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Abstract— Mechanical ventilators sustain life of patients that
are unable to breathe on their own. The aim of this paper
is to improve pressure tracking performance of a nonlinear
mechanical ventilation system using linear repetitive control,
while guaranteeing stability. This is achieved by using feedback
linearization and subsequently applying linear repetitive control
to the linearized plant. The design procedure of this control
strategy is developed in this paper. Thereafter, the controller
is implemented in simulations and experiments showing su-
perior pressure tracking performance of this control strategy
compared to standard feedback control.

I. INTRODUCTION

Mechanical ventilators are essential equipment in Intensive
Care Units (ICUs) to assist patients who cannot breathe on
their own or need support to breathe sufficiently. The goal
of mechanical ventilation is to ensure adequate oxygenation
and carbon dioxide elimination [1], and thereby sustaining
the patient’s life. In 2005 over 790,000 patients required
ventilation in the United States alone [2]. Therefore, improv-
ing mechanical ventilation improves treatment for a large
population worldwide, especially during the flu-season or a
world wide pandemic, such as the COVID-19 pandemic.

In pressure-controlled ventilation modes, the mechanical
ventilator aims to track a pressure profile at the patient’s
airway set by a clinician [3]. An example of such profile is
depicted in Fig. 1. The Inspiratory Positive Airway Pressure
(IPAP) and Positive End-Expiratory Pressure (PEEP) induce
airflow in and out of the lungs, respectively. This alternating
flow of air allows the lungs to exchange CO2 for O2 in the
blood.

Accurate tracking of the preset pressure profile ensures
sufficient patient support and enhances patient comfort.
According to [4], improved pressure tracking can prevent
patient-ventilator asynchrony. In [5], patient-ventilator asyn-
chrony is even associated with increased mortality rates.
Furthermore, accurate tracking for a wide variety of patients
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improves consistency of treatment over these different pa-
tients.

The challenging problem of pressure tracking in presence
of widely varying and uncertain patients parameters has
spurred the development of a wide range of pressure control
methodologies. Some examples of such control strategies
applied to mechanical ventilation are variable-gain control
in [4], adaptive feedback control in [6], model predictive
control in [7], and adaptive hose compensation control in
[8] and [9]. All those methods improve pressure tracking
performance in mechanical ventilation.

Pressure tracking performance has been improved further
using learning control strategies by exploiting the repetitive
nature of breathing. Learning control strategies, such as
Iterative Learning Control (ILC) ([10], [11], and [12]) and
Repetitive Control (RC) ([13], [14], [15], and [16]), can
achieve superior tracking performance utilizing the repetitive
nature of breathing, i.e., the target pressure. In these learning
control strategies, the controller learns an input signal using
errors of previous tasks. In other application fields, with
repetitive tasks, ILC and RC are successfully implemented,
e.g., industrial robotics [10], wafer stages [17], printer sys-
tems [18] and [19], and in medical applications for a device
to help with stroke rehabilitation [20].

Since an exact plant model is typically unavailable and
breathing is a repeating process, such learning control strate-
gies are particularly suitable for mechanical ventilation. In
[21] and [22], ILC has been applied to mechanical ventila-
tion. They show a significant performance improvement in
experiments and simulations. However, only causal filters are
used in the ILC design. In sharp contrast, non-causal filters
can potentially improve performance significantly because
of the delays that are present in ventilation systems, as
mentioned in [23] and [9]. Furthermore, RC may be more
suitable than ILC for ventilation systems because there is
no system reset in between tasks, i.e., breaths. Therefore,
in [24], RC with non-causal filters is applied to mechanical
ventilation. Through an experimental case-study in [24], it is
shown that RC improves performance significantly, up to a
factor 10 in terms of the pressure error 2-norm, for a wide
variety of patients.

Although learning control has substantially improved pres-
sure tracking performance of mechanical ventilation, stability
is typically ensured for a set of linearized plants and not
for the full nonlinear dynamics of the ventilation system
caused by the nonlinearity of the hose. Therefore, the aim
of this paper is to use repetitive control to improve tracking

Tom Oomen
Linear repetitive control for a nonlinear mechanical ventilation system using feedback linearization
Joey Reinders, Bram Hunnekens, Tom Oomen, and Nathan van de Wouw
In 2021 5th IEEE Conference on Control Technology and Applications, San Diego, California, 2021



IPAP

PEEP

Inspiration Expiration

Samples

P
re
ss
u
re

Inspiration Expiration

0 N 2N

Fig. 1. Typical airway pressure for two breathing cycles of pressure
controlled ventilation, showing the set-point ( ) and the typical response
( ).

performance of the non-linear mechanical ventilation system
while providing stability guarantees. This is achieved by
applying feedback linearization to obtain a linearized plant.
Thereafter, linear RC is applied to this linearized plant,
rendering the standard RC stability proofs valid.

The main contribution of this paper is the design of a
control strategy for a non-linear mechanical ventilation sys-
tem that combines feedback linearization and linear repetitive
control. The first sub-contribution is that this combination of
feedback linearization and linear repetitive control renders
the stability and convergence analysis for linear repetitive
control valid when it is applied to a non-linear system. The
second sub-contribution is a performance analysis of this
control strategy in simulations and in experiments.

The outline of this paper is as follows. In Section II,
the considered system, the control goal, and the envisioned
solution are presented. Then, in Section III, the dynamic
model of the nonlinear ventilation system is presented.
Thereafter, in Section IV, the control concept and design
procedure are explained. Then, in Section V, the feedback
linearized RC strategy is applied in a simulation case study.
Next, in Section VI, the feedback linearized RC strategy is
applied in an experimental case study. Finally, in Section
VII, the main conclusions and extensions for future work
are presented.

II. CONTROL PROBLEM

The considered nonlinear ventilation system is described
in Section II-A. Thereafter, the control problem and chal-
lenges are presented in Section II-B. Then, in Section II-C,
a high-level description of the control framework is given.

A. High-level system description

A schematic of the considered blower-patient-hose system,
with the relevant parameters, is shown in Fig. 2. The main
components of this system are the blower, the hose-filter
system, and the patient.

The blower compresses ambient air to achieve the desired
blower outlet pressure pout . The change in pout is controlled
to achieve the desired airway pressure paw near the patient’s
mouth. The airway pressure is measured using a pilot line
attached to the module and the end of the hose. All pressures
are defined relative to the ambient pressure, i.e., pamb = 0.

The hose-filter system connects the blower to the patient.
The difference between the outlet pressure and the airway
pressure results in a flow through the hose Qout , related by

pout paw plung

Qleak

QpatQout

paw pilot line

fhose(Qout) Rlung

Rleak
Clung

pamb = 0

Hose-filter system Patient

paw sensor

Blower

Fig. 2. Schematic representation of the blower-hose-patient system, with
the corresponding resistances, lung compliance, pressures, and flows.
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Fig. 3. Pressure drop over the hose ∆p versus the outlet flow Qout . Showing
a measured data points of a calibration and a fit of the considered nonlinear
hose model.

a nonlinear hose resistance model fhose. A visualization of
the nonlinear hose characteristics is shown in Fig. 3. This
figure shows a non-linear model fitting the calibration data
accurately. The change in airway pressure paw results in two
flows, namely, the leak flow Qleak and the patient flow Qpat .
The leak flow is used to flush exhaled CO2-rich air from the
hose. The patient flow is required to ventilate the patient.

The patient is modeled as a resistance Rlung and a com-
pliance Clung. The patient flow Qpat is a result of the lung
resistance and the difference between the airway pressure paw
and the lung pressure plung, i.e., the pressure inside the lungs.
The patient flow results in a change in the lung pressure, the
relation between patient volume and lung pressure is given
by the lung compliance.

B. Control goal and open challenge

This paper considers Pressure Controlled Mandatory Ven-
tilation (PCMV) of fully sedated patients. The goal in PCMV
is to track a given airway pressure reference, i.e., preset
by the clinician, repeatedly, see Fig. 1 for an example
reference. This reference is exactly periodic with a period
length of N samples. Besides this reference pressure, no other
disturbances are considered to be present.

Because of the plant variations, the delays in the system,
and the repetitive nature of the reference signal, repetitive
control (RC) has been successfully applied to achieve supe-
rior tracking performance in PCMV for a variety of patient
in [24]. However, in [24] the stability properties of the
closed-loop system are guaranteed for Frequency Response
Functions (FRFs) characterizing the linearized dynamics at



different steady-state pressure levels, i.e., linearizations of
the actual non-linear mechanical ventilation system around
certain steady-state working points. Therefore, the stability
analysis does not hold for time-varying pressure levels during
operation. The challenge of ensuring stability is tackled in
this paper.

C. Control approach
Here, a high-level explanation of the control approach in

this paper is presented. The goal of this control approach is to
achieve the superior performance of RC, while guaranteeing
stability for time-varying target pressure levels. This is
achieved by first using feedback linearization to retrieve a
linearized plant. Thereafter, linear RC is used to achieve the
desired tracking performance.

As seen in (2), the hose resistance contains a nonlinear
component. In order to linearize the nonlinear plant, this
nonlinearity has to be compensated for. To achieve this,
an estimate of the quadratic hose resistance R̂quad is used
in a positive feedback loop similar to the hose-resistance
compensation strategy in [9]. If the estimate is correct, i.e.,
R̂quad = Rquad , this results in a linearized plant. Details
and the results of this feedback linearization method are
presented in Section IV-A.

Thereafter, a linear repetitive controller is designed for this
linearized plant. This is done similar to the method presented
in [24]. However, in this paper we consider only one adult
patient instead of designing the repetitive controller for a
variety of patients. This is done without loss of generality
and merely for the sake of simplicity and clarity. The design
procedure of this repetitive controller is described in Section
IV-B.

III. NONLINEAR VENTILATION SYSTEM DYNAMICS

In this section, the most important equations of the non-
linear ventilation system are presented. These equations are
used to model the separate components: the blower, the hose,
and the patient. Finally, it is described how these separate
components are connected.

For the blower model, it is assumed that an internal control
loop of the blower results in a transfer function from the
control input pcontrol to pout that is equal to one, i.e.,

pout(t) = pcontrol(t). (1)

According to [9], the pressure drop over the hose-filter
system can be modeled accurately with a nonlinear algebraic
equation defined as

∆p = fhose(Qout) := RlinQout +RquadQout |Qout | (2)

with ∆p := paw− pout the pressure drop over the hose, Rlin
the linear resistance component, and Rquad the quadratic
resistance component. The inverse of this nonlinear hose
model gives an expression for the outlet flow

Qout = f−1
hose(∆p)

= sign(∆p)
−Rlin +

√
R2

lin +4Rquad |∆p|
2Rquad

.
(3)

pout +

−

∆p
f−1
hose(∆p)

Qout
+

−

Qpat Rlung

1
Clungs

+
+

plung

1
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Qleak
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+

R̂quadQout|Qout|

pcontrol

e−τds
p̃aw

pfbl

Fig. 4. Block diagram showing how the different components of the plant
are interconnected. The feedback linearization method is visualized in red.
With feedback linearization this gives the linearized plant Plin.

The leak is modeled as a linear resistance, which gives
the leak flow

Qleak =
paw− pamb

Rleak
=

paw

Rleak
. (4)

The patient is modeled with a linear one-compartmental
lung model, as described in [25], as follows:

ṗlung =
paw− plung

ClungRlung
=

1
Clung

Qpat . (5)

These different components are connected using conserva-
tion of flow, i.e., Qout = Qleak +Qpat . Combining conserva-
tion of flow with (3), (4), and (5) results in the full nonlinear
dynamics. The full nonlinear state-space model is omitted
for brevity. This nonlinear dynamics can be represented by
a block diagram as shown by the black part of Fig. 4, where
the red part should be neglected for now.

IV. FEEDBACK LINEARIZATION FOR REPETITIVE
CONTROL WITH GUARANTEED CLOSED-LOOP STABILITY

In this section, the proposed control structure and design
methodology are presented. Before going into details about
the design methodology, the challenge and the high-level
solution are described.

The main challenge is a result of the nonlinear system
dynamics in combination with the repetitive target pressure
for breathing. Because of the repetitive target pressure the
Internal Model Principle (IMP), as described in [26], can
be exploited. The IMP states that asymptotic disturbance
rejection of an exogenous disturbance is achieved if a model
of the disturbance generating system is included in a sta-
ble feedback loop. Therefore, we would like to include a
disturbance generating system of our target pressure in our
feedback loop to achieve asymptotic tracking of this target
pressure for our nonlinear system.

RC is exploiting the IMP and can be used to achieve
asymptotic rejection of a repetitive disturbance. However,
stability analysis and design methods for RC are typically
developed for linear systems. Therefore, in Section IV-A, we
are using feedback linearization to reduce our plant to a linear
plant. Thereafter, in Section IV-B, a repetitive controller
design methodology for this linear plant is presented, such
that high performance is achieved and stability is guaranteed.



A. Feedback linearization of the ventilation system

A linearized plant is retrieved by applying feedback lin-
earization to the nonlinear ventilation system in Section III.
The feedback linearization method uses an estimated value
of the quadratic hose resistance R̂quad to compensate the
nonlinear resistance term Rquad of the actual hose in (2). This
is achieved by adding the estimated contribution of the non-
linear component of the hose, i.e., p f bl := R̂quadQout |Qout |,
to the plant input, see the red part of Fig. 4. Intuitively,
the pressure drop caused by the quadratic part of the hose
resistance in (2) is added to the outlet pressure to compensate
the nonlinear term in the hose model.

Mathematically, it is shown that this linearizes the sys-
tem if R̂quad = Rquad . The proposed feedback linearization
strategy results in the following pressure drop over the hose:

∆p = pcontrol + p f bl− paw. (6)

Assuming that the estimate R̂quad is indeed the same as the
true quadratic resistance parameter, i.e., R̂quad = Rquad , and
substitution of (6) in f−1

hose(∆p) results in:

Qout =
pcontrol− paw

Rlin
. (7)

Therewith, the nonlinear resistance term Rquad is eliminated,
if R̂quad = Rquad holds. Hence, a linear system is retrieved.
Concluding, feedback linearization results in the following
linearized system:

ṗlung = Al plung +Bl pcontrol[
paw
Qpat

]
= Cl plung +Dl pcontrol

(8)

with

Ah =−
Rlin +Rleak

ClungR̄
, Bh =

Rleak

ClungR̄
,

Ch =
[

RlinRleak
R̄ −Rlin+Rleak

R̄

]T
,

Dh =
[

RleakRlung
R̄

Rleak
R̄

]T
,

(9)

and R̄ := RlinRleak +RlinRlung +RleakRlung. Note that due to
the output delay of τd on paw, the measured airway pressure
is defined as p̃aw(t) := paw(t−τd). This gives the linearized
plant transfer function with output delay:

Plin(s) =
p̃aw(s)

pcontrol(s)
(10)

=
(Rleak +ClungRleakRlungs)e−τds

Rleak +ClungRleakRlungs+Rlin(1+Clung(Rleak +Rlung)s)

with s ∈C the Laplace variable. The linear plant Plin is used
for repetitive controller design in the next section.

B. Repetitive controller design

In this section, a linear repetitive controller is designed
for the linearized plant Plin in (10). To achieve this, a brief
background, stability properties, and the design methodology
of an add-on repetitive controller are explained.

A closed-loop control system with a feedback controller
and an add-on RC is depicted in Fig. 5. For the design

ptarget e p̃aw
− Plin,dC

pcontrol

Q
R

z−N L

f

Fig. 5. Block diagram of a classic feedback control system including an
add-on repetitive controller.

and implementation of the repetitive controller discrete-time
filters are developed. Therefore, the transfer function of the
linearized plant Plin, in (10), is discretized, this discrete
transfer function is denoted by Plin,d . Furthermore, in Fig.
5, C is a linear stabilizing feedback controller, R is the add-
on RC, the robustness filter is denoted by Q, the learning
filter is denoted by L, and N denotes the length of a single
breath in samples, the breath length is visualized in Fig. 1.
The repetitive controller is designed in the z-domain, based
on the discrete-time plant model Plin,d .

For N-periodic disturbances, a model of the disturbance
generating system can be obtained using a memory loop.
Including this memory loop in the control loop, see Fig.
5 with Q = L = 1, results in a transfer function from the
reference to the error with infinite disturbance rejection at
the harmonics of N. Hence, a reference signal that is exactly
periodic with period length N is perfectly tracked. In the
remainder of this section, stability and filter design for RC
are briefly addressed.

The stability conditions considered in this paper are a
special case of the conditions in [15, Theorem 4]. Stability
conditions independent of N are desired because the breath
length can be changed by a clinician. Hence, conditions
independent of N allow for filter design independent of the
target signals length N. Therefore, the Single-Input Single-
Output (SISO) stability condition in Theorem 1 is commonly
used, which is a special case of the multi-variable case in
[15, Theorem 4] and is independent of N.

Theorem 1: [15, Theorem 4] Assume that S = (1 +
Plin,dC)−1 and T = 1− S are asymptotically stable. Then,
the closed-loop system with repetitive control of Fig. 5 is
asymptotically stable for all N if

|Q(z)(1−T (z)L(z))|< 1,∀z = eiω ,ω ∈ [0,2π). (11)

�

Using the stability condition in Theorem 1, the following
two-step design procedure is followed for SISO RC systems,
see [13], [27], [28], and [19].

Procedure 1: (Frequency-domain SISO RC design, from
[19]).

1) Given a parameteric model of the complementary sen-
sitivity T (z), construct a learning filter L(z) as an
approximate stable inverse of T (z), i.e., L(z)≈ T−1(z).



2) Using a model T (eiω), design a robustness filter Q(z)
such that Theorem 1 is satisfied.

This procedure describes a systematic robust design
method for RC. In step 1, the L filter is based on a parametric
model of the system. This first step can be motivated by
considering L= T−1, which results in |Q(z)(1−T (z)L(z))|=
0< 1,∀z= eiω ,ω ∈ [0,2π). Therefore, stability is guaranteed
if L = T−1. In case T is non-minimum phase or strictly
proper, algorithms such as Zero Phase Error Tracking Control
(ZPETC), see [29], can be used to obtain a stable L filter.
Then, in step 2, a robustness filter is added to ensure stability
and improve robustness to modeling errors. This is done
by using a model of the complementary sensitivity T and
checking the stability condition in Theorem 1.

Moreover, the memory loop allows for implementation of
non-causal filters. This is possible because the signals can
be shifted by N samples in time. This property is used to
compensate for the error introduced by the output delays
using pre-actuation, i.e., the plant is actuated before the
reference is changing. Furthermore, the robustness filter Q is
implemented as a non-causal filtering to avoid phase delay,
this is achieved by shifting a symmetric FIR-filter.

Concluding, this control strategy allows design methods
for linear repetitive control, with its stability guarantees,
to be applied to the nonlinear ventilation system. This is
achieved by first linearizing the nonlinear system by feed-
back linearization. Thereafter, a linear repetitive controller is
designed for this linearized plant.

V. SIMULATION RESULTS

In this section, the proposed control strategy of Section
IV is applied in a simulation case study. First, the consid-
ered use-case is described in Section V-A. Thereafter, the
designed controller is presented in Section V-B. Finally, the
simulation results are presented in Section V-C.

A. Simulation case description

In the simulation and experimental case study an adult
patient scenario from the ISO standard for PCMV obtained
from Table 201.104 in NEN-EN-ISO 80601-2-12:2011
(NEN, Delft, The Netherlands) is considered. For this stan-
dardized scenario, the patient parameters, the ventilator set-
tings, and the considered hose parameters are given in Table
I. In the simulations and experimental case study, three differ-
ent control strategies are compared. More specifically, a pure
PID control strategy, the proposed linear repetitive control
strategy with feedback linearization, and linear repetitive
control without feedback linearization are compared.

B. Controller design

In this section, the final controller designs for the simu-
lation case study are presented. First, the benchmark PID
controller is presented. Then, the feedback linearization
method is explained. Finally, the filter design for the RC
strategies is presented.

The benchmark PID controller, which is also used in
the RC strategies, is a pure integral controller that is im-
plemented as shown in Fig. 5. This controller is robustly

TABLE I
PATIENT PARAMETERS AND VENTILATION SETTINGS USED FOR FILTER

DESIGN AND IN THE SIMULATIONS AND EXPERIMENTS.

Parameter Adult Unit
Rlung 5 mbar s / L
Clung 50 L/mbar ·10−3

Respiratory rate 15 breaths / min
PEEP 5 mbar
IPAP 15 mbar
Inspiratory time 1.5 s
Expiratory time 2.5 s
Rlin 1.7 mbar s/L
Rquad 1.6 mbar s2/L2

Rleak 43.1 mbar s/L

designed to ensure stability for a large variation of plants.
The transfer function of this controller is C(z) = 0.01257

z−1 , with
sampling time 2×10−3 s.

The feedback linearization method is implemented as
described in Section IV-A, where R̂quad is assumed to be
retrieved using a calibration such that R̂quad = Rquad . This
feedback linearization results in the linearized plant Plin given
by (8).

Before designing the RC filters, it is argued that for both
RC strategies the same filters should be used. Linearizing the
nonlinear plant at a blower outlet flow zero, i.e., Qout = 0,
gives the same linear plant as Plin. Furthermore, it is known
in practice that the outlet flow through the hose will be both
positive and negative. Therefore, designing the filters with
the plant that is linearized around zero outlet flow, i.e., Plin,
makes sense for the system without feedback linearization
as well.

Using the discretization of the linearized plant Plin, de-
noted by Plin,d , and the proposed PID controller C, inter-
connected as shown in Fig. 5, the complementary sensitivity
T is computed and Procedure 1 is followed to compute the
RC filters. First, a stable inverse of T is computed using
ZPETC which gives the learning filter L. In simulations, we
exactly know what T is and can implement non-causal filters
in the memory loop. Therefore, an exact inverse of T can
be implemented as a learning filter L. Hence, the stability
criterion in Theorem 1 is always satisfied for a robustness
filter Q = 1. To resemble the experiments more closely, the
same Q filter as in the experiments is used in the simulations.
As a Q filter, a 20th-order symmetric FIR filter with a cutoff
frequency of 23 Hz is used. Using this Q filter, stability
of the system with feedback linearization is ensured using
Theorem 1. Note that we cannot check stability for the non-
linear system without feedback linearization.

Finally, a learning gain α is added to the learning filter.
This means that the learning filter is multiplied by a gain
α ∈ (0,1]. Low values for this learning gain reduce the
convergence rate but do avoid that non-periodic disturbances,
such as noise, are fed back into the loop. Therewith, the
pressure tracking performance upon convergence can be
improved. For the controllers in this study, it is found that
α = 0.5 gives the desired trade-off between convergence
speed and reduction of the effect of noise.



Fig. 6. Simulation results of the 20th breath in time domain upon conver-
gence of the repetitive controllers. Showing the target pressure ( ), the
PID control strategy ( ), repetitive control without feedback linearization
( ), and repetitive control with feedback linearization ( ).

C. Results

The control strategies designed in the previous section are
implemented in simulations with the use case as presented in
Section V-A. The results of these simulations are presented
in Fig. 6 and 7.

The time-domain results for the three control strategies
are shown in Fig. 6. This figure shows the airway pressure
of all control strategies upon convergence. The figure shows
that the PID controller achieves a sub-optimal rise-time and
has significant overshoot, which can damage the patient’s
lungs. Furthermore, the figure shows that both RC strategies
achieve near perfect tracking upon convergence, the airway
pressure is almost exactly the same as the target pressure.
This improves the patient’s comfort and avoids harmful peak
pressures.

The error 2-norm per breath for every control strategy is
shown in Fig. 7. It shows that the error two norm of the PID
controller is approximately 35 mbar. Furthermore, it shows
that both RC strategies converge to a significantly smaller
error 2-norm just above 10−1 mbar. The error 2-norm also
shows that the feedback linearization results in a smaller
initial error and faster convergence of the RC controller. The
reduced initial error is a result of the feedback linearization.
The faster convergence is a result of the fact that L resembles
the linearized T−1 better over the entire flow region. More
precisely, in the feedback linearized case L = T−1 holds
exactly for every pressure level. In the case without feedback
linearization a linear T−1 that holds for every pressure level
does not exist.

Concluding, RC with feedback linearization results in
faster convergence and a slightly lower error upon con-
vergence. Furthermore, stability is guaranteed. Next, these
control strategies are compared in experiments.

VI. EXPERIMENTAL RESULTS

In this section, the proposed control strategy of Section
IV is applied in an experimental case study, the particular
case study, i.e., patient type and pressure levels, is the same
as in Section V. First, the experimental setup is presented

Fig. 7. Error 2-norm per breath for every control strategy in simulations.
This figures contains the PID control strategy ( ), the RC without feedback
linearization ( ), and the RC with feedback linearization ( ).

Respiratory

module

Ventilation

hose
Sensor

tube

Power supply

dSpace

Patient

emulator

Fig. 8. Experimental setup with the most important parts, i.e., blower
driven ventilator, ASL 5000 breathing simulation, dSpace module, and the
hose.

in Section VI-A. Thereafter, the final designed controller is
presented in Section VI-B. Finally, the experimental results
are presented in Section VI-C.

A. Experimental setup

The main components of the experimental setup used in
this case study are depicted in Fig. 8. The figure shows
a Macawi blower-driven mechanical ventilation module
(DEMCON macawi respiratory systems, Best, The Nether-
lands). Furthermore, the ASL 5000™Breathing Simulator
(IngMar Medical, Pittsburgh, PA) is shown in the figure.
This breathing simulator is used to emulate a linear one-
compartmental patient model. Furthermore, a typical hose-
filter system for ventilation of a patient in a hospital setting is
shown. The developed control algorithms are implemented in
a dSPACE system (dSPACE GmbH, Paderborn, Germany).

B. Controller design

Again, three different controllers are considered, the
benchmark PID controller, the linear RC without feedback
linearization, and the linear RC with feedback linearization.
In this section, the final designs for these controllers for the
experimental case study are presented.
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Fig. 9. Showing an FRF measurement of the complementary sensitivity T
( ) and a fourth order fit of the complementary sensitivity ( ).

The benchmark PID controller, which is also used in the
RC strategies, is the same controller as in the simulations.
Also the feedback linearization strategy is the same as in
the simulation case study. The estimate R̂quad is retrieved
through a calibration procedure prior to ventilation, as shown
in Fig. 3. Furthermore, the same argumentation as in the
simulations is used to design the same Q and L filter for
both RC strategies.

The filters for the repetitive controller are retrieved by first
taking an FRF measurements of the open-loop plant. This
open-loop FRF measurement and the considered feedback
controller are combined to retrieve a non-parametric model
of the complementary sensitivity TFRF as depicted in Fig.
9. Next, a fourth-order fit of this process sensitivity is
used to retrieve a parameteric model of the complementary
sensitivity Tf it , also shown in Fig. 9. A stable inverse of this
parametric model Tf it is computed with ZPETC to retrieve
the learning filter L. Next, stability is checked with Theorem
1 and this result is visualized in Fig. 10. This figure shows
that stability is guaranteed with Q = 1. However, to improve
robustness against plant variations a Q filter is added as
depicted in Fig. 10. This Q filter is a 20th-order symmetric
FIR filter with a cutoff frequency of 23 Hz. This results in
more robustness against plant variations. Finally, to reduce
the effect of non-periodic disturbances a learning gain α of
0.5 is added to both repetitive control strategies.

C. Results

The control strategies designed in the previous section are
implemented in the experimental setup of Section VI-A with
the use case as presented in Section V-A. The results of these
experiments are presented in Fig. 11 and 12.

The time-domain results of the 20th breath for the three
control strategies are shown in Fig. 11. This figure shows the
airway pressure of all control strategies upon convergence.
The results are similar to the simulation results. The figure
shows that the PID controller achieves a sub-optimal rise-
time and has significant overshoot, which is non-optimal for
the patient’s lungs. Furthermore, the figure shows that the RC
strategies achieve near perfect tracking upon convergence,
the airway pressure is almost exactly the same as the target
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Fig. 10. Stability condition for the experimental setup. Showing Q as a
low-pass filter with cut-off frequency at 23 Hz ( ), the stability condition
(11) with Q = 1 ( ), and the stability condition (11) with Q the low-pass
filter ( ).

Fig. 11. Experimental results of the 20th breath in time domain upon con-
vergence of the repetitive controllers. Showing the target pressure ( ), the
PID control strategy ( ), repetitive control without feedback linearization
( ), and repetitive control with feedback linearization ( ).

pressure. This improves the patient’s comfort and avoids
harmful peak pressures.

The error 2-norm per breath for every control strategy is
shown in Fig. 12. It shows that the error two norm with
the PID controller remains around 35 mbar. Furthermore,
it shows that both RC strategies converge to a significantly
smaller error 2-norm of approximately 3 mbar. Also it shows
that the feedback linearization results in a smaller initial
error.

Besides the different initial error norm these experiments
do not show a large difference between the RC strategies.
Therefore, it would be interesting in future work to test
this control strategy on a system with a more dominant
nonlinearity. This might increase the effect of feedback
linearization, resulting in faster convergence. However, sta-
bility is guaranteed for the closed-loop system with feedback
linearization and repetitive control. In contrast to the other
control strategies, for which no stability guarantees are
provided.



Fig. 12. Error 2-norm per breath for every control strategy in experiments.
This figures contains the PID control strategy ( ), the RC without feedback
linearization ( ), and the RC with feedback linearization ( ). This figure
shows that both RC strategies achieve very accurate tracking performance.

VII. CONCLUSIONS

In this paper, linear repetitive control in combination with
feedback linearization is applied to a nonlinear mechanical
ventilation such that the closed-loop stability properties of
linear repetitive control are valid for this nonlinear plant.

The main contribution of this paper is the combination
of feedback linearization and linear repetitive control, such
that the closed-loop nonlinear ventilation system is stable. In
addition, the performance of the control strategy is analyzed
by means of simulations and experiments. In simulations,
it is shown that convergence speed of the repetitive con-
troller is improved by applying feedback linearization. The
performance in terms of error 2-norm upon convergence
are similar for the method with and without feedback lin-
earization. Thereafter, in experiments it is shown that the
repetitive controller achieves accurate pressure tracking. The
experiments show no significant effect on the performance
by adding feedback linearization. However, the closed-loop
system with feedback linearization and repetitive control is
guaranteed to be stable. Whereas, no stability guarantees for
the other presented control strategies are provided.
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