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Abstract— In this paper, we present a new approach to
the global output regulation problem. In this approach, a
controller should be designed in such a way that the closed-
loop system is uniformly convergent. This requirement al-
lows to extend the theory developed for the local output
regulation problem to what we will call the uniform global
output regulation problem. Such extension is made using
global invariant manifold theorems, which serve as global
counterparts of the center manifold theorems. It is shown that
within the proposed approach solvability of the (extended)
regulator equations is a basic necessary condition for the
solvability of the uniform global output regulation problem.
As an illustration, we present a solution to the uniform global
output regulation problem for a class of nonlinear systems.

I. INTRODUCTION

In this paper, we address the output regulation prob-
lem, which includes the problems of tracking reference
signals and rejecting disturbances generated by an external
autonomous system (exosystem). For linear systems, this
problem was thoroughly investigated in the 1970-s [1], [2].
For nonlinear systems, intensive research started with the
papers [3] and [4], which provided solutions to the local
output regulation problem for general nonlinear systems.
These papers were followed by a number of results dealing
with different aspects of the output regulation problem for
nonlinear systems, see [5], [6] and references therein.

Necessary and sufficient conditions for the solvability of
the local output regulation problem were presented in [3].
This solution is based on the center manifold theorem [7].
Under the neutral stability assumption on the exosystem,
this theorem allows to obtain the so-called regulator equa-
tions and to show that solvability of these equations is an
important necessary condition for the solvability of the local
output regulation problem. Extensions of this result to the
global case have been obtained in [8], [9]. The results in
these papers are based on certain quantitative conditions
on the closed-loop system and the exosystem dynamics. A
qualitative analysis of the global output regulation problem
under the Poisson stability assumption on the exosystem
has been done in [10].

In this paper, we present a new problem setting for the
global output regulation problem – the so-called uniform
global output regulation problem (see [10], [11] for alterna-
tive formulations of the global output regulation problem).
In this new problem setting, a controller should be designed
in such a way that the closed-loop system is uniformly
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convergent and the regulated output tends to zero. Roughly
speaking, a system is called uniformly convergent if, being
excited by a bounded signal, it has a unique uniformly
bounded (in some sense) solution, which is uniformly
globally asymptotically stable. The uniform convergence
property originates from the convergence property intro-
duced in [12] (see also [13]). This property is a natural
extension of stability properties of asymptotically stable
linear systems to nonlinear systems. For systems having
the uniform convergence property, we present invariant
manifold theorems. These theorems, which serve as non-
local counterparts of center manifold theorems, allow to
extend the analysis of the local output regulation problem
to the global case while avoiding restrictive assumptions
(either quantitative or qualitative) on the exosystem. For
a controller that makes the closed-loop system uniformly
convergent, we give necessary and sufficient conditions,
under which this controller solves the uniform global output
regulation problem. As an illustration, we present a solution
to this problem for a class of nonlinear systems.

The paper is organized as follows. In Section II, we
give definitions of convergent systems and review some
related results. In Section III, the uniform global output
regulation problem is formulated and discussed. Invariant
manifold theorems are presented in Section IV. Results
on the solvability of the uniform global output regulation
problem are stated in Section V and Section VI presents
conclusions. All proofs are provided in the Appendix.

II. CONVERGENT SYSTEMS

In this section, we give definitions and review some
results on convergent systems. Consider the system

ż = F (z, w), (1)

where z ∈ R
d, w ∈ R

m and F (z, w) is locally Lipschitz in
z and continuous in w.

Definition 1 ([12], [13]): System (1) with a given con-
tinuous input w(·) : R → R

m is said to be convergent if
i. all solutions z(t) are defined for all t ∈ [t0,+∞) and

all initial conditions t0 ∈ R, z(t0) ∈ R
d,

ii. there exists a unique solution z̄w(t) bounded for all
t ∈ R,

iii. the solution z̄w(t) is globally asymptotically stable.
System (1) is said to be convergent (for all inputs) if it is
convergent for every continuous bounded w(·) : R → R

m.
We will refer to z̄w(t) as the limit solution. The limit

solution of a convergent system has certain natural proper-
ties. As shown in [12], from the definition of convergent
systems one can easily obtain that for a constant input the
corresponding limit solution is also constant. Similarly, if
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the input is periodic, the corresponding limit solution is also
periodic with the same period. If an input w(t) is bounded
on [t0,+∞) then every solution of the convergent system is
also bounded on [t0,+∞). For our purposes, we will need
a stronger convergence property, which has an additional
requirement of uniform asymptotic stability and uniform
boundedness of the limit solutions.

Definition 2: System (1) is said to be uniformly conver-
gent if it is convergent, for every w(·) the limit solution
z̄w(t) is uniformly globally asymptotically stable and for
any ρ > 0 there exists R > 0 such that

|w(t)| ≤ ρ ∀ t ∈ R ⇒ |z̄w(t)| ≤ R ∀ t ∈ R. (2)
The uniform convergence property is an extension of

stability properties of asymptotically stable linear time-
invariant systems. Recall, that for any continuous input
w(t), which is defined and bounded on t ∈ R, the system
ż = Az + Bw(t) with a Hurwitz matrix A has a unique
solution z̄w(t) which is defined and bounded on t ∈
(−∞,+∞). This solution is given by the formula z̄w(t) :=∫ t

−∞
exp(A(t − s))Bw(s)ds; it is globally exponentially

stable with the rate of convergence depending only on the
matrix A and its upper bound is given by

|z̄w(t)| ≤

∫ 0

−∞

‖exp(−As)B‖ds sup
τ∈R

|w(τ)|.

Thus, a linear time-invariant asymptotically stable system
is uniformly convergent.

A simple sufficient condition for the uniform convergence
property was proposed in [14] (see also [13]). Here we
give a slightly different formulation of the result from [14]
adapted for systems with inputs.

Theorem 1: Consider system (1) with the function
F (z, w) being C1 with respect to z and continuous with
respect to w. Suppose, there exist matrices P = P T > 0
and Q = QT > 0 such that

P
∂F

∂z
(z, w) +

∂F

∂z

T

(z, w)P ≤ −Q, ∀z ∈ R
d, w ∈ R

m.

(3)
Then, system (1) is uniformly convergent.
Remark. Condition (3) is satisfied, for example, if there exist
matrices A1, . . . As such that

∂F

∂z
(z, w) ∈ co{A1, . . . As}, ∀ z ∈ R

d, w ∈ R
m,

and the following linear matrix inequalities

PAi + AT
i P < 0, i = 1 . . . s,

admit a common positive definite solution P = P T > 0.
Taking into account existence of powerful LMI solvers,
this is a useful tool for checking the uniform convergence
property. In certain cases, analytical results based on the
Kalman-Yakubovich lemma can be used to check feasibility
of these LMIs, see e.g. [15], [16].

III. THE UNIFORM GLOBAL OUTPUT REGULATION

PROBLEM

Consider systems modelled by equations of the form

ẋ = f(x, u,w) (4)

e = hr(x,w), y = hm(x,w), (5)

with state x ∈ R
n, input u ∈ R

p, regulated output e ∈ R
l

and measured output y ∈ R
k. The exogenous signal w(t) ∈

R
m, which can be viewed as a disturbance in equation (4)

or as a reference signal in (5), is generated by the exosystem

ẇ = s(w). (6)

We are interested in solutions of the exosystem (6) starting
in a bounded positively invariant set W+ ⊂ R

m. The
functions f(x, u,w), hr(x,w), hm(x,w) and s(w) are
assumed to be continuous and, where necessary, locally
Lipschitz in order to guarantee existence and uniqueness
of solutions of the corresponding differential equations.

The uniform global output regulation problem is formu-
lated in the following way: find, if possible, a feedback of
the form

ξ̇ = η(ξ, y), ξ ∈ R
q (7)

u = θ(ξ, y),

with continuous functions η(ξ, y) and θ(ξ, y) and some q
such that
a) the right-hand side of the closed-loop system

ẋ = f(x, θ(ξ, hm(x,w)), w)

ξ̇ = η(ξ, hm(x,w))
(8)

is locally Lipschitz with respect to (x, ξ) and continuous
with respect to w;
b) system (8) is uniformly convergent;
c) all solutions of the closed-loop system (8) and the
exosystem (6) starting in (x(0), ξ(0)) ∈ R

n+q , w(0) ∈ W+

satisfy e(t) = hr(x(t), w(t)) → 0 as t → ∞.
Notice, that the requirement of uniform convergence

implies that if f(0, 0, 0) = 0, hm(0, 0) = 0, η(0, 0) = 0 and
θ(0, 0) = 0, then for w(t) ≡ 0 the closed-loop system (8)
has a globally asymptotically stable (GAS) equilibrium at
the origin (x, ξ) = (0, 0). Another consequence of conver-
gence is that for any bounded input w(·) : [0,+∞) → R

m

(and this is the case if w(t) is a solution of (6) starting in
W+) every solution of (8) is bounded on [0,+∞).

The formulation of the output regulation problem given
above is somewhat different from conventional ones. Usu-
ally, instead of condition b) some other internal stability
property of the closed-loop system is required. For example,
in the linear case, it is required that for w(t) ≡ 0 system (8)
is asymptotically stable. But as we have seen in Section II,
for linear systems this requirement implies uniform conver-
gence. In the local output regulation problem for nonlinear
systems, it is required that for w(t) ≡ 0 the closed-loop
system (8) is locally exponentially stable at the origin. As
it was shown in [17], this condition implies the local (in a
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certain sense) uniform convergence property of the closed-
loop system. These observations allow to say that uniform
convergence is a natural extension of the conventional
internal stability requirements to the case of global output
regulation for nonlinear systems. It will be shown in the
next sections that the requirement of uniform convergence
allows to treat the uniform global output regulation problem
in a similar way as the local output regulation problem.

The analysis of the local output regulation problem is
based on the center manifold theorem [7]. If the lin-
earization of the closed-loop system (8) at the origin is
asymptotically stable and the linearization of the exosystem
at the origin is critically stable, then this theorem guarantees
the existence of a locally defined and locally attractive
invariant manifold of the form (x, ξ) = (π(w), σ(w)). In
order to proceed with the analysis of the global output
regulation problem, we need to find counterparts of this
result for the global case. These results are presented in the
next section.

IV. INVARIANT MANIFOLD THEOREMS

In this section, we study coupled systems of the form

ż = F (z, w) (9)

ẇ = s(w), (10)

where z ∈ R
d, w ∈ R

m. The function F (z, w) is locally
Lipschitz in z and continuous in w; s(w) is locally Lips-
chitz. First, we consider the case of system (10) satisfying
the following assumption:

A1 All solutions of system (10) are defined for all t ∈
(−∞,+∞) and for every r > 0 there exists ρ > 0
such that

|w0| < r ⇒ |w(t, w0)| < ρ ∀ t ∈ R. (11)

A simple example of a system satisfying A1 is a linear
harmonic oscillator. The next theorem gives sufficient con-
ditions for the existence of a continuous globally asymptot-
ically stable invariant manifold of the form z = α(w).

Theorem 2: Consider system (9) and system (10) sat-
isfying assumption A1. Suppose, system (9) is uniformly
convergent. Then, there exists a unique continuous mapping
α(·) : R

m → R
d such that the graph z = α(w) is invariant

with respect to systems (9) and (10) and for every w(t),
system (10) has a uniformly globally asymptotically stable
solution z(t) = α(w(t)).

In the output regulation problem we may deal with
exosystems that do not satisfy A1. For example, it can be
an exosystem with a limit cycle or any other attractor with
an unbounded domain of attraction. Therefore, we need
to relax the conditions of Theorem 2 in order to include
exosystems with complex dynamics. This is done in the
next theorem.

Theorem 3: Consider systems (9) and (10). Suppose,
system (9) is uniformly convergent. Let W+ be a bounded
positively invariant set of system (10) and W± ⊂ W+ be

an invariant subset of W+. Then, there exists a continuous
mapping α(·) : R

m → R
d such that the set

M(W+) := {z, w : z = α(w), w ∈ W+}

is positively invariant with respect to (9), (10) and for any
w(0) ∈ W+ the solution z̄w(t) = α(w(t)) is uniformly
globally asymptotically stable. In general, the mapping
α(w) is not unique. But for any two such mappings α1(w)
and α2(w) and any w(t) starting in w(0) ∈ W+ it holds
that

|α1(w(t)) − α2(w(t))| → 0 as t → +∞ (12)

and α1(w) = α2(w) for all w ∈ W±.

V. CONDITIONS FOR UNIFORM GLOBAL OUTPUT

REGULATION

In this section, we apply the invariant manifold theorems
to study the solvability of the uniform global output regu-
lation problem.

Denote by Ω(w0) ⊂ R
m the set of all ω-limit points

of the trajectory w(t, w0). Recall that w∗ ∈ Ω(w0) if
there exists a sequence {tk} such that tk → +∞ and
w(tk, w0) → w∗ as k → +∞. Denote

Ω(W+) :=
⋃

w0∈W+

Ω(w0).

Since W+ is bounded, then Ω(W+) is nonempty and it at-
tracts all solutions of the exosystem (6) starting in W+ [18],
i.e. dist(w(t, w0),Ω(W+)) −−−−→

t→+∞
0 for all w0 ∈ W+. The

next theorem, which is based on Theorem 3, establishes
necessary and sufficient conditions for a controller (7) to
solve the uniform global output regulation problem.

Theorem 4: Suppose controller (7) is such that the
closed-loop system (8) is uniformly convergent. Then this
controller solves the uniform global output regulation prob-
lem if and only if there exist continuous mappings π(w)
and σ(w) satisfying

d

dt
π(w(t)) = f(π(w), θ(σ(w), hm(π(w), w)), w),

d

dt
σ(w(t)) = η(σ(w), hm(π(w), w)), (13)

∀ w(t) = w(t, w0) ∈ W+,

0 = hr(π(w), w) ∀ w ∈ Ω(W+). (14)

By denoting c(w) := θ(σ(w), hm(π(w), w)), we obtain
the following necessary condition for the solvability of the
problem:

Lemma 1: The uniform global output regulation problem
is solvable only if there exist continuous mappings π(w)
and c(w) satisfying the equations

d

dt
π(w(t)) = f(π(w(t)), c(w(t)), w(t)), (15)

∀ w(t) = w(t, w0) ∈ W+,

0 = hr(π(w), w) ∀ w ∈ Ω(W+). (16)
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Equations (15) and (16) are extensions of the so-called
regulator equations. Originally, the regulator equations were
obtained as a necessary condition for the solvability of the
local output regulation problem under the assumption that
the exosystem (6) is neutrally stable. Lemma 1 shows that
solvability of the regulator equations (15) and (16) is also
necessary for the solvability of the uniform global output
regulation problem without restrictive assumptions on the
exosystem such as neutral stability or Poisson stability.

As follows from Theorem 4, controller (7) solves the
uniform global output regulation problem if and only if
it makes the closed-loop system uniformly convergent and
equations (13) and (14) are satisfied for some continuous
π(w) and σ(w). In order to illustrate how a controller
satisfying these two conditions can be found, we present
a solution to the uniform global output regulation problem
for a class of nonlinear systems.

Consider system (4)-(5) with the measured output y =
(x,w), i.e. we are dealing with the state feedback case.
The function f(x, u,w) is assumed to be continuously
differentiable. Denote ζ := (x, u,w) ∈ R

n+p ×W+,

A(ζ) :=
∂f

∂x
(x, u,w), B(ζ) :=

∂f

∂u
(x, u,w).

The class of systems that we consider is limited by the
following assumption:
A2 There exist matrices A1, . . .As and B1, . . .Bs such

that

[A(ζ),B(ζ)] ∈ co{[A1,B1], . . . [As,Bs]},

for all ζ ∈ R
n+p ×W+.

The following theorem gives sufficient conditions for solv-
ability of the uniform global output regulation problem.

Theorem 5: Consider system (4)-(5) with y = (x,w) and
satisfying assumption A2. Suppose there exist continuous
mappings π(w) and c(w) satisfying the regulator equations
(15), (16). If the linear matrix inequalities

AiP + PAT
i + BiY + YTBT

i < 0, i = 1, . . . s,(17)

admit a common solution P = PT > 0, then the uniform
global output regulation problem is solved by a controller
of the form

u = c(w) + K(x − π(w)), (18)

with the matrix K = YP−1, where Y and P satisfy (17).

VI. CONCLUSIONS

We have presented and studied the uniform global output
regulation problem. This is a new problem setting for the
global output regulation problem. In this problem setting, a
controller should be designed in such a way that the closed-
loop system is uniformly convergent. This requirement is
a natural extension of internal stability requirements from
the linear and local nonlinear output regulation problems
to the global nonlinear case. It allows to extend the theory
developed for the local output regulation problem to the

uniform global output regulation problem and to avoid
restrictive assumptions on exosystem. Such extension has
been made with the help of the invariant manifold theorems,
which, in this case, serve as global counterparts of the
center manifold theorems. We have presented necessary
and sufficient conditions for a controller to solve the uni-
form global output regulation problem. It has been shown
that solvability of the (extended) regulator equations is a
necessary condition for the solvability of this problem.
As an illustration, we have presented a solution to the
state feedback case of the uniform global output regulation
problem for a class of nonlinear systems.
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APPENDIX

Proof of Theorem 2. First, we show, that if a continuous
mapping α(w) exists, such that the graph z = α(w) is
invariant, then it is unique. Suppose, α(w) and α̃(w) are two
such distinct mappings. Consider a solution w(t) of system
(10). Due to condition A1, this solution is bounded on t ∈
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R. Since α(w) and α̃(w) are continuous, then z̃w(t) :=
α̃(w(t)) and z̄w(t) := α(w(t)) are two distinct bounded
solutions of system (9) corresponding to the same input
w(t). This contradicts the convergence property of system
(9). Thus, such mapping α(w), if it exists, is unique.

We prove the existence of α(w) by constructing this
mapping. Due to assumption A1, for every w0 ∈ R the
solution w(t, w0) is defined and bounded for all t ∈ R.
Since system (9) is convergent, for this solution w(t, w0)
there exists a unique limit solution z̄(t, w0), which is
defined and bounded on t ∈ R. Construct the mapping
α(w) in the following way: for every w0 ∈ R

m and
every t ∈ R set α(w(t, w0)) := z̄(t, w0) or, equivalently,
α(w0) = z̄(0, w0). By the definition of the mapping α(w),
the graph z = α(w) is invariant with respect to (9) and
(10). Uniform global asymptotic stability of the solution
z(t) = α(w(t, w0)) immediately follows from uniform
global asymptotic stability of z̄(t, w0).

It remains to show that the mapping z = α(w), con-
structed above, is continuous, i.e. that for any w1 ∈ R

m

and any ε > 0 there exists δ > 0 such that |w1 − w2| < δ
implies |α(w1)−α(w2)| < ε. For simplicity, we will prove
continuity in the ball |w| < r. Since r can be chosen
arbitrarily, this will imply continuity in R

m. In the sequel,
we assume that |w1| < r and ε > 0 are fixed and the point
w2 varies in the ball |w2| < r.

As a preliminary observation, notice that |w1| ≤ r and
|w2| ≤ r imply, due to assumption A1, that |w(t, wi)| ≤
ρ for i = 1, 2 and for all t ∈ R. This, in turn, due to
uniform convergence of system (9) (see (2)) and due to the
construction of α(w), implies that |α(w(t, wi))| ≤ R for
i = 1, 2 and for all t ∈ R.

In order to prove continuity of α(w), we introduce the
function

ϕT (w1, w2) := ẑ(0,−T, α(w(−T,w2)), w1),

where the number T > 0 will be specified later and
ẑ(t, t0, z0, w∗) is the solution of the time-varying system

˙̂z = F (ẑ, w(t, w∗)) (19)

satisfying the initial conditions ẑ(t0, t0, z0, w∗) = z0.
The function ϕT (w1, w2) has the following meaning.

First, consider the limit solution α(w(t, w2)), which is
a solution of system (19) with the input w(t, w2). At
time t = 0, α(w(0, w2)) = α(w2). Next, we shift along
α(w(t, w2)) to time t = −T and appear in α(w(−T,w2)).
Then, we switch the input to w(t, w1), shift forward to
the time instant t = 0 along the solution ẑ(t) starting in
ẑ(−T ) = α(w(−T,w2)) and appear in ẑ(0) = ϕT (w1, w2).
Notice, that ϕT (w0, w0) = α(w0) (there is no switch of
inputs and we just shift back and forth along the same
solution α(w(t, w0))). Thus,

α(w1) − α(w2) = ϕT (w1, w1) − ϕT (w2, w2)

= ϕT (w1, w1) − ϕT (w1, w2) (20)

+ϕT (w1, w2) − ϕT (w2, w2).

By the triangle inequality, this implies

|α(w1) − α(w2)| ≤ |ϕT (w1, w1) − ϕT (w1, w2)|

+ |ϕT (w1, w2) − ϕT (w2, w2)|.

(21)

In the next steps, we will first show that there exist T > 0
such that

|ϕT (w1, w1) − ϕT (w1, w2)| < ε/2 ∀ |w2| < r. (22)

Second, we will show that given a number T > 0 satisfying
(22), there exists δ > 0 such that

|ϕT (w1, w2)−ϕT (w2, w2)| < ε/2 ∀ w2 : |w1−w2| < δ.
(23)

Unifying inequalities (22) and (23), we obtain |α(w1) −
α(w2)| < ε for all w2 satisfying |w1 − w2| < δ. Due to
the arbitrary choice of ε > 0 and |w1| < r, this proves
continuity of α(w) in the ball |w| < r.

In order to show (22), notice that ϕT (w1, w1) = ẑ1(0)
and ϕT (w1, w2) = ẑ2(0), where ẑ1(t) and ẑ2(t) are solu-
tions of system (19) with the input w(t, w1) satisfying the
initial conditions ẑ1(−T ) = α(w(−T,w1)) and ẑ2(−T ) =
α(w(−T,w2)). By the conditions of the theorem, ẑ1(t) =
α(w(t, w1)) is a bounded uniformly globally asymptotically
stable solution of (19). This implies, that it attracts all other
solutions ẑ(t) of system (19) uniformly over the initial
conditions t0 ∈ R and ẑ(t0) from any compact set. In
particular, for the compact set K(R) := {z : |z| ≤ R} and
for fixed ε > 0 there exists T̃ε(R) such that ẑ(t0) ∈ K(R)
implies

|ẑ1(t) − ẑ(t)| < ε/2, ∀ t ≥ t0 + T̃ε(R), t0 ∈ R. (24)

Let us choose T := T̃ε(R). By the definition of ẑ2(t),
ẑ2(−T ) = α(w(−T,w2)). Since α(w(t, w2)) ∈ K(R) for
all t ∈ R and all |w2| < r (see above), then ẑ2(−T ) ∈
K(R). Thus, for t0 = −T and t = 0 formula (24) implies

|ẑ1(0) − ẑ2(0)| < ε/2, (25)

which is equivalent to (22).
In order to show (23), notice that for a fixed T > 0, the

function ẑ(0,−T, z0, w0) is continuous with respect to z0

and w0. Thus, it is uniformly continuous over the compact
set G := {(z0, w0) : |z0| ≤ R, |w0| ≤ r}. Hence, there
exists δ > 0 such that if |z0| ≤ R, |w1| ≤ r, |w2| ≤ r and
|w1 − w2| < δ, then

|ẑ(0,−T, z0, w1)) − ẑ(0,−T, z0, w2)| ≤ ε/2. (26)

Recall, that by the definition of ϕT (w1, w2)

ϕT (w1, w2) − ϕT (w2, w2) =

ẑ(0,−T, z0, w1)) − ẑ(0,−T, z0, w2), (27)

where z0 := α(w(−T,w2)). Since |w1| ≤ r, |w2| ≤ r and,
due to uniform convergence property, |α(w(−T,w2))| ≤ R,
then, as follows from (26) and (27),

|w1 − w2| < δ ⇒ |ϕT (w1, w2) − ϕT (w2, w2)| < ε/2.
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Thus, we have shown (23). This completes the proof of
continuity of α(w). �

Proof of Theorem 3. Since W+ is bounded, we can
choose R > 0 such that W+ ⊂ B(R) := {w : |w| < R}.
Consider system (9) and the following auxiliary system

˙̃w = S(w̃), (28)

where S(w̃) is a locally Lipschitz function such that
S(w̃) = s(w̃) for all |w̃| ≤ R and S(w̃) = 0 for
all |w̃| ≥ 2R. For example, S(w̃) can be chosen equal
to S(w̃) := ψ(|w̃|)s(w̃), where ψ(v) is a smooth scalar
function satisfying ψ(v) = 1 for v ≤ R and ψ(v) = 0 for
v ≥ 2R. An example of such function can be found in [16],
p. 662.

Notice, that system (28) satisfies assumption A1. Indeed,
for any trajectory w̃(t, w̃0) of (28) it holds that |w̃(t, w̃0)| ≤
max{2R, |w̃0|} for all t ∈ R. Thus, for any r > 0 we can
set ρ := max{2R, r} such that

|w̃0| < r ⇒ |w̃(t, w̃0)| < ρ ∀ t ∈ R.

Hence, we can apply Theorem 2. By Theorem 2, there
exists a continuous mapping α(·) : R

m → R
d such that

the set M := {(z, w̃) : z = α(w̃), w̃ ∈ R
m} is invariant

with respect to systems (9) and (28) and every solution
z(t) = α(w̃(t)) on this manifold is uniformly globally
asymptotically stable. Since the dynamics of systems (10)
and (28) coincide inside the ball B(R), and W+ ⊂ B(R)
then M(W+) = {(z, w) : z = α(w), w ∈ W+} is a
positively invariant set with respect to (9) and (10) and
every solution z̄w(t) = α(w(t, w0)) on this set is uniformly
globally asymptotically stable.

The mapping α(w) depends on the choice of the auxiliary
system (28), which can be made in many ways. So in
general, such mapping α(w) is not unique. If α1(w) and
α2(w) are two such mappings, then for any solution of
system (10) starting in w(0) ∈ W+, the functions z1(t) :=
α1(w(t)) and z2(t) := α2(w(t)) are two solutions of
system (9). Since they are uniformly globally asymptotically
stable, then relation (12) holds. If w(0) ∈ W±, then the
solution w(t) of system (10) is defined and bounded for all
t ∈ R. Hence, α1(w(t)) and α2(w(t)) are two solutions
of system (9) defined and bounded for all t ∈ R. But
due to convergence of system (9), there exists only one
such solution. Hence, α1(w(t)) ≡ α2(w(t)) for all t ∈ R.
Therefore, α1(w) = α2(w) for all w ∈ W±.�

Proof of Theorem 4. Since the closed-loop system is
uniformly convergent, it satisfies the conditions of The-
orem 3. By Theorem 3 there exist continuous mappings
π̄(·) : R

m → R
n, σ̄(·) : R

m → R
q such that the set

M(W+) := {x = π̄(w), ξ = σ̄(w) w ∈ W+}

is positively invariant with respect to (8) and (6) (in this
case, z = (x, ξ) and α(w) := (π̄(w), σ̄(w))). Also, for
every solution w(t) of system (6) starting in w(0) ∈ W+,
(x̄w(t), ξ̄w(t) := (π̄(w(t)), σ̄(w(t))) is a uniformly globally
asymptotically stable solution of (8).

First, we prove the “only if” implication. Due to positive
invariance of M(W+), the mappings π(w) := π̄(w) and
σ(w) := σ̄(w) satisfy equations (13). In order to show (14),
consider a point w∗ ∈ Ω(W+). By the definition of the set
Ω(W+), there exists a solution w(t, w0) of system (6) with
w0 ∈ W+ and a sequence {tk} such that tk → +∞ and
w(tk, w0) → w∗ as k → +∞. By continuity of π(w) and
h(x,w), the limit solution x(t) = π(w(t)) satisfies

e(tk) = h(π(w(tk)), w(tk)) −−−−−→
k→+∞

h(π(w∗), w∗).

At the same time, by condition c) from the formulation of
the uniform global output regulation problem, e(tk) → 0
as k → +∞. Hence, h(π(w∗), w∗) = 0. Due to arbitrary
choice of w∗ ∈ Ω(W+), we obtain (14).

Next, we prove the “if” implication. Equations (13)
and (14) guarantee that the graph (x, ξ) = (π(w), σ(w))
is invariant with respect to systems (8) and (6) with
w(0) ∈ W+. By formula (12) it holds that π(w(t)) −
π̄(w(t)) → 0 and σ(w(t)) − σ̄(w(t)) → 0 as t → +∞.
Together with global asymptotic stability of the solution
(x̄w(t), ξ̄w(t)) = (π̄(w(t)), σ̄(w(t))), this implies that for
any (x(0), ξ(0), w(0)) ∈ R

n+q ×W+

x(t) → π(w(t)) as t → +∞.

By continuity of h(x,w) and boundedness of w(t) and
π(w(t)), this implies

e(t) = h(x(t), w(t)) −−−−→
t→+∞

h(π(w(t)), w(t)).

Notice that for any solution w(t) ∈ W+ it holds that
dist(w(t),Ω(W+)) → 0 as t → +∞ (see, for example
[18]). As follows from (14), on the set Ω(W+) the regulated
output equals to zero. Hence,

e(t) = h(x(t), w(t)) −−−−→
t→+∞

h(π(w(t)), w(t)) −−−−→
t→+∞

0.

�

Proof of Theorem 5. Since we have a static controller,
then q = 0 and θ(x,w) = c(w) + K(x − π(w)). Denote
the right-hand side of the closed-loop system F (x,w) :=
f(x, c(w) + K(x − π(w)), w). The Jacobian of F (x,w)
equals to ∂F

∂x
(x,w) = A(ζ) + B(ζ)K. As follows from a

standard result on LMI from [19], assumption A2 and the
choice of K imply that

P−1(A(ζ) + B(ζ)K) + (A(ζ) + B(ζ)K)TP−1 ≤ −Q

for some Q = QT > 0 and all ζ ∈ R
n × W+. Thus,

by Theorem 1 the closed-loop system ẋ = F (x,w) is
uniformly convergent. Hence, it satisfies conditions a) and
b) from the formulation of the global output regulation
problem. Notice, that since θ(π(w), w) = c(w), the con-
tinuous mapping x = π(w) satisfies equations (13) and
(14). Thus, by Theorem 4, controller (18) solves the uniform
global output regulation problem. �
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