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Abstract— In this paper, we consider the global output
regulation problem for systems with an output depending non-
linearity. If the system model is known and the corresponding
regulator equations are solvable, an observer-based controller
solving the global output regulation problem is presented.
Sufficient conditions for the existence of such a controller are
formulated in terms of an LMI. If the system parameters
are not exactly known and the nonlinearity can vary over
a given class, we show that there exists a robust controller
provided that the robust output regulation problem for the
system without the nonlinearity is solvable and that there exists
a suboptimal solution to a certain H∞ optimization problem.

I. INTRODUCTION

In this paper we address the output regulation prob-
lem, which includes the problems of tracking reference
signals and rejecting disturbances generated by an external
autonomous system (exosystem). For linear systems, this
problem was thoroughly investigated in 1970-s [1], [2].
For nonlinear systems, intensive research started with the
papers [3] and [4], which provided solutions to the local
output regulation problem for general nonlinear systems.
These papers were followed by a number of results dealing
with different aspects of the output regulation problem for
nonlinear systems: approximate, robust and adaptive output
regulation, see [5] and references therein.

At the moment, most of the existing results on the output
regulation problem for nonlinear systems are either local
or semiglobal. This can be explained by the fact that in
the local case one can still use linear techniques to make
desired trajectories locally asymptotically stable; semiglobal
solutions are usually based on high-gain controllers or
observers, which allow to cope with nonlinearities in a
bounded region of the state space, see e.g. [6]. The global
output regulation problem requires a better “understanding”
of the system dynamics on the whole state space, which
makes it difficult to tackle. Only a few global results exist
and are mostly limited to systems which are linear in the
unmeasured variables [7], [8], see also [9], [10] for recent
results on the global robust output regulation problem.
A new approach to solving the global output regulation
problem was proposed in [11]. The approach is based
on the so-called incremental stability property [12], [13],
[14], [15] (in [16] the incremental stability is used in the
context of the local output regulation problem). Within this
approach, a controller is designed in such a way that the
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closed-loop system has the following properties: a) there
exists a solution of the closed-loop system on which the
regulated output equals to zero and b) every solution of the
closed-loop system is globally asymptotically stable. These
two properties imply that the desired solution is globally
asymptotically stable. This approach can be beneficial if
the desired trajectory is known to exist, but is not known
in advance, which is the case in robust output regulation.

Here, we apply the incremental stability approach to
systems with an output depending nonlinearity, also known
as Lur’e systems. The structure of such systems allows us to
formulate straightforward LMI-based sufficient conditions
for solvability of the global output regulation problem
both for state- and output-feedback cases. If the system
contains uncertainties both in the system matrices and in the
nonlinearity, we show that the problem of finding a robust
controller can be reduced to solving the linear robust output
regulation problem for the system without the nonlinearity
and finding a suboptimal solution to a certain H∞ optimiza-
tion problem. The robust output regulation problem with
gain-bounded uncertainties has been previously considered
in [17] for the case of linear systems with linear (dynamical)
uncertainties and for nonlinear systems in [18] for the case
of approximate local output regulation. We provide a global
solution to the robust output regulation problem for linear
systems with nonlinear static uncertainties.

The paper is organized as follows. In Section II, we for-
mulate the global output regulation problem and introduce
some preliminary notions and results. The main results are
given in Section III – on an observer-based controller design
and in Section IV – on a robust controller design. Section V
contains examples and Section VI presents conclusions.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider systems modelled by equations of the form

ẋ = Ax + Bu + Dφ(z) + Pw (1)

z = Czx + Qzw (2)

e = Crx + Qrw (3)

y = Cx + Qw, (4)

with state x ∈ R
n, control u ∈ R

m, auxiliary output z ∈ R,
regulated output e ∈ R

l and measured output y ∈ R
p. The

nonlinearity φ(z) is scalar and continuously differentiable.
The exogenous signal w(t) ∈ R

k, which can be viewed as
a disturbance in equation (1) or as a reference signal in (3),
is generated by the exosystem

ẇ = Sw, (5)
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where S is such that all its eigenvalues are simple and lie
on the imaginary axis. Such exosystem generates constant
signals and harmonic signals at a fixed set of frequencies.

The nonlinearity φ(z) is assumed to belong to a class
F(γ) defined as

F(γ) :=

{
φ(·) ∈ C1 : φ(0) = 0,

∣∣∣∣∂φ

∂z
(z)

∣∣∣∣ ≤ γ

}
. (6)

The global output regulation problem is formulated in the
following way: find, if possible, a feedback of the form

ξ̇ = η(ξ, y) (7)

u = θ(ξ, y)

such that a) all solutions of the system

ẋ = Ax + Bθ(ξ, y) + Dφ(Czx + Qzw) + Pw (8)

ξ̇ = η(ξ, y) (9)

y = Cx + Qw (10)

ẇ = Sw (11)

are bounded and satisfy

e(t) = Crx(t) + Qrw(t) → 0 as t → +∞;

b) for w(t) ≡ 0 the origin (x, ξ) = (0, 0) is a globally
asymptotically stable equilibrium of (8)–(10).

If system (1)-(4) depends on some vector of parameters
H ∈ R

h, with a nominal value H◦, we say that controller
(7) is structurally stable with respect to H if properties a)
and b) hold for all H from some neighborhood of H◦. If
a) and b) hold for all H ∈ R

h, we call the controller (7)
robust with respect to H. We call controller (7) robust with
respect to φ(·) ∈ F(γ), if properties a) and b) hold for all
φ(·) ∈ F(γ).

Quadratic stability

Prior to solving the problem, we introduce and discuss
the following notion.
Definition 1. A matrix function A(χ) ∈ R

n×n, χ ∈ R
k, is

called quadratically stable if for some P = PT > 0 and
Q = QT > 0

PA(χ) + A(χ)TP ≤ −Q, ∀χ ∈ R
k. (12)

The purpose of this notion becomes clear from the following
lemma, see [12], [13].

Lemma 1: Consider the system

ζ̇ = F (ζ, v(t)), (13)

where ζ ∈ R
n, v(t) ∈ R

m is a continuous input defined on
t ∈ [0,+∞), and F is C1 with respect to ζ and continuous
with respect to v. Suppose ∂F

∂ζ
(ζ, v) is quadratically stable.

Then, for every continuous bounded v(t) every solution of
system (13) is globally exponentially stable (GES) with a
rate of convergence independent of v(t).

Notice, that for Lur’e systems

ζ̇ = F (ζ, v) := Aζ + Dφ(z) + f1(v) (14)

z = Czζ + f2(v)

with a scalar nonlinearity φ(·) ∈ F(γ), it holds that

∂F

∂ζ
(ζ, v) = A +

∂φ

∂z
(z)DCz ∈ co{A−,A+}, (15)

where A− := A − γDCz , A+ := A + γDCz . Therefore,
quadratic stability of ∂F

∂ζ
(ζ, v) can be established by check-

ing feasibility of the following LMI:

PA− + (A−)TP < 0,

PA+ + (A+)TP < 0 (16)

P = PT > 0

Indeed, if (16) is feasible, then any matrix function Ã(ζ, v)
satisfying Ã(ζ, v) ∈ co{A−,A+} for all (ζ, v) ∈ R

n+m

is quadratically stable with a matrix P satisfying (16). In
particular, due to (15), ∂F

∂ζ
(ζ, v) is also quadratically stable.

Solvability of the LMI (16), in turn, can be established by
the circle criterion. This is stated in the following lemma
(see e.g. [19], [20]).

Lemma 2: Suppose, the matrix A is Hurwitz. Then, the
LMI (16) is feasible iff

∣∣Cz(iωI −A)−1D
∣∣ < 1/γ, ∀ ω ∈ R.

Next, consider system (14) with control u and measured
output y given by

ζ̇ = Aζ + Dφ(z) + f1(v) + Bu (17)

z = Czζ + f2(v)

y = Cζ + f3(v).

For the sake of designing controllers and observers, it is of
interest to find out under what conditions there exist matri-
ces K and L such that ∂F

∂ζ
(ζ, v) +BK and ∂F

∂ζ
(ζ, v) + LC

are quadratically stable. These conditions can be expressed
in terms of an LMI, as follows from the next lemma (see
e.g. [21]).

Lemma 3: Consider system (17).
i) Suppose, the LMI

A−P + P(A−)T + BY + YTBT < 0,

A+P + P(A+)T + BY + YTBT < 0, (18)

P = PT > 0.

is feasible. Then, ∂F
∂ζ

(ζ, v)+BK is quadratically stable for
K = YP−1, where Y and P satisfy (18).
ii) Suppose, the LMI

PA− + (A−)TP + XC + CTX T < 0,

PA+ + (A+)TP + XC + CTX T < 0, (19)

P = PT > 0.

is feasible. Then, ∂F
∂ζ

(ζ, v) + LC is quadratically stable for
L = P−1X , where X and P satisfy (19).
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III. OBSERVER-BASED CONTROLLER

The results in this section are based on the assumption
of solvability of the so-called regulator equations:
A1 There exist C1 mappings π(w) and c(w) defined on R

m

and satisfying the relations π(0) = 0, c(0) = 0 and

∂π

∂w
Sw = Aπ(w) + Bc(w) + Dφ(Czπ(w) + Qzw) + Pw,

Crπ(w) + Qrw = 0. (20)

In the sequel, the following notations will be used:

A−

c (γ) := A − γDCz, A+
c (γ) := A + γDCz,

where γ > 0 is such that φ(·) ∈ F(γ). In order to
simplify the subsequent formulas, we will write A−

c instead
of A−

c (γ) and A+
c instead of A+

c (γ). Let us first consider
the static state feedback case when the states x and w are
available for measurements, i.e. y = (x,w).

Theorem 1: Consider system (1)-(4) with y = (x,w) and
exosystem (5). Suppose, assumption A1 holds, φ(·) ∈ F(γ)
and the LMI

A+
c Pc + Pc(A

+
c )T + BY + YT BT < 0,

A+
c Pc + Pc(A

+
c )T + BY + YT BT < 0, (21)

Pc = PT
c > 0.

is feasible. Then, the global output regulation problem is
solved by a controller of the form

u = c(w) + K(x − π(w)), K := YP−1
c , (22)

where Pc and Y satisfy (21) and π(w) and c(w) satisfy
(20).
Proof: Consider the closed-loop system

ẋ = F (x,w) + B(c(w) + K(x − π(w))), (23)

where F (x,w) := Ax + Dφ(Czx + Qzw) + Pw. By the
choice of K, the Jacobian of the right-hand side of (23),
which equals ∂F

∂x
(x,w) + BK, is quadratically stable (see

(21) and Lemma 3). Thus, by Lemma 1, every solution of
the closed-loop system is GES. Due to assumption A1, for
any solution w(t) of the exosystem (5), system (23) has a
solution x̄w(t) := π(w(t)) along which e(t) ≡ 0. Hence,
x̄w(t) is GES and for any other solution x(t) it holds that

e(t) = Crx(t)+Qrw(t) −−−−→
t→+∞

Crπ(w(t))+Qrw(t) ≡ 0.

Since w(t) is bounded, π(w(t)) is also bounded. This
implies boundedness of all solutions of the closed-loop
system. Since w(t) ≡ 0 is a solution of the exosystem (5)
and π(0) = 0, then for w(t) ≡ 0 the origin x̄0(t) ≡ π(0) =
0 is GES. �

Next, we consider the case when only the output y is
available for feedback. At this point, we will need the
following notations: C := [C,Q],

A−

o (γ) :=

[
A − γDCz P − γDQz

0 S

]
,

A+
o (γ) :=

[
A + γDCz P + γDQz

0 S

]
.

The following theorem provides conditions for the solvabil-
ity of the global output regulation problem in the case of
output feedback.

Theorem 2: Consider system (1)-(4) and exosystem (5).
Suppose, the following conditions are satisfied: assumption
A1 holds, φ(·) ∈ F(γ) and the LMIs (21) and

PoA
+
o + (A+

o )TPo + XC + CTX T < 0,

PoA
−

o + (A−

o )TPo + XC + CTX T < 0, (24)

Po = PT
o > 0.

are feasible. Then, the global output regulation problem is
solved by a controller of the form

u = c(ŵ) + K(x̂ − π(ŵ)) (25)
˙̂x = Ax̂ + Bu + Dφ(ẑ) + Pŵ + L1(ŷ − y) (26)
˙̂w = Sŵ + L2(ŷ − y) (27)

ẑ = Czx̂ + Qzŵ, ŷ = Cx̂ + Qŵ (28)

with K = YP−1
c , where Pc and Y satisfy (21), and L =

[LT
1 , LT

2 ]T = P−1
o X , where Po and X satisfy (24).

Proof: Here, we provide a sketch of the proof. A detailed
proof (for a more general class of systems) can be found in
[11]. Consider system (1)-(4) in closed-loop with (25)-(28).
Denote ∆x = x̂ − x, ∆w = ŵ − w,

ξ :=

[
x
w

]
, ∆ξ =

[
∆x
∆w

]
.

The closed-loop system can be written in the form

ẋ = F (x,w) + BU(x,w) + Bρ(∆x,∆w) (29)

∆ξ̇ = G(ξ + ∆ξ) − G(ξ) (30)

u = U(ξ + ∆ξ), (31)

where
U(x,w) := c(w) + K(x − π(w)),

F (x,w) := Ax + Dφ(Czx + Qzw) + Pw,

ρ(∆x,∆w) := U(x + ∆x,w + ∆w) − U(x,w),

G(ξ) :=

[
Ax + Dφ(Czx + Qzw) + Pw

Sw

]
+L(Cx+Qw).

Notice, that ρ(0, 0) ≡ 0. Thus, as follows from the proof
of Theorem 1, for ∆x = 0 and ∆w = 0 system (29) has a
GES solution x̄w(t) = π(w(t)). Moreover, it can be shown
(see [11]), that along this solution system (29) is input-to-
state stable (ISS) with respect to the inputs ∆x and ∆w.
Consider the estimation error dynamics (30). The Jacobian
of the right-hand side of (30) with respect to ∆ξ equals to[

A + ∂φ
∂z

DCz P + ∂φ
∂z

DQz

0 S

]
+ L[C Q].

By the choice of the matrix L (see (24) and Lemma 3),
it is quadratically stable. Hence, by Lemma 1, ∆ξ = 0
is a GES solution of (30). Thus, system (29)-(31), treated
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as a cascade, has a uniformly globally asymptotically stable
(UGAS) solution (x,∆ξ) = (π(w(t)), 0) (see Lemma 5.6 in
[19]). For the closed-loop system in the original coordinates
(x, x̂, ŵ) this implies that the solution (x(t), x̂(t), ŵ(t)) =
(π(w(t)), π(w(t)), w(t)) is UGAS. Hence, since w(t) and
π(w(t)) are bounded, every solution of the closed-loop
system is also bounded and

e(t) = Crx(t) + Qw(t) → Crπ(w(t)) + Qw(t) ≡ 0,

as t → +∞. Global asymptotic stability of the origin
(0, 0, 0) for w(t) ≡ 0 is proved in the same way as in
the proof of Theorem 1. �

Remark. If z is measured, then the condition on feasibility
of the LMI (24) can be relaxed by demanding that the pair
of matrices (

A P
0 S

)
, (C Q)

is detectable. Under this condition the observer (26)–(28)
can be replaced by the observer

˙̂x = Ax̂ + Bu + Dφ(z) + Pŵ + L1(ŷ − y) (32)
˙̂w = Sŵ + L2(ŷ − y) (33)

ŷ = Cx̂ + Qŵ, (34)

where L := [LT
1 LT

2 ]T is taken such that[
A P
0 S

]
+ L[C Q]

is Hurwitz. Observer (32)-(34) has linear exponentially
stable estimation error dynamics. Therefore, the proof of
Theorem 2 can be repeated for controller (25) with the
observer (32)-(34).

As can be seen from Theorems 1 and 2, the proposed con-
trollers require accurate knowledge of the system model and
the mappings π(w) and c(w). In practice, both the system
model and the mappings π(w) and c(w) may be not known
exactly or they may change if certain system parameters
are varied. This rises the problem of the design of a robust
controller that would cope with these uncertainties. This
problem is addressed in the next section.

IV. ROBUST REGULATOR

In this section, we aim at designing a controller that
would solve the global output regulation problem not only
for the nominal system parameters, but also for the param-
eters from some neighborhood of the nominal ones and for
all nonlinearities φ(·) ∈ F(γ). In order to design a robust
controller, we assume the following:
A2 There exist matrices α ∈ R

l×p and β ∈ R
1×p such that

e = αy and z = βy.
For simplicity, we also assume that
A3 both y and u are of the same dimension.

At this point, instead of solving the robust output regu-
lation problem for system (1)-(4), we will solve it for the
system

ẋ = Ax + Bu + Dφ(βy) + Pw (35)

ē = y = Cx + Qw

with the new regulated output ē. Obviously, since the
original regulated output e is a linear function of ē, then
by solving the problem for system (35) we also solve it for
the original system. The nominal parameters of system (35)
are denoted by A◦, B◦, C◦, D◦. The proposed design of a
robust controller is based on the following lemma.

Lemma 4: Suppose, there exists a linear controller

ξ̇ = Fξ + Gy, (36)

u = H1ξ + H2y

such that
i) it solves the robust output regulation problem with
internal stability for the system

ẋ = Ax + Bu + Pw, (37)

ē = y = Cx + Qw,

and the exosystem (5);
ii) for w ≡ 0, the transfer function W◦

zφ(s) of the closed-
loop system with the nominal parameters

ẋ = A◦x + B◦(H1ξ + H2C
◦x) + D◦φ (38)

ξ = Fξ + GC◦x

z = βC◦x

from input φ to output z satisfies ‖W◦

zφ‖∞ < 1/γ.
Then the controller (36) solves the global output regulation
problem for system (35); it is robust with respect to P , Q
and φ(·) ∈ F(γ) and structurally stable with respect to A,
B, C and D.

Proof: System (35) in closed loop with (36) is a Lur’e
system of the form

ζ̇ = F (ζ, w) := Aζ + Dφ(z) + f1(w) (39)

z = Czζ + f2(w)

with f1(w) := ((Pw)T , 0)T , f2(w) = βQw,

A :=

[
A + BH2C BH1

GC F

]
, D :=

[
D
0

]
(40)

and Cz = β[C 0]. Notice, that W◦

zφ(s) = C◦

z (sI−A◦)−1D◦,
where A◦, C◦ and D◦ equal to A, C and D defined for
the nominal system parameters. Since sup

ω∈R
|C◦

z (iωI −
A◦)−1D◦| = ‖W◦

zφ‖∞ < 1/γ then, by continuity,

sup
ω∈R

|Cz(iωI −A)−1D| < 1/γ

for all A, D and Cz from some neighborhood of the nominal
ones. Thus, by Lemma 2 the Jacobian of the right-hand
side of (39) is quadratically stable for any φ(·) ∈ F(γ)
and for all A, B, C and D from some neighborhood of
the corresponding nominal matrices. By Lemma 1, every
solution of the closed-loop system (39) is GES. Notice,
that since the controller (36) also solves the robust output
regulation problem for the linear system (37), for all A, B,
C and D close enough to the nominal ones and for all P
and Q, system (37) in closed loop with (36) has a bounded
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solution (x̄w(t), ξ̄w(t)) along which ē(t) = y(t) ≡ 0 (see,
e.g. [5]). Since z = βy and φ(0) = 0, then (x̄w(t), ξ̄w(t))
is also a solution of the closed-loop system (39). Since
all solutions of (39) are GES, then (x̄w(t), ξ̄w(t)) is also
GES. This implies that, along any solution of the closed-
loop system (39) and exosystem (5), the regulated output
satisfies

ē(t) = Cx(t) + Qw(t) −−−−→
t→+∞

Cx̄w(t) + Qw(t) ≡ 0

and this property holds for all A, B, C and D close enough
to the corresponding nominal matrices A◦, B◦, C◦ and D◦,
for all P and Q and for all φ(·) ∈ F(γ).�

Remark. The problem of finding a controller that satisfies
conditions i) and ii) has been solved in [17]. Yet, careful
examination shows that the conditions, under which the
problem was solved in [17], are not satisfied in our case.
So, we proceed with our own controller design.

Necessary and sufficient conditions for solvability of the
robust output regulation problem for the linear system (37)
are [5]:
A4 the pair (A◦, B◦) is stabilizable, the pair (A◦, C◦) is
detectable and for every λ being an eigenvalue of the matrix
S the matrix (

A◦ − λI B◦

C◦ 0

)

has full row rank.
We assume that condition A4 is satisfied and proceed

with a design of a robust regulator. The design closely
follows the design of a robust controller for the linear robust
output regulation problem (see e.g. [5]). Let Smin be a
q×q matrix whose characteristic polynomial coincides with
the minimal polynomial of S. Construct a block-diagonal
mq × mq matrix Φ which has m blocks Smin on its
diagonal, where m is the number of inputs (see Assumption
A3). Choose an mq ×m matrix N and an m×mq matrix
Γ such that (Φ,Γ) is controllable and (Φ, N) is observable.
Consider the augmented system

ẋ = A◦x + B◦Γξ1 + B◦v + D◦φ (41)

ξ̇1 = Φξ1 + NC◦x (42)

z = βC◦x (43)

Suppose, there exists a controller

ξ̇2 = Kξ2 + LC0x (44)

v = Mξ2 + RC◦x

such that system (41) in closed-loop with this controller is
asymptotically stable for φ = 0 and the transfer function
W◦

zφ(s) from input φ to output z satisfies ‖W◦

zφ‖∞ <
1/γ. As follows from the linear regulator theory [5], the
controller

ξ̇1 = Φξ1 + Ny (45)

ξ̇2 = Kξ2 + Ly (46)

u = Γξ1 + Mξ2 + Ry (47)

solves the robust output regulation problem for system (37).
At the same time, the transfer function W◦

zφ(s) satisfies
‖W◦

zφ‖∞ < 1/γ. Thus, the statement of Lemma 4 holds
for controller (45). The problem of finding a controller (44)
that guarantees ‖W◦

zφ‖∞ < 1/γ is a standard problem in
H∞ optimization, for which efficient solvers are available,
for example, in MATLAB.

V. EXAMPLES

A. Observer-based controller

Consider the system

ẋ1 = x2 (48)

ẋ2 = x3 − x2 + sin(x2)

ẋ3 = u

e = y = x1 − w1

and the exosystem

ẇ1 = w2, ẇ2 = −w1. (49)

The control goal is to find an output feedback controller
such that all solutions of the closed-loop system are
bounded and e(t) → 0, as t → +∞.

The regulator equations admit the solution π1(w) = w1,
π2(w) = w2, π3(w) = w2 −w1 − sin(w2), c(w) = −w1 −
w2+w1 cos(w2). The mappings π(w) and c(w) are globally
defined and continuously differentiable. Hence, assumption
A1 holds. Let us apply Theorem 2. In our case,

A =

⎡
⎣ 0 1 0

0 −1 1
0 0 0

⎤
⎦ , S =

[
0 1

−1 0

]
,

B = [0 0 1]T , P ≡ 0, Cr = C = [1 0 0], Qr = Q = [−1 0],
z = x2, Cz = [0, 1, 0], Qz = 0, φ(z) = sin(z) ∈ F(1).

Denote

A−

c :=

⎡
⎣ 0 1 0

0 −2 1
0 0 0

⎤
⎦ , A+

c :=

⎡
⎣ 0 1 0

0 0 1
0 0 0

⎤
⎦ ,

A−

o :=

[
A−

c P
0 S

]
, A+

o :=

[
A+

c P
0 S

]
,

C := [C Q]. Numeric computations show that both
LMIs (21) and (24) are feasible and, for example,
the matrices K = [−6 − 11, −6]T and L =
[−153, −78, −13, −132, 52] can be used as parameters
in the controller (25)-(28).

Thus, all conditions of Theorem 2 are satisfied. By this
theorem, controller (25)-(28) with the system matrices,
mappings π(w), c(w) and controller parameters K, L
specified above solves the global output regulation problem
globally. In Fig. 1 simulation results of the closed-loop
dynamics are presented.

4569



0 20 40 60 80 100

−1.5

−1

−0.5

0

0.5

1

1.5

e(
t)

t

Fig. 1. Simulations results for observer-based controller: e(t) for different
initial conditions of the closed-loop system and the exosystem.

B. Robust controller

To demonstrate the design of a robust controller, we
consider system (1) with the nominal values

A◦ =

⎡
⎣ 1 −2 0

40 3 4
1 0 5

⎤
⎦ , B◦ =

⎡
⎣ 0

3
1

⎤
⎦ , D◦ =

⎡
⎣ 1

1
0

⎤
⎦ ,

C◦ = [1, 0, 0]. The exosignal w is generated by the
exosystem (49). The outputs of the system are equal:
z = e = y = Cx + Qw. The matrices Q and P are
arbitrary. The value γ for the class of nonlinearities F(γ)
is chosen γ = 0.1. Notice, that with such choice of system
matrices assumptions A2 and A3 hold. Following the design
procedure given in Section IV, we set

Φ =

[
0 1
−1 0

]
, N =

[
1
0

]
, Γ = [1 0].

Next, we search for a controller (44) that would satisfy the
inequality ‖W◦

zφ‖ < 1/γ. Such controller is found using
the MATLAB routine hinflmi. Results of the simulations
of the closed-loop system are given in Fig. 2. In the
simulations, we choose φ(z) = γ sin(z), system matrices
equal to their nominal values and P and Q – random
matrices of the corresponding dimensions.
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Fig. 2. Simulations results for robust controller: e(t) for different initial
conditions and for different P and Q.

VI. CONCLUSIONS

In this paper, we have considered the global output
regulation problem for systems with an output dependent

nonlinearity. If the system model is known and the corre-
sponding regulator equations are solvable, we presented an
observer-based controller solving the global output regula-
tion problem. Sufficient conditions for the existence of such
a controller are formulated in terms of LMIs. For the case
that the system parameters are not known exactly and the
nonlinearity can be arbitrary from a given class of functions
with a bounded derivative, we have demonstrated that there
exists a robust controller provided that the robust output
regulation problem for the system without the nonlinearity
is solvable and that there exists a suboptimal solution to a
certain H∞ optimization problem.
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