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Abstract— In this paper convergence properties for piecewise 0f systems attracted a lot of attention over the last years,
affine (PWA) systems are studied. The notions of exponential see e.g. [15], [16], [17], [18]. This class includes mechani
uniform and input-to-state convergence are introduced and cal systems with piecewise linear restoring charactesisti

studied. For PWA systems with continuous right-hand sides . - . L : .
it is shown that the existence of a common quadratic Lya- systems with friction, electrical circuits with diodes and

punov function for the linear parts of the system dynamics other SWitChing characteristics and control systems with
in every mode is sufficient for the exponential and input-to- switching controllers. In this paper we present conditions
state convergence of the system. For a class of PWA control for convergence of PWA systems with continuous right-hand
S?/Steg‘ls we design (output) feedback controllers t::at malébg-:he sides. The case of PWA systems with discontinuous right-
closed-loop system input-to-state convergent. The Contdhs 4 e is considered in the second part of the paper [19].

for such controller design are formulated in terms of LMIs. -
The obtained results can be used for designing observers and Most of the known checkable conditions for convergence

(output-feedback) tracking controllers for PWA systems. (or convergence-type properties like incremental stigbili
contraction, [7], [13], [14]) rely on linearization of thgsem
|. INTRODUCTION and therefore they are not applicable to PWA systems, which

In many control problems it is required that controllers ar@reé non-smooth systems. This fact indicates the novelty
designed in such a way that all solutions of the correspandirpf the presented results. Moreover, based on the obtained
closed-loop system “forget” their initial conditions. Atly, conditions, we present a new result on observer design for
this is one of the main tasks of a feedback to eliminatEWA systems and a result on designing output-feedback
dependency of solutions on initial conditions. In this casecontrollers for PWA systems that make the corresponding
all solutions converge to some steady-state solution whichosed-loop system convergent.
is determined only by the input of the closed-loop system. The paper is organized as follows. In Section Il definitions
This input can be, for example, a command signal or a sign@lf (uniformly, exponentially, input-to-state) convergesys-
generated by a feedforward part of the controller or, asén tHems are given and some basic (interconnection) properties
observer design problem, it can be the measured signal frdthconvergent systems are presented. Sufficient conditaons
the observed system. This convergence property of a systéi¢ exponential and input-to-state convergence projsefdie
plays an important role in many (nonlinear) control probPWA systems with continuous right-hand sides are provided
lems including tracking, synchronization, observer desigin Section lll. The problem of designing a controller for
the output regulation problem and performance analysis 8 PWA system that makes the corresponding closed-loop
nonlinear systems see e.qg. [1], [2], [3], [4], [5] and referes  System convergent is addressed in Section IV. Section V
therein. contains conclusions.

_ The property of convergence was fprmalized _in '_[he no- Il. CONVERGENT SYSTEMS

tion of convergent systerrend studied first for periodically . . . -
excited systems in [6] and then for systems with arbitrar;f_ In this s_egt_lon we give def|n|t|p ns of (?onve_zrgent systems.
excitations in [7], see also [8]. For systems in Lure form hese definitions extend the definition given in [7]. Conside
convergence was investigated in [9]. Similar propertiegeha the system .

been studied in [10], [11]. Among recent papers one should @ = f(a,1), @)
mention the works [12], [13], [14], in which the authorswherez € R", t € R and f(x,t) is locally Lipschitz inz
studied convergence-like properties of dynamical systemghd piecewise continuous in

using various formalizations, definitions and techniques.

In this paper we study the convergence properties fabefinition 1 System (1) is said to be
the class of piecewise affine (PWA) systems. This class, convergenif there exists a solutior(t) satisfying the

following conditions
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The solutionz(t) is called asteady-state solutionAs These properties are natural for linear systems, whereas fo
follows from the definition of convergence, any solutionnonlinear systems they, in general, do not hold.
of a convergent system “forgets” its initial condition and
converges to some steady-state solution which is indemend&roperty 2 ([7]) Suppose system (2) with a given inpt)
of the initial condition. In general, the steady-state ol is uniformly convergent. If the inpub(t) is constant, the
Z(t) may be non-unique. But for any two steady-state sg=orresponding steady-state solutian, () is also constant;
lutions Z; (t) and Z»(t) it holds that|z, (t) — Z,(t)] — 0 if the inputw(t) is periodic with period?’, then the cor-
ast — +oco. At the same time, founiformly convergent responding steady-state solutian, () is also periodic with
systems the steady-state solution is unique, as formulatéte same period'.

below. The next definition extends the uniform convergence prop-

Property 1 ([4], [20]) If system (1) is uniformly convergent, erty to the input-to-state stability framework.

then the steady-state soluti@ii) is the only solution defined

and bounded for alt € R Definition 3 System (2) is said to be input-to-state conver-

gent if it is globally uniformly convergent and for every utp

Remark 1 In the original definition of convergent systemsw € PC,, system (2) is ISS with respect to the steady-state

. . DA . solution z,,(t), i.e. there exist & L-function 5(r,s) and a
given in [7], the steady-state solution(t) is required to ; .

. N ) ) : K o-function(r) such that any solution:(¢) of system (2)
be unique. In Definition 1 this requirement of uniqueness 5 rresponding to some in t(t) = w(t) + Aw(t) satisfies
omitted, since for the practically important case of unifor P 9 P = Wi v
convergence uniqueness of the steady-state solution can |z(t) — Z,(¢)| < B(|z(to) — Zw(to)|,t — to)
be proved as a corollary to the definition of the uniform +v( sup |Aw(r)]). (3)

convergence. ta<r<

The convergence property is an extension of stabilit)? 9&neral, the functions(r, s) and+(r) may depend on the
properties of asymptotically stable linear time-invatigl) ~ Particular inputw(t). If 5(r, s) andy(r) are independent of
systems. Recall that for a piecewise continuous vectgjl® inputw(t), then such system is called uniformly input-
functione(t), which is defined and bounded &) the system to-state convergent.

& = Az+¢(t) with a Hurwitz matrixA has a unique solution gimjlar to the conventional 1SS property, the property of
z(t) which is defined and bounded @re (—oo, +00). Itis  input-to-state convergence is especially useful for sngly
given by the formulaz(t) := [~ exp(A(t — s))é(s)ds.  convergence properties of interconnected systems. One can
This solution is globally exponentially stable with theeat easily show that parallel interconnection of (exponelgtial

of convergence depending only on the matrx Thus, yniformly, input-to-state) convergent systems is again an
an asymptotically stable LTI system excited by a boundegxponentially, uniformly, input-to-state) convergegsem.
piecewise-continuous functiop(t) is globally exponentially - Series connection of two input-to-state convergent system

convergent. is an input-to-state convergent system, as summarizecein th
In the scope of control problems, time dependency Qiext property.

the right-hand side of system (1) is usually due to some
input. This input may represent, for example, a disturbanderoperty 3 ([4], [20]) Consider the system

or a feedforward control signal. Below we will consider { i = flz,y,w), € R

y = g(yw), y € RY. @
Suppose ther-subsystem witl{y, w) as input is input-to-
&= f(z,w) @) state convergent and thg-subsystem withw as input is
with statez € R™ and inputw € R"™. The functionf(z,w) input-to-state convergent. Then system (4) is inputatest
is locally Lipschitz inz and continuous inw. In the sequel convergent.

we will consider the clas’C,, of piecewise continuous The next property deals with bidirectionally intercon-

. _ N
inputs w(t) : R — R which are bounded for alt € R. _nected input-to-state convergent systems.
Below we define the convergence property for systems with

convergence properties for systems with inputs. So, idstea
of systems of the form (1), we consider systems

inputs. Property 4 ([4], [20]) Consider the system
Definition 2 System (2) is said to bginiformly, exponen- { @ = flryw), we ]R: ®)
tially) convergentf it is (uniformly, exponentially) conver- y = glzy,w), yeR.

gent for every inputw € PC,,. In order to emphasize the Suppose ther-subsystem with(y,w) as inputs is input-
dependency on the input(t), the steady-state solution is to-state convergent. Assume that there exists a claés
denoted byz,, (). function 3, (r, s) such that for any inputz,w) € PC,4,,

The next statement summarizes some properties of uniform"il)?y solution of they-subsystem satisfies

convergent systems excited by periodic or constant inputs. ly(t)] < By(ly(to)], t — to)-



Then the interconnected system (5) is input-to-state eonvéheorem 1 Consider system (6). Suppose the right-hand
gent. side of (6) is continuous and there exists a positive definite

o matrix P = P” > 0 such that
Remark.Property 4 can be used for establishing the separa-

tion principle for input-to-state convergent systems asilit PA;+AJP<0, i=1,...,1 (8)
be done in Section IV. In that context system (5) represen
a system in closed loop with a state-feedback controller ary
an observer generating state estimates for this controter
y-subsystem corresponds to the observer error dynamics. Before giving the proof of this theorem, we formulate and
Notice that the (uniform) convergence and the inputprove an important technical lemma, which will be used in
to-state convergence properties are invariant under smoahe proof of the theorem and in further analysis in Section IV
coordinate transformations, since all the ingredientshia t Denote the right-hand side of (§)x, w).
definitions of these properties (see Definitions 1-3) are in-

en system (2) is exponentially convergent and input-to-
ate convergent.

variant under smooth coordinate transformations. Lemma 2 Under the conditions of Theorem 1 it holds that
I1l. CONVERGENT PIECEWISE AFFINE SYSTEMS (z1 — 22) " P(f(21,w) — f(z2,w))
In the previous sections we presented the definitions and < —a(zy — )" Pz — x). 9)

basic properties of f:onvergent systems. The next questl%wr all ;.75 € R", w € R™, for somea > 0 and for the
to be addressed is: how to check whether a system eX- trix P satisfying (8)
hibits these convergence properties? For smooth systéss i g (©)-

question has been answered in [7], whereas for non-smooth  proof: SinceP satisfies LMI (8), there exists a constant
systems this question has been answered only for syste@s. o such that

in Lur'e form with one (non-smooth) scalar nonlinearityese - )

[9]. Piecewise affine systems constitute an important class PA;j+A; P <-2aP, i=1,...,1 (10)

of non-smooth systems. In this section we provide sufficiefitet ys show that this is the constant for which inequality
conditions for convergence of piecewise-affine systemb witgy holds for allz;,z, € R™ and allw € R™. We will

continuous right-hand sides. show this in two steps. First, consider the case when both
Consider the state spa@€’ divided into polyhedral cells ;. and z, belong to the same celt; with the dynamics

A i :Tl, -+, 1, by hyperplanes given by equations of the; — 4.z + b, + Dw. Then, f(z, w) = A;z, + b; + Dw and
form Hjz + h; = 0, for someH; € R" and h; € R, f(za,w) = Ajzs + b; + Dw. Therefore,

j =1,...,k. We will consider piecewise-affine systems of .
the form (#1 = 22)" P(f(z1,w) — f(z2,w))
_ _ »\T A
i =Amw+b+Dw, for zeA;, i=1,...,1. (6) - (1”“ z2) P(Aizy — Aizs)
_ o T . T o
Here A; € R™*" andb; € R", i = 1,...,1, are constant = (@ = @) (PA; + A7 P) (= 22)
matrices and vectors, respectively. The veatar R" is the < —a(r — xg)TP(xl — o). (12)
state andw € R™ is the input. The hyperplaneHjT;n + . . . .
h; = 0,5 =1,...,k, are the switching surfaces. In theThus’ inequality (9) holds for any pair of points andz;

sequel we will deal with piecewise affine systems which ha\)é('ng in the same cel;. .
Next, we consider the case of arbitrary and z». Con-

continuous right-hand sides. This continuity requiremamt . the & tna th o int
the right-hand side of system (6) can be characterized by ggider the line segmerit;, 2>] connecting these two points.

following simple algebraic lemma. Its proof can be found, o
for example, in [4]. Switching plane

‘l' Ty ='W

Lemma 1 Consider system (6). The right-hand side of sys-
tem (6) is continuous iff the following condition is satidfie
for any two cellsA; and A; having a common boundary
HTz + h = 0 the corresponding matriced; and A; and
the vectorsh; andb; satisfy the equalities

GpH" = A;- Aj (7) T2 =:Y4
Guh = b — b,
for some vecto7y € R".

The following theorem establishes sufficient conditions fo

the eXponentlal and Input-to-state convergence of Sy%em (Fig. 1. The line segmentz:,z2) intersects the switching planes in the
pointsy1,...,y4.



Denotey; := w1, yp := @3 andy;, i = 2,...,p — 1, Consider the functiof (Az) = 3(Az)" PAu. Its deriva-
— the points of intersection of the line segmdmt,z»] tive along solutions of system (17) satisfigs=

with the switching surfaces such that any pair of poipts - B B

y; + 1 belongs to the same cel; (including its borders), Az" P{f(Zu(t) + Az, w(t) + Aw(t)) — f(Zw(t), w(t))}

Yi ;é Yit1, i= ]-7 RV 2 ]-7 and the sequenad . yz,- -, Yp

is ordered, see Fig. 1 Denote:= (z; — x2)/|x1 — x2|p, = AxTP{f (20 (t) + Az, w(t) + Aw(t)) (18)
where|z|p := VT Pz. Since all pointgy;, i = 1,...,p, lie t (T (t) 1‘u(t) + Aw(t)}
on the same line segmejnt; , 2] and they are ordered, then WA
. % iml.opo1 a2 TATPU@L).w) + Aw() — f (@), w(b)}
Yi — Yi+1lp

. . . . Applying Lemma 2 to the first component in (18), we obtain
Taking this fact into account, we obtain Ppying I P in (18), w !

(z1 — 332)TP(f(3317w) — f(z2,w)) AmTP{f(iW(t) + Az, w(t) + Aw(?)
p—1 —f (), w(t) + Aw(t))} < —alAz|H, (19)
= |21 —walp Y €T P(f(yi,w) = f(yisr,w))

i=1
= |$] —$2|P X

where|Az|% := (Az)" PAz. Sincef(z,w), the right-hand
side of system (6), is linear iw, the second component in
formula (18) equals

(5 O ) TP @) f e, w) .
= vi—yinlp | AaT P{f(zu (1) w(t) + Aw(t) - f(Zu(t), w(t)}
- (13) = Az"PDAw. (20)

Since each pair of pointg; andy;11, i = 1,...,p — 1, Applying the Cauchy inequality to (20), we obtain
belongs to a cell with the same dynamics, from the first step

of the proof we obtain |Az" PDAw| < [Az|p|DAw|p < c|Az|p|Aw|,  (21)

(yi — yir1) " P(f(ys,w) — f(yiz1,w)) where the constant depends only onD and P. After
< —alyi — yis)"Ply; — yir1) (14) substituting this estimate together with estimates (19) an

(20) in formula (18), we obtain
Substituting this inequality into (13), implies

av 9
(21 = 22)" P(f (1,w) = f(22,w)) @ < ol ¥ Arlpefuwl (22)
p—1 . .
From this formula we obtain
< —alz —$2|P2|yz’ — Yit1|p. (15) av 9
i=1 < ZAzh, V|Azp > Z|Awl.  (23)
Since all pointgy;, i = 1,.. ., p, lie on the same line segment dt 2 a
[z1,z2] and they are ordered, By the Lyapunov characterization of the ISS property (see

p—1 e.g. [22], Theorem 5.2), we obtain that system (17) is input-
Z i — Yirtlp = Y1 — yplp = |21 — 22| p. (16) to-state stable. This completes the proof of the theoram.
i—1 Theorem 1 not only allows to check the input-to-state

This fact together with (15) implies (9). Due to the arbigrar CONVergence property for a given system, but also serves
choice of z1, #» and w we obtain that (9) holds for all 25 & useful tool in designing controllers that make the cor-

w € R™ and allz;, 25 € R". This completes the proof of responding closed-loop system convergent. This controlle
this lemma. ’ m design problem is considered in Section IV.

Now we can prove Theorem 1. From the result of Theorem 1 one may conjecture that

Proof: Given the result of Lemma 2, the proof of exponentiafer @ PWA system with aliscontinuousight-hand side, the
convergence repeats the proof from [21], [8]. We only neeamstence of a common qqadr_ahc Lyapunoy function fc_>r_the
to show that system (6) is input-to-state convergent. @emsi linear parts of the dynamics in all modes is also sufficient

some inputw(t) and the corresponding steady-state solutiofP" convergence. Yet, this conjecture is not true, as fodlow
Zo(t). Let z(¢) be a solution of system (6) correspondingfrom a counterexample presented in the second part of this

to some inputi(¢). DenoteAz := x — 7, (t) and Aw :=  Paper [_19]. In [_19] we stud_y convergent PWA systems with
@ — w(t). ThenAz satisfies the equation discontinuous right-hand sides.

A = f(Zy(t) + Az, w(t) + Aw) — f(Zw (1), w(t)), (A7) IV. CONTROLLER DESIGN FOR CONVERGENT SYSTEMS

wheref(z, w) denotes the right-hand side of system (6). We The convergence property is desirable in many control
will show that system (17) witl\w as input is ISS. Due to problems because the steady-state dynamics of a convergent
the arbitrary choice ofu(t), this fact implies that system (6) system are independent of the initial conditions. In this
is input-to-state convergent. section we address the problem of how to achieve the



convergence property in a piecewise affine control systeis feasible. Then the system
by means of feedback. Consider the following PWA system

& = A@+b+Bu+Dw+L({—vy), &€l
t = Aix+b+Bu+Dw, forzeA;, i=1,...,1 §g = Ci+Ew, i=1,...,1, (28)
y = Cz+ Ew (24) , . ) )
with L := P 'X, is an observer for system (24) with
with statez € R”, controlu € R*, external inputw € R™  globally exponentially stable error dynamics. Moreovée t
and outputy € RP. Here A;, b;, i = 1,...,1, B, D, C observer error dynamics
and E are constant matrices of the appropriate dimensions. )
Az = g(z + Az, u,w) — g(z, u,w), (29)

As in the previous section); are polyhedral cells with

disjoint interior which together constitute the state aCyhere g(z, u, w) := A;z + b + Bu + Dw + L(Cx + Ew)
R™. In this setting the input: corresponds to the feedbacksq, , ¢ A; i —1. .. 1. is such that for any bounde(t)

part of the controller. The inpu includes external time- 5.4 w(t) and any feedback = U(Axz,t) all solutions of
dependent inputs such as, for example, disturbances aﬁgstem (29) satisfy

feedforward control signals. Once the convergence prgpert

is achieved by a proper choice of feedback, the feedforward |Az(t)| < ce” )| Am(t)], (30)

control signals can be used in order to shape the steada/-sta%ere the numbers> 0 anda > 0 are independent of(t)

dynamics of the closed-loop system (see e.g. [4], [23]). we =
will focus on the problem of finding a feedback that makeév(t) andu = U(Az,1).

the closed-loop system inputTto-state convergent andwtl_l Proof: Let us first prove the second part of the lemma.
address the problem of shaping the steady-state dynamics®ynsider the functiory(z, u,w). After unifying the terms
means of a feedforward controller. containingz, we obtaing(z,u,w) := (A; + LC)z + b; +

The following lemma provides conditions under whichg,, 4 (D + LE)w for z € A;, i = 1,...,1. Since the right-
there exists a state feedback rendering the correspondifgng side of system (24) is continudus, ther, u, w) is
closed-loop system input-to-state convergent. also a continuous piecewise-affine function. Moreovegesin

the LMI (27) is feasible, forP := P, and L := P, 'X it
Lemma 3 Consider the system (24). Suppose the right-hangbids that

side of (24) is continuous and the LMI
PA;+LC)+ (A, +LC)TP <0, i=1,...,1
P.=P > 0, (25)

AP+ P AT +BY+Y"BT < 0, i=1,...,1,

is feasible. Then the system (24) in closed-loop with thed®" P g
controller u = K(z + v) with K := YP." and (v,w) as  for all z, Az, u andw and some constant> 0 independent
Inputs Is Input-to-state convergent. of z, Az, u and w. Consider the functionV (Az) :=
1/2AzT PAz. The derivative of this function along solutions
of system (29) satisfies

= (Ai + BK)x + b+ BKv+ Dw, x=€A;, (26) g1

Applying Lemma 2 to the functiog(z, u, w), we obtain

r+ Az, u,w)—g(z,u,w)) < —aAz’ PAz (31)

Proof: The closed-loop system has the form

— = Az"P(g(z + Az, u, w)— g(z,u, w)) < —2aV (Az).
i = 1,...,1. Since the right-hand side of system (24) is dt (o )~ 9l )< (Az)

continuous, the right-hand side of the closed-loop systeffhis inequality, in turn, implies that there exists > 0
(26) is also continuous. Since the LMI (25) is feasible, fodepending only on the matriR such that ifz(¢) andw(t)
the matrix K := YP_ ! it holds that are defined for alt > ¢, then the solutionAz(¢) is also
Pl(As+ BE) + (A + BKYTP- 1 <0, i=1 ; defined for allt > ¢, and satisfies (30). It remains to show

¢ ! ! c ’ T that system (28) is an observer for system (24). Denote
Therefore, the closed-loop system (26) satisfies the conddz := & — x(t). Sincez(t) is a solution of system (24),
tions of Theorem 1 with the matri® := P! > 0. Hence, Az(t) satisfies equation (29). By the previous analysis, we
system (26) witHv, w) as inputs is input-to-state convergentobtain thatAz(t) satisfies (30). Therefore, the observation

m error Az(t) exponentially tends to zero. ]

The next lemma shows how to design an observer based orl-emmas 3 and 4 show how to design a state feedback

the convergence property. Here we assume that the exterf@ntroller that makes the closed-loop system input-ttesta
signalw(t) is measured. convergent and how to design an observer for this system

with an exponentially stable error dynamics. In fact, for
Lemma 4 Consider system (24). Suppose the right-hanguch controllers and observers one can use the separation

side of (24) is continuous and the LMI principle in order to design an output feedback controller
. that makes the closed-loop system input-to-state conaerge
Po=P, > 0, (27)  This statement follows from the next theorem.

PoAi + ATP, + xC+CTxT < 0,i=1,...1



Theorem 2 Consider the system (24). Suppose the LMigs]

(25) and (27) are feasible. Denot& := YP. ' and L :=

P, 'X. Then system (24) in closed loop with the controller !

&= Aji + b+ Bu+ Dw+ L(j — y)
u=Kz

G €A,
' " (32
i=1,...,1, (32)

with w as an input is input-to-state convergent.

coordinategx, Ax) the equations of the closed-loop systenili]

are

Az = g(CU—FACU,’LL,’IU) —g(a:,u,w)

Proof: Denote Az := % — z. Then in the new

& = (A;+ BK)x + b; + BKAz + Dw, x € A;(33)
(34)
(35)

u = K(z+ Az).

By the choice ofK, system (33) with(Az, w) as inputs is

input-to-state convergent (see Lemma 3). By the choice of

the

feedbacku = K (z(t) + Az), any solution of system (34),

observer gairl, for any inputsz(t), w(t) and for the

(35) satisfies

where the numbers > 0 anda > 0 are independent of [1g]
z(t) and w(t) (see Lemma 4). Applying Property 4, we

Aa(t)] < cem )| Az ()] (36)

3

obtain that the closed-loop system (33)-(35) is inputtties
convergent. [ |

In this paper we have studied convergence properties for
piecewise affine (PWA) systems. We have introduced the n&]

V. CONCLUSIONS

tions of exponential, uniform and input-to-state convege
and studied their basic (interconnection) properties.HWA

systems with continuous right-hand sides it has been shown
that the existence of a common quadratic Lyapunov functidf®
for the linear parts of the system dynamics in every mode is

sufficient for the exponential and input-to-state conveoge

of the system. Based on this result, for a class of PWA control
systems we have designed observers and (output) feedback
controllers that make the closed-loop system input-ttesta
convergent. The conditions for such observer and controlle
design are formulated in terms of LMIs. The obtained results
can be used for designing observers and (output-feedback)

tracking controllers for PWA systems.

(1]
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(3]

(4]

(5]
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