore, in this work, only a finite number of interpolation
requencies are matched in each of the FRFs in (9), resulting
nevitably in a mismatch in the nonlinear moment.

Having a mismatch between the moment of the full-order
nd of the reduced-order Lur’e-type model makes it particularly
mportant to derive an error bound for this mismatch. Such error
ound is an important part of the approximate moment matching
roblem, in addition to preserving the convergence property.

roblem 9. Consider the full-order Lur’e-type model (2) with
tate dimension n and the signal generator (13) with state τ (t) ∈
ν characterized by (S, L) and suppose ν < n. Suppose Assump-
ions 3 and 4 hold for some γ ⋆ > 0. Denote the moment of the
ull-order Lur’e-type model (2) at (S, L) by C2π .

The approximate moment matching problem is to find matri-
es F ,G1,G2,H1,H2, which define the ν-th order model (3) with
oment H2p, such that this reduced-order model satisfies the

condition in Theorem 8, and to find a constant 0 ≤ ε < +∞

uch that the mismatch between the moment of the full-order
nd reduced-order Lur’e-type model is upper bounded as follows:

C2π (τ ) − H2p(τ )∥L2 ≤ ε ∥Lτ∥L2 . (15)

This problem is further formalized in the next section.

Remark 10. Other methods, e.g., the method in Astolfi (2010),
do achieve moment matching rather than approximate moment
matching, for example, by considering a Wiener model, i.e., linear
dynamics followed by a static nonlinear output map. However,
in those methods, the model structure is generally not preserved.
Furthermore, Lur’e-type models represent a broader model class
than Wiener models do.

2.4. Constrained optimization problem formulation

Frequency-domain insights are used to formulate a constrained
optimization problem, which, on the one hand, allows finding a
constant ε to solve Problem 9 and, on the other hand, aims at
reducing ε to improve the accuracy of the estimated reduced-
order model. Let us first further motivate moment matching at
a finite number of interpolation points by the following two
properties.

Property 11 (Pavlov et al., 2006). Consider the model (2) and
suppose Assumption 4 holds. If the input u ∈ L2(T ) is T -periodic, then
the corresponding steady-state outputs z̄u and ȳu are also periodic
with the same period T .

Property 12. Consider the model (2) and suppose Assumption 4
holds. If the input u ∈ L2(T ) has a finite Lipschitz constant 0 ≤ ℓ <

+∞ with respect to time t, i.e., |u(t) − u(t + κ)| ≤ ℓ|κ| ∀ t, κ ∈ R,
then the magnitude of the kth Fourier coefficient of the Fourier series

¯ ¯
of zu and yu converges to zero according to O(1/k) for k ̸= 0.

5

Fig. 2. The FRFs of the reduced-order and full-order model match at the
frequencies in the set Ω0

= {f1, f2, f3}. The mismatch between the FRFs is
minimized at the frequencies in ΩM , here taken on the red grid illustrated in
the figure.

Proof. The input u having a finite Lipschitz constant results in
each of the steady-state outputs z̄u and ȳu of model (2) also ad-
itting a finite Lipschitz constant, possibly different from ℓ. The
agnitude of the kth Fourier coefficient of a Lipschitz continuous

unction is of order O(1/k) for k ̸= 0, see, e.g., Katznelson (2004,
heorem 4.6). ■

Property 11 ensures that the signal ϕ(ȳu) consists of the same
requencies as u and an infinite number of higher harmonic fre-
uencies. Property 12 ensures that the Fourier coefficients of large
requencies vanish in absolute value, justifying matching only a
inite number of frequencies in the corresponding FRFs (note that
y Assumption 3, the output of the linear harmonic oscillator is
ipschitz continuous with respect to time, as required in Prop-
rty 12). Considering these properties, for approximate moment
atching, it is beneficial to match the involved FRFs of the LTI
lock of the Lur’e-type model at the first few harmonics and/or
t frequencies corresponding to important model characteristics,
uch as the 0-Hz frequency or the (anti-) resonance peaks. Hereto,
e collect η(i,k) user-defined interpolation frequencies in the vec-
or Ω0

(i,k) ∈ Rη(i,k) for each i, k ∈ {1, 2}, where indices i, k refer to
he FRFs (9).

To achieve robustness against input variations, we also min-
mize the mismatch in these FRFs at other frequencies, which
as two additional benefits. Firstly, it allows for reducing the
ismatch at the harmonics and intermodulation frequencies that
re not included as interpolation frequencies inΩ0

(i,k), resulting in
better approximation of the moment of the Lur’e-type model.
econdly, it adds to the robustness of the reduced-order Lur’e-
ype model for new inputs that excite different frequencies than
he interpolation frequencies. We collect M(i,k) user-defined fre-
uencies in the vector ΩM

(i,k) ∈ RM(i,k) for each i, k ∈ {1, 2}, at
hich the mismatch in FRFs is minimized. An illustration of the
ets Ω0 and ΩM for a single FRF is presented in Fig. 2.
Before formally presenting the constrained optimization prob-

em, we define the mismatch in each FRF as follows:

(i,k)(jω) := Φ(i,k)(jω) − Γ(i,k)(jω), i, k ∈ {1, 2}, (16)

here Φ(i,k)(jω) and Γ(i,k)(jω), i, k ∈ {1, 2}, are defined in (9),
14), respectively. Furthermore, we define the cost function to be
inimized:

(F ,G1,G2,H1,H2) :=

2∑
k=1

2∑
i=1

M(i,k)∑
ℓ=1

⏐⏐Υ(i,k)(jω(i,k)(ℓ))
⏐⏐2 , (17)

here ω(i,k)(ℓ) is the ℓ-th component of Ω0
(i,k) and Υ(i,k) is defined

in (16).

Problem 13. Consider the full-order Lur’e-type model (2) and
suppose Assumption 4 holds for some γ ⋆ > 0. Furthermore,
consider given sets of frequencies Ω0

(i,k) ∈ Rηi ,ΩM
(i,k) ∈ RM(i,k)
for i, k ∈ {1, 2}. The reduced-order model (3), characterized by
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,G1,G2,H1,H2 is found by solving the following constrained
ptimization problem:

min
F ,G1,G2,H1,H2

J(F ,G1,G2,H1,H2) subject to (18a)

Υ(i,k)(jω) = 0∀ω ∈ Ω0
(i,k), i, k ∈ {1, 2}, (18b)

Q = Q⊤
≻ 0, (18c)

QF−

γ ⋆ + (F−

γ ⋆ )
⊤Q ≺ 0, (18d)

QF+

γ ⋆ + (F+

γ ⋆ )
⊤Q ≺ 0, (18e)

here F−

γ ⋆ = F−γ ⋆G2H1, F+

γ ⋆ = F+γ ⋆G2H1 and J(F ,G1,G2,H1,H2)
as defined in (17).

Problem 13 has the following interpretation. The minimization
of J(F ,G1,G2,H1,H2) in (18a) ensures an optimal fit between
the FRFs of the full-order and reduced-order model, for i, k ∈

{1, 2}, at the frequencies ΩM
(i,k), for i, k ∈ {1, 2}. The constraint

(18b) ensures that the FRF Φ(i,k) of the full-order model equals
the FRF Γ(i,k) of the reduced-order model at the interpolation
frequencies Ω i

0, i = 1, 2, for i, k ∈ {1, 2}. The remaining con-
straints (18c)–(18e) guarantee that the reduced-order Lur’e-type
model (3) preserves the convergence property of the full-order
Lur’e-type model (2) by satisfying the conditions of Theorem 8,
guaranteeing that a constant ε exists to solve Problem 9. More-
over, it is shown in Section 3 that Problem 9 minimizes the
constant ε in Problem 13.

Remark 14. For the sake of exposition, a frequency-dependent
weighting in the cost function (17) is not introduced; one could
trivially equip the cost function with such weighting. Weighting
can be useful to emphasize the importance of a good fit for
desired frequency ranges.

3. Solution to the approximate moment matching problem

First, a solution to Problem 13 is proposed in Section 3.1.
After that, it is shown how this solution also solves Problem 9
in Section 3.2. An overview of the reduction method is presented
in Section 3.3.

3.1. Solution to the optimization Problem 13

The proposed solution to Problem 13 works as follows. Firstly,
by application of time-domain moment matching for LTI mod-
els, a family of Lur’e-type models (3) is derived such that con-
straint (18b) of Problem 13 is satisfied. As shown below, this
step yields freedom in vectors G1,G2, which is exploited to solve
he optimization problem (18a) while satisfying the constraints
18c)–(18e) in order to ensure the convergence property.

.1.1. Family of reduced-order Lur’e-type models
Let us recall an adapted version of the time-domain mo-

ent matching method for SISO LTI models from Astolfi (2010).
onsider a minimal LTI model described by:

˙ = Ax + Bu, y = Cx, (19)

here x(t) ∈ Rn is the state, u(t) ∈ R is the input, y(t) ∈ R the
utput and A ∈ Rn×n,B ∈ Rn×1, C ∈ R1×n are model matrices.

Consider the reduced-order LTI model

ξ̇ = Fx + Gu, y = Hx, (20)

where ξ (t) ∈ Rν is the state, u(t) ∈ R is the input, y(t) ∈ R the
output and F ∈ Rν×ν, G ∈ Rν×1,H ∈ R1×ν are model matrices
and ν < n. The following theorem borrowed from Astolfi (2010) is
specialized to simple interpolation points on the imaginary axis.
6

Theorem 15. Consider the SISO LTI model (19) characterized by the
matrices A,B, C. Furthermore, consider the given matrix S ∈ Rν×ν
with eigenvalues σ (S) = {s1, . . . , sν}, the given matrix L ∈ R1×ν

and ν < n. Suppose Assumption 3 holds. Then, for any G ∈ Rν×1

such that σ (S)∩ σ (S − GL) = ∅, the reduced-order model (20) with
atrices F := S−GL,H := CΠ with Π ∈ Rn×ν the unique solution

to the Sylvester equation

AΠ + BL = ΠS, (21)

atches the 0th moments of LTI model (19) at the eigenvalues of S,
.e.,

(siI − A)−1B = H(siI − F)−1G, i = 1, . . . , ν.

Theorem 15 is applied to each of the transfer functions of
he LTI part of the Lur’e-type model (2) in order to satisfy con-
traint (18b). Hereto, we introduce matrices S(i,k) ∈ Rν(i,k) and
L(i,k) ∈ R1×ν(i,k) for i, k ∈ {1, 2}. Furthermore, we introduce the
notation σ (S(i,k)) ≃ Ω0

(i,k), i, k ∈ {1, 2}, meaning that if 0 < α ∈

Ω0
(i,k), then ±jα ∈ σ (S(i,k)) and if 0 ∈ Ω0

(i,k), then 0 ∈ σ (S(i,k)).
Loosely speaking, the notation σ (S(i,k)) ≃ Ω0

(i,k), i, k ∈ {1, 2},
ensures that the interpolation frequencies in Ω0

(i,k) are excited
by the signal generator. Using this notation, constraint (18b) is
satisfied by the results presented in the next theorem.

Theorem 16. Consider the LTI part of the Lur’e-type model (2)
characterized by matrices A, B1, B2, C1, C2. Consider the given sets
of frequencies Ω0

(i,k) ∈ Rη(i,k) and matrices S(i,k) ∈ Rν(i,k)×ν(i,k) , L(i,k) ∈

R1×ν(i,k) , i, k ∈ {1, 2}, and suppose that σ (S(i,k)) ≃ Ω0
(i,k), i, k ∈

{1, 2}. Furthermore, suppose all pairs (S(i,k), L(i,k)), i, k ∈ {1, 2}, sat-
isfy Assumption 3. For each i, k ∈ {1, 2}, application of Theorem 15
with (A,B, C) = (A, Bi, Ck) and (S, L) = (S(i,k), L(i,k)) results in an
LTI model of the form (20) with matrices(
F(i,k),G(i,k),H(i,k)

)
:= (F, G,H)

=
(
S(i,k) − G(i,k)L(i,k),G(i,k), CkΠ(i,k)

)
.

(22)

Then, under the conditions that G(i,k) ∈ Θ(i,k), i, k ∈ {1, 2}, with

Θ(i,k) :=
{
G(i,k) ∈ Rν(i,k) such that

σ
(
S(i,k)

)
∩ σ

(
S(i,k) − G(i,k)L(i,k)

)
= ∅

}
,

(23)

the LTI part of the Lure’-type model (3) characterized by the matrices

F = blockdiag
(
F(1,1), F(1,2), F(2,1), F(2,2)

)
, (24a)

G1 =

⎡⎢⎣G(1,1)
0

G(2,1)
0

⎤⎥⎦ , G2 =

⎡⎢⎣ 0
G(1,2)
0

G(2,2)

⎤⎥⎦ , (24b)

H1 =
[
H(1,1) H(1,2) 0 0

]
, (24c)

H2 =
[
0 0 H(2,1) H(2,2)

]
, (24d)

ensures that Υ(i,k)(jω) = 0 for ω ∈ Ω0
(i,k), i, k ∈ {1, 2}. Hence,

constraint (18b) of Problem 13 is satisfied.

Proof. The FRFs (14) of the LTI part of the Lur’e-type model (3)
with model matrices (24) reads as follows:

Γ(i,k) = H(i,k)
(
jωI − F(i,k)

)−1 G(i,k), i, k ∈ {1, 2}.

For each i, k ∈ {1, 2}, by Theorem 15, a match is ensured between
Γ(i,k)(s) and the FRF of the full-order model Φ(i,k)(s), for all s ∈

σ (S(i,k)) if condition (23) holds, i.e., Υ(i,k)(s) = 0 for all s ∈

σ (S(i,k)). Since σ (S(i,k)) ≃ Ω0
(i,k), i, k ∈ {1, 2}, we can conclude that

Υ(i,k)(s) = 0, i, k ∈ {1, 2} for all s ∈ σ (S(i,k)), hence constraint
(18b) of Problem 13 is satisfied. ■
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Theorem 16 presents the matrices of the LTI block of a family
of Lur’e-type models of the form (3) that satisfy constraint (18b).
The family is parametrized by G(i,k) ∈ Θ(i,k), i, k ∈ {1, 2}. In the
ext section, we present a method to find G(i,k) ∈ Θ(i,k), i, k ∈

{1, 2}, such that the remaining constraints (18c)–(18e) are also
satisfied, while (18a) is minimized.

Remark 17. The diagonal structure of the model matrix F in
(24a) leaves the dynamics decoupled between the four transfer
functions of the LTI block. A negative consequence is that when a
match is desired in all FRFs at the same frequency, then that same
frequency should be included in all Ω0

(i,k), i, k ∈ {1, 2}, which
results in a reduced-order model with a larger-than-needed state
dimension. As a remedy, one could apply moment matching for
multi-input, multi-output (MIMO) models, see Shakib, Scarciotti,
Pogromsky, Pavlov, and van de Wouw (2023), since the LTI part
of the Lur’e-type model is of MIMO nature. However, current
moment matching techniques only allow for moment matching
along the so-called tangential directions (Antoulas, 2005; Benner,
Gugercin, & Willcox, 2015; Gugercin, Antoulas, & Beattie, 2008).
As a consequence, not the individual FRFs are matched, but rather
their weighted sum, which is undesired in the scope of this
work as it does not allow for a straightforward frequency-domain
interpretation in terms of the four individual FRFs.

3.1.2. Constrained gradient-based optimization
Let us denote θ := {G(1,1),G(1,2),G(2,1),G(2,2)

}, which contains
ll to-be-optimized parameters. We note that the parameters θ
nly appear in the matrix F ,G1, and G2, see (24). Therefore, from
ere on, we write F (θ ),G1(θ ) and G2(θ ) to make their dependency

on θ clear. Next, we define Ĵ as follows:

Ĵ(θ ) := J(F (θ ),G1(θ ),G2(θ ),H1,H2) (25)

with J as in (17). Besides minimizing Ĵ , we aim to preserve the
convergence property, which is encoded in the constraints of the
following optimization problem:

θ̂ = argmin
θ∈Θ̄

Ĵ(θ ), (26)

where Θ̄ is the set of θ defined as follows:
Θ̄ = {θ ∈ (Rν(1,1) × Rν(1,2) × Rν(2,1) × Rν(2,2) ) :

∃P = P⊤
≻ 0 :

PF (θ )−γ ⋆ + (F (θ )−γ ⋆ )
⊤P ≺ 0,

PF (θ )+γ ⋆ + (F (θ )+γ ⋆ )
⊤P ≺ 0 }

(27)

with F (θ )±γ ⋆ := F (θ ) ± γ ⋆G2(θ )H1 and γ ⋆ as in Assumption 4. We
note that Θ̄ ⊂ {Θ (1,1),Θ (1,2),Θ (2,1),Θ (2,2)

}, i.e., for any θ ∈ Θ̄ ,
the condition (23) is satisfied, since satisfaction of (27) guarantees
that σ (F (θ )) ∈ C−, while σ (S(i,k)) ∈ C0 by Assumption 3 for
all i, k ∈ {1, 2}. One could interpret the minimum in (26) as
an infimum, for which a numerical solver should then find a
sufficiently accurate approximation of that infimum. A drawback
of the LMI constraints in (27) is that checking their feasibility
is computationally expensive and that current LMI solvers are
limited by the size of the LMIs being in the order of hundreds.
To enable a more efficient implementation, we note that θ ∈ Θ̄ if
and only if the constraint (12) holds for the reduced-order model,
i.e., supω∈R

⏐⏐Γ(1,2)(jω)
⏐⏐ < 1

γ ⋆
, which can be checked efficiently

sing, e.g., the method in Bruinsma and Steinbuch (1990).
The set Θ̄ in (27) is derived from the statements in Theorem 8

nd its LMI constraints are linear in P for fixed θ , hence the
onstraints in Θ̄ are LMIs. Since Ĵ in (26) is nonlinear in θ , by
gradient-based optimization, a local minimum of Ĵ at θ̂ can be
found, which solves the constrained optimization problem (26)
7

and, thereby, also solves the constrained optimization problem
(18a)–(18e) in Problem 13. To launch the gradient-based search
to solve (26), an initial convergent reduced-order model is re-
quired. A method to find such an initial convergent model is
addressed next.

3.1.3. Convergent initial reduced-order model
The full-order model satisfies the condition of Theorem 8

by Assumption 4. In particular, condition (11) is equivalent to
bounding the H∞ norm of the transfer function of the LTI block of
(2) from the nonlinearity ϕ to the output y by the constant 1/γ ⋆,
ee Pavlov et al. (2006), i.e.,

C1(sI − A)−1B2


∞
<

1
γ ⋆
, (28)

where the H∞-norm is defined for stable models, i.e., σ (A) ∈ C−,
as follows:C1(sI − A)−1B2


∞

:= sup
ω∈[0,∞)

|C1(jωI − A)−1B2|. (29)

To guarantee convergence of the reduced-order model, it is
required that the H∞ norm of the transfer function Γ(1,2) is
also bounded by the same constant 1/γ ⋆. Hereto, the following
lemma presents a reduced-order LTI model that achieves mo-
ment matching and preserves the H∞ norm of the full-order LTI
model.

Lemma 18. Consider the SISO LTI model (19) characterized by the
matrices A,B, C. Assume that σ (A) ∈ C− and

C(sI − A)−1B


∞
<

1/γ ⋆, implying that there exists a matrix P̄ ≻ 0 such that the LMIs
(11) are satisfied for A = A, B2 = B, C1 = C, P = P̄ and γ = γ ⋆.
Application of Theorem 15 for any matrix S ∈ Rν×ν and matrix
L ∈ R1×ν that satisfy Assumption 3 results in a reduced-order model
that achieves moment matching at σ (S). The reduced-order model is
of the form (20) with matrices (F, G,H) = (S − GL, G, CΠ ) and Π
the solution to the Sylvester equation in (21). Then, for

G :=
(
Π⊤P̄Π

)−1
Π⊤P̄B, (30)

the matrix F is Hurwitz, i.e., σ (F) ∈ C−, and the transfer function
of the reduced-order model satisfiesH(sI − F)−1G


∞
< 1/γ ⋆. (31)

Proof. The proof can be found in Appendix A. ■

The following theorem presents an LMI-based method to find
a parametrization θ◦

∈ Θ̄ for the reduced-order model such that
all conditions of Theorem 8 are satisfied.

Theorem 19. Consider the reduced-order Lur’e-type model (3) with
matrices (24) and suppose Assumption 4 holds for a certain γ ⋆. If
there exist symmetric positive definite matrices P(i,k) = P⊤

(i,k) ≻ 0 ∈

Rν(i,k)×ν(i,k) , matrices X(i,k) ∈ Rν(i,k) , for i, k ∈ {1, 2}, such that the
following two LMIs are satisfied:

L+

γ ⋆ +

(
L+

γ ⋆

)⊤

≺ 0 and L−

γ ⋆ +

(
L−

γ ⋆

)⊤

≺ 0 (32)

with

L±

γ ⋆ =

⎡⎢⎢⎣
P(1,1) 0 0 0

±γ ⋆X(1,2)H(1,1) P(1,2) ± γ ⋆X(1,2) 0 0
0 0 P(2,1) 0

±γ ⋆X(2,2)H(1,1) ±γ ⋆X(2,2)H(1,2) 0 P(2,2)

⎤⎥⎥⎦
and

P =P S − X L , i, k ∈ {1, 2},
(i,k) (i,k) (i,k) (i,k) (i,k)
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(1,2) =X(1,2)H(1,2).

hen, the conditions of Theorem 8 are satisfied for the reduced-order
Lur’e-type model (3) with model matrices G(i,k) = P−1

(i,k)X(i,k), i, k ∈

{1, 2}. Furthermore, condition (23) is satisfied, i.e., G(i,k) ∈ Θ(i,k) for
i, k ∈ {1, 2}. Finally, the set of LMIs (32) is feasible under the stated
assumptions.

Proof. The proof can be found in Appendix B. ■

The initial model matrices G◦

(i,k), i, k ∈ {1, 2}, found via The-
orem 19 and collected in θ◦, render the reduced-order Lur’e-
type model (3) convergent. Subsequently, θ◦ is used to launch
a gradient-based search to solve the constrained optimization
problem (26).

Remark 20. The results of Lemma 18 can be used beyond
the scope of finding an initial convergent Lur’e-type model as
presented in Theorem 19. For example, these results can be used
to compute a G such that moment matching is achieved for LTI
models and the ℓ2-gain of the full-order model is preserved.

3.2. Solution to the approximate moment matching Problem 9

The solution to Problem 13 has been presented in Section 3.1.
This section computes an error bound for the mismatch between
the moment of the full-order and reduced-order model, which
is used to compute a constant ε such that Problem 9 is solved.
Moreover, it is shown that this error bound holds in the more
generic case where inputs u are taken from the class of bounded,
periodic inputs L2(T ).

Thanks to Assumption 4 and because the reduced-order model
is also convergent, a worst-case upper bound on the error be-
tween the steady-state outputs z̄u of the full-order model and
ζ̄u of the reduced-order model can be formulated. Hereto, the
supremum of the mismatch over all FRFs is defined as follows:

Ῡ := max
i,k∈{1,2}

sup
ω∈R

|Υ(i,k)(jω)|. (33)

Theorem 21. Consider the full-order model with moment C2π (τ )
and the signal generator (13) with state τ (t) ∈ Rν . Suppose As-
umptions 3 and 4 hold for some γ = γ ⋆. Furthermore, consider
he reduced-order model with moment H2p(τ ) following from the
pplication of Theorem 16 and the optimization problem (26). Then,
he following mismatch between the moments C2π (τ ) and H2p(τ )
olds:

∥C2π (τ ) − H2p(τ )∥L2 ≤ Ῡ γ̄ ∥Lτ∥L2 (34)

ith

¯ :=

(
1 +

γρuγ
⋆

1 − γρϕγ ⋆

)(
1 +

γzϕγ
⋆

1 − γyϕγ ⋆

)
nd Ῡ as in (33) and the constants:

ρu := sup
ω∈R

|Γ(1,1)(jω)|, γρϕ := sup
ω∈R

|Γ(1,2)(jω)|,

γzϕ := sup
ω∈R

|Φ(2,2)(jω)|, γyϕ := sup
ω∈R

|Φ(1,2)(jω)|.

hereby, Problem 9 is solved for ε := Ῡ γ̄ . Moreover, for any
∈ L2(T ), the following upper bound on the steady-state output
ismatch holds:z̄u − ζ̄u


L2

≤ Ῡ γ̄ ∥u∥L2 =: Vu. (35)

roof. The proof can be found in Appendix C. ■
 /

8

The error bounds in Theorem 21 give the essential insight
hat a small mismatch in the FRFs of the LTI blocks results in
small error since the bounds in (34) and (35) are linear in Ῡ .
he optimization problem in (18a) aims at minimizing |Υ(i,k)(jω)|2

n a discrete frequency grid for ω, for all i, k ∈ {1, 2}, thereby,
lso minimizing Ῡ in (33). The formulated bounds in Theorem 21
re likely to be conservative due to (i) the stability conditions in
heorem 8 being conservative; (ii) the constant Ῡ holding for any

input u(t) ∈ L2(T ); (iii) usage of the worst-case approximation in
the derivation of γ ⋆; and (iv) usage of the triangular inequality,
which is conservative by its definition. Despite some conser-
vatism, the bounds give the valuable insight that the mismatch
in time-domain signals remains bounded for arbitrary input func-
tions selected from the space L2(T ). In a more generic setting
without a (global) stability assumption, bounded errors cannot
be guaranteed for reduced-order nonlinear models obtained by
reduction methods that do not impose a stability property on
the reduced-order models, including the time-domain moment
matching methods in Astolfi (2010) and Scarciotti and Astolfi
(2017a, 2017b).

Remark 22. The constant Ῡ can be made smaller by only
evaluating the supremum in (33) at the excited frequencies in the
corresponding FRF. The constant γ̄ in (34) and (35) can be made
smaller by redefining the constants γρu, . . . , γyϕ in Theorem 21
such that the supremum is not taken over ω ∈ R, but only at the
excited frequencies in the corresponding FRF.

3.3. Overview of the reduction method

An overview of the reduction method is presented in Algo-
rithm 1.

Algorithm 1 Model order reduction algorithm
Input: Full-order Lur’e-type model Σ in (2), the constant γ ⋆ as in
ssumption 4 and the sets of frequenciesΩ0

(i,k),Ω
M
(i,k), i, k ∈ {1, 2}.

1: Define the signal generators (Si, Li), i = 1, 2, in (13) such that
σ (Si) ≃ Ω i

0 and Assumption 3 holds for each pair.
2: For each i, k ∈ {1, 2}, compute the matrices CΠ(i,k) from (21)

with A = A,B = Bi, and C = Ck.
3: Define the reduced-order model matrices

F (θ ),G1(θ ),G2(θ ),H1, and H2, as in (24).
4: Compute initial θ◦ using Theorem 19.
5: Using ΩM

(i,k), i, k ∈ {1, 2} and θ◦, solve the constrained
optimization problem (26) to find θ̂ .

Output: Reduced-order model Σr in (3) with model matrices
F (θ̂ ),G1(θ̂ ),G2(θ̂ ),H1, and H2 as in (24).

4. Case study

4.1. Model of a flexible beam

In this case study,1 a one-sided clamped flexible beam sup-
orted by a one-sided spring is considered, see Fig. 3 for a
chematic depiction. The beam has dimensions length × width

× height = 2 m × 50 mm × 30 mm and is characterized
by its Young’s modulus of 200 GPa and density of 7746 kg/m3.
he linear beam dynamics, characterized by partial differential
quations, are discretized by the finite-element method on a
niform spatial grid of 200 points, leaving a state dimension of
= 800 consisting of position coordinates, velocity coordinates,

1 Matlab code for this example is available via the following link: https:
/github.com/FahimShakib/.

https://github.com/FahimShakib/
https://github.com/FahimShakib/
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Fig. 3. One-sided clamped flexible beam supported by a one-sided spring.

Fig. 4. Bode magnitude diagram of the LTI parts of the Lur’e-type models Σ
(full-order model — solid blue), Σr (final reduced-order model — dashed red)
and Σ◦

r (initial reduced-order model — dotted yellow). The interpolation points
Ω

(i,k)
0 , i, k ∈ {1, 2} in (39) are marked by a cross (the interpolation point at 0 Hz

is not visible).

inclination coordinates, and angular velocity coordinates. The
beam deflection at the end of the beam is considered as the model
output z, see Fig. 3. Furthermore, the output y is considered as the
eflection of the beam at the location of the one-sided spring.
oreover, an external disturbance u(t) acts in the middle of the
eam. The Bode magnitude diagram of the LTI part of the full-
rder LTI model is depicted in the solid blue curve in Fig. 4. The
ne-sided spring is modeled as

(y) = γ max(0, y) (36)

with stiffness γ = 7.3 · 105, which is also the maximum slope of
he nonlinearity. The model is cast in the Lur’e-type form of (2)
nd is denoted by Σ . The conditions of Theorem 8 are satisfied

for the aforementioned γ , which guarantees that the full-order
odel is convergent.
The goal of this example is to use the reduction method de-

cribed in Algorithm 1 to find a reduced-order Lur’e-type model
hat approximates the moment of the full-order Lur’e-type model.
urthermore, the method in Scarciotti and Astolfi (2017b) for
eneric nonlinear models is also applied, which does not enforce
ny type of model stability. The two models allow comparing the
teady-state mismatch between the model responses for different
isturbance situations.

.2. Moment matching for generic nonlinear models

In this subsection, we demonstrate the application of the
ethod in Scarciotti and Astolfi (2017b). Consider a linear har-
9

monic oscillator s(τ ) = Sτ , S ∈ Rν×ν, σ (S) ∈ C0, and l(τ ) =

τ , L ∈ R1×ν . A linear signal generator in combination with a
unction δ(ξ ) = G ∈ Rν (i.e., independent of ξ ) results in the
reduced-order dynamics of Wiener form:

ξ̇ = (S − GL)ξ + Gu,
ψ = h(π (ξ )),

(37)

here the ξ -dynamics are linear and the model output ψ is
static nonlinear map of the state, see Scarciotti and Astolfi

2017b). Under the assumption that the pair (S, L) is observable,
he eigenvalues of (S − GL) can be placed at any desired location
n C− by a suitable G ∈ Rν . The eigenvalues of (S − GL) being
ocated in C− guarantees that model (37) is convergent.

The signal generator is characterized by the following pair
S, L):

= π

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 0 20.4 0 0 0 0
0 −20.4 0 0 0 0 0
0 0 0 0 125.2 0 0
0 0 0 −125.2 0 0 0
0 0 0 0 0 0 360
0 0 0 0 0 −360 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

L =
[
1 1 0 1 0 1 0

]
,

(38)

nd the initial condition τ (0) = L⊤. This pair of (S, L) satisfies
he conditions of Assumption 1 and corresponds to the inter-
olation points s = 2π · {0,±10.2j,±62.6j,±180j}, yielding a
tate-dimension of 7 for the reduced-order model. The numerical
alues for G are found by a pole placement procedure that places
he poles of the reduced-order dynamics in (37) to a subset of
oles of the LTI part of the full-order Lur’e-type model. It is
on-trivial to compute the mapping h ◦π analytically. Therefore,
nspired from Scarciotti and Astolfi (2017b), steady-state data is
enerated on a uniform time grid by simulation of the full-order
odel by means of the MTF algorithm, see Pavlov et al. (2013).
his data is subsequently used to estimate a mapping between τ
nd z̄u using linear least-squares regression, where the estimated
apping is a second-order polynomial in the elements of τ .
The reduced-order model reads as (37) with h ◦π replaced by

◦̂ π . In the remainder of this section, model (37) is called the
educed-order Wiener model. The performance of the reduced-
rder Wiener model is presented in Section 4.4.

.3. Moment matching for Lur’e-type models

In this subsection, the application of Algorithm 1 for Lur’e-type
odels is demonstrated. The following interpolation points for

he reduction of the LTI part are selected:
(1,1)
0 =

[
0 10.2 62.6 180

]
,

(1,2)
0 =

[
0 10.2 64.1 180

]
,

(2,1)
0 =

[
0 10.2 65.7 180

]
,

Ω
(2,2)
0 =

[
0 10.2 64.1 180

]
.

(39)

he selected frequencies imply a match of the respective FRF at
-Hz and at the first three largest resonance peaks, see Fig. 4
here the interpolation frequencies are marked by crosses. Sub-
equently, the matrices (S(i,k), L(i,k)), i, k ∈ {1, 2}, are defined as
ollows:

S(i,k) := blockdiag
(
0,Ξ (i,k)

2 , . . . ,Ξ
(i,k)
η(i,k)

)
,

(i,k)
ℓ :=

[
0 ω

(i,k)
ℓ · 2π

−ω
(i,k)
ℓ · 2π 0

]
,

(i,k) [ ] 1×ν(i,k)

(40)
L := 1 1 0 . . . 1 0 ∈ R ,
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here ω(i,k)
k is the kth element of Ω (i,k)

0 ∈ Rη
(i,k)

. Assumption 3
olds for all pairs and σ (S(i,k)) ≃ Ω

(i,k)
0 , i, k ∈ {1, 2}. Based on the

number of interpolation points, it can be concluded that the state
dimension of the reduced-order model is 28. Note that the state
dimension of the reduced-order Lur’e-type model is four times
larger than the state dimension of the reduced-order Wiener
model presented in Section 4.2.

The LMIs in Theorem 19 are solved to obtain θ◦, that, together
with (24), constitute the initial convergent reduced-order Lur’e-
type model Σ

◦

r in (3). The Bode magnitude diagram of Σ◦
r is

shown in Fig. 4 in the dotted yellow curve. It can be observed
that the respective FRFs of the LTI part of Σ and Σ◦

r match at the
corresponding interpolation points in (39), i.e., constraint (18b)
is satisfied. However, for other frequencies, there is a significant
mismatch.

Consider the sets Ω (i,k)
M = 2π · 10κ =: ΩM , κ ∈ RM ,

with M = 1000 linearly spaced elements between −2 and 5,
implying that elements of the set ΩM are logarithmically spaced
between 0.01 Hz and 10 kHz. Next, the constrained optimization
problem (26) is solved in less than 60 s (on an Intel Core i7-
7700HQ, 2.8 GHz processor), starting from the initial parameter
vector θ◦. The resulting θ̂ defines the (final) convergent reduced-
order Lur’e-type model Σr in (3). The Bode magnitude plot of
the LTI part of Σr is depicted in the dashed red curve in Fig. 4.
With respect to Σ◦

r , a significant improvement of the fit of Σr
to Σ can be observed at almost all frequencies. Furthermore,
it can be concluded that an accurate match is obtained up to
the frequency corresponding to the third-largest resonance peak.
After that frequency, the FRF of the reduced-order model does not
match any of the (anti-) resonance peaks.

4.4. Performance of reduced-order models

By means of simulations, the quality of the reduced-order
Wiener and Lur’e-type model in terms of approximating the
steady-state response of the full-order Lur’e-type model is an-
alyzed. Throughout the rest of this section, z̄ is called the steady-
state output of the full-order model, ζ̄Wiener is the steady-state
output of the reduced-order Wiener model and ζ̄Lur ′e is the
steady-state output of the (final) reduced-order Lur’e-type model.

The steady-state output z̄ of the interconnected full-order
model (5) with (S, L) in (38) and τ (0) = L⊤ is depicted in Fig. 5,
together with the steady-state outputs ζ̄Wiener and ζ̄Lur ′e of the
reduced-order Wiener and Lur’e-type models. It can be observed
that the beam deflection is in the order of 100 µm, whereas the
approximation error is roughly two orders of magnitude smaller.
This concludes that both reduced-order models accurately ap-
proximate z̄. The same conclusion can be drawn from the column
‘Training’ of Table 1, where it can be seen that the approximation
error in the L2-norm is roughly three orders of magnitude smaller
than the norm of z̄. The best approximation is obtained by the
reduced-order Lur’e-type model.

To further investigate the accuracy of the reduced-order mod-
els, all models are subject to a test with the following two new
inputs:

u1(t) =

10∑
k=1

sin(2πkf 10 t), (41a)

u2(t) =

10∑
k=1

sin(2πkf 20 t), (41b)

where f 10 = 10 Hz is the base frequency of u1 and f 20 = 100 Hz
is the base frequency of u2. The input u1 excites the beam up to

the frequency of 100 Hz, for which an accurate match between

10
Fig. 5. Top: Steady-state outputs z̄, ζ̄Wiener and ζ̄Lur ′e subject to the input
generated by linear harmonic oscillator characterized by (S, L) in (38). Bottom:
Mismatch between the steady-state outputs z̄ and ζ̄Wiener and between outputs
¯ and ζ̄Lur ′e .

Fig. 6. Top: Steady-state outputs z̄, ζ̄Wiener and ζ̄Lur ′e subject to input u1 in (41a).
ottom: Mismatch between the steady-state outputs z̄ and ζ̄Wiener and between
utputs z̄ and ζ̄Lur ′e .

he FRFs of the LTI part of the full-order and reduced-order Lur’e-
ype model is obtained. The input u2 excites the beam up to
he frequency of 1 kHz, which also excites frequencies for which
he match in FRF is not accurate. It can be observed in Fig. 6
hat for u1, the accuracy of the reduced-order Wiener model
eteriorated significantly. The accuracy of ζ̄Lur ′e, on the other
and, is comparable to the previous test. At this point, it can
lready be concluded that the reduced-order Lur’e-type model
pproximates the steady-state output well as long as the input
ignal excites roughly the same frequencies as those matched in
he FRFs. For input u2, however, the accuracy of the reduced-order
iener model has a significant mismatch in the 0-Hz compo-
ent, see Fig. 7. The reduced-order Lur’e-type model, however,
pproximates the steady-state response of the full-order model
easonably well, even for input signals that contain frequencies
or which not a good match is obtained in the FRF. The mismatch
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Table 1
Quantitative performance analysis containing the L2-norm of the output signal z̄ and the error signals. The elapsed time for model simulation
using the simulation algorithm in Pavlov et al. (2013) is given in the ‘Time’ columns.

Training Time [s] Validation 1 u1 (t) Time [s] Validation 2 u2 (t) Time [s]

∥z̄∥L2 1.46 · 10−4 767.75 1.27 · 10−4 32.75 1.30 · 10−6 3.528z̄ − ζ̄Wiener

L2

2.38 · 10−7 0.156 2.84 · 10−5 0.016 2.01 · 10−5 0.098z̄ − ζ̄Lur ′e

L2

1.63 · 10−7 0.776 1.02 · 10−7 0.053 5.27 · 10−7 0.011

Vu 1.40 – 1.98 – 1.98 –
m
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Fig. 7. Top: Steady-state outputs z̄, ζ̄Wiener and ζ̄Lur ′e subject to input u2 in (41b).
ottom: Mismatch between the steady-state outputs z̄ and ζ̄Wiener and between
utputs z̄ and ζ̄Lur ′e .

s quantified in Table 1, from which the same conclusions can be
rawn.
Table 1 includes the upper bound Vu in (35) for the mismatch

z̄ − ζ̄Lur ′e

L2
. It can be concluded that this bound is satisfied in

ll cases and is conservative for this case study. Furthermore, this
able includes in the columns ‘Time’ the elapsed model simulation
ime using the simulation algorithm in Pavlov et al. (2013). It
an be concluded that both the reduced Wiener model and the
educed Lur’e-type model are computationally much cheaper to
imulate than the full-order Lur’e-type model.

.5. Discussion

The case study highlights the benefits of the reduction ap-
roach; namely, the reduced-order model preserves the conver-
ence property and provides robustness to input variations. The
teady-state mismatch between the response of the full-order
nd reduced-order Lur’e-type models depends on the quality of
he fit in the FRFs. In particular, if the FRFs are fitted accu-
ately over a large frequency range, then the reduced-order Lur’e-
ype models generally approximate the steady-state output accu-
ately, even though only approximate moment matching (rather
han moment matching) is achieved. Such frequency-domain in-
ights are valuable because in many engineering applications
se frequency-domain tools for analysis and control design. The
odel robustness against input variations is generally lacking in
ther moment matching methods, e.g., the ones in Astolfi (2010)
nd Scarciotti and Astolfi (2017a, 2017b). However, as explained
n Remark 17, the state dimension of the reduced-order model is
ypically larger than that of the reduced-order models obtained
y other moment matching methods (Astolfi, 2010; Scarciotti &
stolfi, 2017a, 2017b) and also the balanced truncation-based
11
ethods (Besselink et al., 2011; Padoan et al., 2021). The lat-
er, however, do not guarantee the a priori preservation of the
tability property if the reduced-order model dimension is too
mall. For instance, in the considered case study, the approach
n Besselink et al. (2011) can only reduce to order 248 with the
uaranteed preservation of the convergence property.

. Conclusions

This paper proposes a model order reduction technique by
ime-domain moment matching for Lur’e-type nonlinear mod-
ls that enjoy the convergence property. The reduction method
pproximates the moment of the nonlinear model rather than
atching it exactly. Preservation of the convergence property of

he full-order model guarantees that the reduced-order model ex-
ibits a bounded and asymptotically stable steady-state response
or any bounded input and provides robustness against input
ariations. Furthermore, it allows deriving a bound on the mis-
atch between the moment of the full-order and reduced-order
odels. Moreover, the Lur’e-type structure of the model is pre-
erved during reduction, and the characteristic frequency-domain
nterpretation of moment matching is inherited. In a numeri-
al case study on a one-sided supported beam, the moment of
he reduced-order model matches accurately the moment of the
ull-order model. Furthermore, the reduced-order model also ac-
urately captures the steady-state response to generalized inputs.

ppendix A. Proof of Lemma 18

roof. The following notation for real square matrices A is used:
e(A) := A + A⊤.
The matrix F = S − GL is Hurwitz and the inequality in (31)

olds if and only if there exists a positive definite matrix Q such
hat

e
(
Q (S − GL ± γ ⋆GCΠ )

)
≺ 0. (A.1)

et us show that (A.1) holds for the specific choice G in (30) and
:= Π⊤P̄Π . Note that this choice for matrix Q ensures that it

s positive definite, i.e., Q ≻ 0, since Π is full column rank, see,
.g., Ionescu, Astolfi, and Colaneri (2014). Furthermore, note that
G = Π⊤P̄B. Substitution of this G and Q in (A.1) results in:

e
(
Π⊤P̄ΠS −Π⊤P̄BL ± γ ⋆Π⊤P̄BCΠ

)
≺ 0. (A.2)

ote that the Sylvester Eq. (21) can be rewritten as:

L = ΠS − AΠ, (A.3)

hich is substituted in (A.2) to yield:

e
(
Π⊤P̄ΠS −Π⊤P̄(ΠS − AΠ ) ± γ ⋆Π⊤P̄BCΠ

)
= He

(
Π⊤P̄AΠ ± γ ⋆Π⊤P̄BCΠ

)
= He

(
Π⊤P̄

(
A ± γ ⋆BC

)
Π

)
≺ 0. (A.4)

o show that (A.4) holds, first note that since by assumption
C(sI − A)−1B


∞
< 1/γ ⋆, the following LMIs hold

e
(
P̄(A ± γ ⋆BC)

)
≺ 0 (A.5)
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or some positive definite matrix P̄ . Pre- and post-multiplication
f (A.5) with Π⊤ and Π , respectively, concludes that (A.4) is
egative definite (since Π is full column rank). Therefore, we
onclude that (31) must hold and that the matrix F is Hur-
itz. The reduced-order model achieves moment matching since
(F) ∩ σ (S) = ∅, guaranteed by σ (F) ∈ C− while σ (S) ∈ C0 by
ssumption 3. ■

ppendix B. Proof of Theorem 19

roof. We first prove that if the LMIs in (32) are satisfied, then
ll the conditions of Theorem 8 are satisfied. After that, we prove
hat there always exists a feasible solution to the LMIs in (32).

Condition (10) is satisfied for the same γ ⋆ as in Assump-
ion 2 thanks to the nonlinear function ϕ in the reduced-order
odel (3) being the same nonlinear function as in the full-
rder model in (2). The LMI condition in (11) with (A, B2, C1)

replaced by (F ,G2,H1) in (24), respectively, is equivalent to (11)
for P = blockdiag(P(1,1), P(1,2), P(2,1), P(2,2)) and the change of
ariables X(i,k) = P(i,k)G(i,k), i, k ∈ {1, 2}. Thus, the satisfaction
f the LMIs (32) is equivalent to satisfaction of the LMIs (11) of
heorem 8. Therefore, satisfaction of the LMIs (32) guarantees
hat all the reduced-order Lur’e-type model (3) with G(i,k) =
−1
(i,k)X(i,k), i, k ∈ {1, 2}, satisfies all the conditions of Theorem 8.
Satisfaction of LMIs (11) guarantees that the matrix F is Hur-

itz, i.e., σ (F ) ∈ C−, which in turn guarantees that G(i,k) ∈ Θ(i,k)
or i, k ∈ {1, 2}, since σ (S(i,k)) ∈ C0, which completes this part of
he proof.

Finally, we prove the feasibility of the LMI condition in (32).
hanks to the block-triangular structure of L±

γ ⋆ , for the first
i, k) = (1, 1), third (i, k) = (2, 1) and fourth (i, k) = (2, 2)
lock diagonal elements, feasibility of (32) is guaranteed if and
nly if there exists a G(i,k) such that σ (S(i,k) − G(i,k)L(i,k)) ∈ C−.
uch a G(i,k) exists by the observability assumption on the pairs
S(i,k), L(i,k)), i, k ∈ {1, 2}. For the second block diagonal element
i, k) = (1, 2), the feasibility of (32) is equivalent to the existence
f a G(1,2) such that the H∞ norm of the corresponding transfer
unction is bounded by 1/γ ⋆. Hereto, we apply the results of
emma 18, which shows that there exists a specific G(1,2) such
hat the H∞ norm of the corresponding transfer function is
ounded by 1/γ ⋆. Since such a G(1,2) exists, we conclude that the
MIs (32) are feasible under the stated assumptions. ■

ppendix C. Proof of Theorem 21

roof. We start by recalling some inequalities before proving
he theorem. For a single-input–single-output LTI model char-
cterized by (A, B, C) and excited by a T -periodic input u ∈

2(T ), if the matrix A is Hurwitz, there exists a unique globally
xponentially stable T -periodic steady-state solution x̄u(t) with
he corresponding steady-state output ȳu with ȳu ∈ L2(T ). Hence,
his model defines a linear operator gyu : L2(T ) → L2(T ) according
o

yuu(t) = ȳu(t). (C.1)

he transfer function of model (A, B, C) from input u to output y
eads as Gyu(s) := C(sI − A)−1B, s ∈ C. We recall from Pavlov
t al. (2013) that

gyuu

L2

≤ sup
m∈Z

|Gyu(jmω)| ∥u∥L2 ≤ γyu ∥u∥L2 (C.2)

with ω := 2π/T , γyu := supω∈R |Gyu(jω)|. For every transfer
unction of the LTI part of the full-order and reduced-order Lur’e-
ype model, a linear operator between inputs u, ϕ and outputs
12
y, z, ρ and ζ can be defined consistent with gyu in (C.1). Then, for
any input u(t) ∈ L2(T ), the following relation holds:(gyu − gρu)u(t)


L2

≤ Ῡ ∥u(t)∥L2 , (C.3)

with Ῡ the constant defined in (33). Since Ῡ bounds the mis-
match in all Υ(i,k), i, k ∈ {1, 2}, similar relations hold also for the
other involved FRFs with the same constant Ῡ . Furthermore, by
the satisfaction of the conditions in Theorem 8 (for both the full-
order and reduced-order models), the following bounds hold for
signals ȳ(t), ρ̄(t) ∈ L2(T ):

∥ϕ(ȳ(t)) − ϕ(ρ̄(t))∥L2 ≤ γ ⋆ ∥ȳ(t) − ρ̄(t)∥L2 , (C.4a)

∥ϕ(ȳ(t))∥L2 ≤ γ ⋆ ∥ȳ(t)∥L2 , (C.4b)

here γ ⋆ is the constant in Assumption 4 (incremental sec-
or condition of the nonlinearity). Moreover, satisfaction of the
onditions in Theorem 8 guarantees that

⋆γyϕ < 1 and γ ⋆γρϕ < 1 (C.5)

ith γyϕ and γyϕ defined in Theorem 21.
It is shown in this proof that the bound (34) is a special case

f the bound (35). Therefore, we prove the latter first and show
t the end of the proof that the former is implied. Observe that
he steady-state response of the full-order model satisfies

¯(t) = gyϕϕ(ȳ(t)) + gyuu(t), (C.6a)

z̄(t) = gzϕϕ(ȳ(t)) + gzuu(t), (C.6b)

nd that the steady-state response of the reduced-order model
atisfies

¯ (t) = gρϕϕ(ρ̄(t)) + gρuu(t), (C.7a)

ζ̄ (t) = gζϕϕ(ρ̄(t)) + gζuu(t). (C.7b)

onsider the difference:

¯(t) − ζ̄ (t) =gzϕϕ(ȳ(t)) − gζϕϕ(ρ̄(t)) + (gzu − gζu)u(t)
=gzϕ(ϕ(ȳ(t)) − ϕ(ρ̄(t)))

+ (gzϕ − gζϕ)ϕ(ρ̄(t)) + (gzu − gζu)u(t).
(C.8)

aking the L2-norm and using inequalities (C.3) and (C.4a) results
n

z̄(t) − ζ̄ (t)

L2

≤γzϕγ
⋆
∥ȳ(t) − ρ̄(t)∥L2

+ Ῡ
(
γ ⋆ ∥ρ̄(t)∥L2 + ∥u∥L2

) (C.9)

with γzϕ defined in Theorem 21.
Next we upper bound the terms ∥ȳ(t) − ρ̄(t)∥L2 and ∥ρ̄(t)∥L2 .

onsider the difference

¯(t) − ρ̄(t) =gyϕϕ(ȳ(t)) − gρϕϕ(ρ̄(t)) + (gyu − gρu)u(t)
=gyϕ(ϕ(ȳ(t)) − ϕ(ρ̄(t)))

+ (gyϕ − gρϕ)ϕ(ρ̄(t)) + (gyu − gρu)u(t).
(C.10)

Again, taking the L2-norm and using inequalities (C.3) and (C.4a)
results in

∥ȳ(t) − ρ̄(t)∥L2 ≤γyϕγ
⋆
∥ȳ(t) − ρ̄(t)∥L2

+ Ῡ
(
γ ⋆ ∥ρ̄(t)∥L2 + ∥u(t)∥L2

)
, (C.11)

≤
Ῡ

1 − γ γ ⋆

(
γ ⋆ ∥ρ̄(t)∥L2 + ∥u(t)∥L2

)
.

yϕ
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he latter step is allowed since γyϕγ ⋆ < 1 by (C.5). Lastly, using
gain inequalities (C.3) and (C.4a), we find:

∥ρ̄(t)∥L2 =
gρϕ ϕ̄(ρ(t)) + gρuu(t)


L2
, (C.12a)

≤ γρϕγ
⋆
∥ρ̄(t)∥L2 + γρu ∥u(t)∥L2 , (C.12b)

≤
γρu

1 − γρϕγ ⋆
∥u(t)∥L2 , (C.12c)

here γρu is defined in Theorem 21. The latter step is again
llowed since γρϕγ ⋆ < 1 by (C.5).
Substitution of (C.12c) into (C.11) and (C.9) and collecting

erms yields the bound presented in (35), which completes the
roof of the bound (35).
Finally, we show that the bound (34) is a special case of

he bound (35). Observe that the moment C2π (τ ) coincides with
he steady-state response z̄u of the full-order model and that
the moment H2p(τ ) coincides with the steady-state response ζ̄u
of the reduced-order model. Therefore, we can replace the left-
hand side of (35) with the left-hand side of (34). Furthermore,
substituting Lτ (output of the signal generator) for the input u in
(35) results in the bound (34), which completes the proof. ■
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