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Abstract— In this paper convergence properties of piecewise general class of PWA systems which includes also systems
affine (PWA) systems with discontinuous right-hand sides &  with discontinuous right-hand sides.
studied. It is shown that for discontinuous PWA systems The paper is organized as follows. In Section Il we pro-

existence of a common quadratic Lyapunov function is not id liminari i ih di i .
sufficient for convergence. For discontinuous bimodal PWA vide preliminaries on systems wi iscontinuous rightidha

systems necessary and sufficient conditions for quadraticon- ~ Sides. In Section IlI definitions_ of (uniformly, eX_ponewa
vergence, i.e. convergence with a quadratic Lyapunov funi@n, convergent systems are provided. Also, in this section we

are derived. introduce the notion of quadratic convergence and show its
relation to exponential convergence. In Section IV we first
present a counterexample which shows that for discontisiuou

Convergent systems are systems that have a globalya systems existence of a common quadratic Lyapunov
asymptotically stable steady state solution which depengignction is not sufficient for convergence. Then necessary
only on the input and does not depend on the initial condgnd sufficient conditions for quadratic convergence for bi-

tions. This property plays an important role in many contromodal PWA systems with (possibly) discontinuous right-
problems including tracking, synchronization, observer d hand sides are presented.

sign, the output regulation problem and performance arsalys

of nonlinear systems, see e.g. [1], [2], [3], [4], [5] and Il. PRELIMINARIES
references therein. It is easy to see that a linear timerigava In this paper we consider systems of the form
system with a stable transfer function is convergent, so the .

. ) i = f(x,1), (1)
properties of convergence and stability are closely rdlate
However for nonlinear systems, there are many examplegerex € R", ¢t € R and f(z,t) is a possibly discontinuous
showing that a globally asymptotically stable system pewrector field. It is assumed that(z,t) satisfies some mild
turbed by an extra input can have more than two steady statgularity assumptions which guarantee the existence of
solutions and thus it is not convergent. solutions of the system in the sense of Filippov, see e.g. [12

Studies related to convergence systems were originatddcording to [12], one can construct a set-valued function
in the 1960-s, for a short survey see [6]. Recent results dri(x,t) such that a solution of the differential inclusion
smooth convergent systems can be found in [7]. In this paper
we continue the previous study of the convergence propertie
of piecewise affine systems initiated in [8]. Piecewise affinis called a solution for system (1). By definition, the saduti
systems recently attracted considerable attention, gefo&. (¢, to, zo) with the initial conditionz (g, to, o) = zo iS @n
[10], [11] and references therein. absolutely continuous function of time.

In the first part of our study [8], the case of piece- Consider a scalar continuously differentiable function
wise affine systems with continuous right-hand sides wdg(z). Define a time derivative of this function along so-
considered and conditions for quadratic convergence welgions of system (1) as follows
derived in terms of Linear Matrix Inequalities. It turns out ) AV (z)
that for PWA systems with continuous right-hand sides the V= o &(t, to, o).
exponential convergence property follows from the existen _. . . . . .
of a common quadratic Lyapunov function for the Iinea|Slnce v IS continuously dlfferer_ltlable and Fhe SO"%“O“
parts of the system dynamics in every mode. The goal gf(t,to xo) is an absolutely continuous function of time,

this paper is to study the convergence property for a moFEe derlv_atlve_V(a:(t,to,mo)) exists almost everywher_e n
the maximal interval of existenc&,,1’) of the solution
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Remark 1 Notice that in the domains of continuity of thewith statex € R" and inputw € R™. In the sequel we will
function f(z,t) the derivative ofV/ (z) along solutions of consider the clasBC,, of piecewise continuous inputs(t) :
system (1) equaly’ = %ﬂ(f‘)f(m,t). According to [12] R — R™ which are bounded for all € R. We assume that
p.155, for acontinuously differentiablefunction V(z) it  the functionf(z, w) is bounded on any compact set(af w)

holds that if the inequality and the set of discontinuity points of the functigiiz, w)
oV () has measure zero. Under these assumptiong(omw), for
3 — f(z,t) <0 any inputw € PC,, the differential equatios = f(z, w(t))

r

has well-defined solutions in the sense of Filippov.

is satisfied in the domains. of Continuity of the function Below we define the convergence property for Systems
f(z,t), then the inequalityV*(z,t) < 0 holds for all with inputs.

(z,t) € R**!,

Definition 2 System (3) is said to bgniformly, exponen-

tially) convergentif it is (uniformly, exponentially) conver-

In this section we give definitions of convergent systemsyent for every inputv € PC,,. In order to emphasize the

These definitions extend the definition given in [13] dependency on the |npmﬁ(t)' the Steady-state solution is
denoted byz,, (t).

Ill. CONVERGENT SYSTEMS

Definition 1 System (1) is said to be

e convergenif there exists a solutioi(¢) satisfying the
following conditions

The (uniform, exponential) convergence property is an
extension of stability properties of asymptotically stabl
N ) LTI systems. Therefore, convergent systems enjoy various

(.') 'qf(t) IS dleflbne”d and botur:.de(lzll fort a\glle.R, properties which are encountered in asymptotically stable

(")_ z(t) is globally a?‘ymp otically stable, . LTlIsystems, but which are not usually met in general asymp-
e uniformly convergentif it is convergent andz(t) is  totically stable nonlinear systems, see [4]. As an illugira

globally uniformly asymptotically stable. ~ we provide a statement which summarizes some properties of
« exponentially convergerit it is convergent and:(t) is  uniformly convergent systems excited by periodic or camista
globally exponentially stable. inputs.

The solutionz(t) is called asteady-state solutionAs P 5 (3D S 3) with . .
follows from the definition of convergence, any solution rope_zrty _([ 1) Suppose system ( ) wit a given Input
of a convergent system “forgets” its initial condition and(?) is uniformly convergent. If the inpub(t) is constant,

converges to some steady-state solution which is indepmandéhe c.o.r requndmg stegdy-st.ate. SOI.U t'm(t.) Is also con-
of the initial condition. In general, the steady-state ol Stant if the inputw(t) is periodic with periodT’, then the

#(t) may be non-unique. But for any two steady-state SOc_orresponding steady-state solutian,(t) is also periodic

lutions 1 (f) and z» () it holds that|z, () — #,(t)] — 0 With the same period’.
ast — +oo. At the same time, founiformly convergent ooy we give an important technical definition of
systems the steady-state solution is unique, as formU|atﬁﬂadratic convergence
below [8]. '

_ . Definition 3 System (3) is called quadratically convergent
Property 1 If system (1) is uniformly convergent, then thg ihare exists a positive definite matrik = P7 > 0 and

steady-state solutior(t) is the only solution defined and 5 gnstanta > 0 such that for any inpuw € PC,,, the
bounded for allt € R. functionV (z1,z2) = 1/2(z1 — 22)" P(x, — z») satisfies

Remark 2 In the original definition of convergent systems Vi (@1,22,t) < —2aV (1, 22), (4)

given in [13], the steady-state solutiar(t) is required to where V*(z,, z5,t) is the upper derivative of the function

be unique. In Definition 1 this requirement of uniqueness |§(T z5) along any two solutions of the corresponding
omitted, since for the practically important case of unifor diff.(/alré.rﬁial inclusions € F(z, w(t), i.e

convergence uniqueness of the steady-state solution can

be proved as a corollary to the definition of the uniform 7 0 . 8V( ¥
Tr1,T2,0) = su —\Tr1,T
convergence. 1; T2, gleF(z}?w(m Bz, 1 T2)8
In systems theory, time dependency of the right-hand side + sup (a_v(mhm)&) _
of system (1) is usually due to some input. This input may €26 F(az,w(t)) \ OL: ‘

represent, for example, a disturbance or a feedforward con- . . I
; , . . Quadratic convergence is a useful tool for establishing
trol signal. Below we will consider convergence properties

for systems with inputs. So, instead of systems of the forr%xponentlal convergence, as follows from the next lemma.

(1), we consider systems . . :
Lemma 1 If system (3) is quadratically convergent, then it

= f(z,w), (3) is exponentially convergent.



Proof: Consider the system derivative and upper derivative &F (:) along solutions:(t)
. of system (5) (see (2)), we obtain
i = f(z,0(1)), (5)

where w(t) is some bounded piecewise-continuous input. Wia(t)) <0
First, we show the existence of a solutiog () of system for almost allt such that|z(¢)|p > ¢/a. This implies that
(5) which is defined and bounded on the whole time axithe setD := {z : |z|p < ¢/a} is compact and positively
(—o00,4+00). The existence of such,(t) will be shown invariant. By Lemma 2 there exists a solutiog(¢) which
using the following lemma. satisfiesz,, (t) € D for all t € R.

Next, we need to show global exponential stability of
Lemma 2 ([14]) Consider system (5) with a given inputz, (¢). By the quadratic convergence property it holds that
w(t) defined for allt € R. Let D C R" be a compact .

set which is positively invariant with respect to system (5) Vi{(2,20(t),t) < —2aV(2, 24 (1)).

Then there is at least one solutiari?) satisfyingz(t) € D Consider some solution(t) := x(t,to,z,) of system (5).
for all t € (—o0, +o0). Recall thatV (z(t), T, (t)) < V*(z(t), Z,(t),t) for almost

In order to apply this lemma, we need to prove the existencaeII t (see Section II). Therefore,

of a compact positively invariant sé&t. Consider the function V(w(t)7j;w(t)) < =20V (z(t), Ty (1))
W (z) := 1/22" Px. The upper derivative of this function

along solutions of system (5) satisfies for almost allt > ty. SinceV (z1,x2) is a quadratic form

with respect to the differencer; — x2), the last inequality

W*(x,t) = sup  a'PE< sup aP¢ implies
§EF (z,w(t)) §EF (z,w(t))
- inf  2"P&+ sup 2’ P& 2 (t) — T ()] < Cem 1) |a(ty) — 2y (to)],
§1EF(0,w(t)) £2€F(0,w(t))

where the numbef’ > 0 depends only on the matrik.
Notice that for the functio’V (z1, xz2) from the definition of

quadratic stability it holds that Remark 3 As follows from Remark 1 (Section 1), inequal-
V*(z,0,t) = sup aTPE+ sup (—zTP&) ity (4) is equivalent to the inequality
EEF (z,w(t)) TP& ElEF.(O%w(t)) TP& (ZE] _ CL’Q)TP(f(CL'] : ’U)) _ f(a:z,w))
== su x — mn x .
£€F(ac,1:1)u(t)) €1€F(0,u(t)) ! < —afz — )" Pz — z2) (11)
Therefore, for all w € R™ and allz; andxz, from the continuity domain
. . of the functionf(z, w).
W*(x,t) < V*(x,0,t) + sup |z’ P& (6) unctionf (z, w)
£26F(0.w(t) IV. DISCONTINUOUSPWA SYSTEMS
By the quadratic convergence property it holds that In this section we study convergence properties for PWA
V*(z,0,t) < —2aV(z,0) = —alz|3, (7) Systems with possibly disconti_ngous.right-hand sides.

‘ . _ Consider the state spa@® divided into polyhedral cells
where ||}, = x' Pz. At the same time, by the Cauchy A; ; = 1,...,1, by hyperplanes given by equations of the
inequality it holds thatz” P&,| < |z|p|&|r. Hence form HTz + h; = 0, for someH; € R" andh; € R,

sup T Pés| < |z|p  sup ol p. @ J= 1,..., k. We will consider piecewise-affine systems of
€€ F(0,w(t)) €€ F(0,w(t)) the form
Recall that the inputw(t) is bounded, i.elw(t)] < R for z=Aix+b;+Dw, for zel;, i=1,...,1. (12)

all t € R, for someR > 0. By the assumption on the Here A nxn nxm and b _—— ]
right-hand side of system (3) (see Section IIl), the functio €€ i € R™7, DeR andb; € R, 1 = 1,....1,

f(x,w) takes bounded values on any compact setofy) are constant matrices and vectors, respectively. The vecto
'The’refore the sef¢ ¢ R" : ¢ € F(0,w), |w| < R} is © € R" is the state and € R™ is the input. The hyperplanes

bounded. Therefore, for some constant 0 it holds that 1 # + i = 0. j = 1,....k, are the switching surfaces.
Before proceeding with the case of general (discontinuous)
sup  |&|p < sup |&lp <e. (9) PWA systems, we review a result from [8] on sufficient
£2EF(0,u(t)) & € F(0,w) conditions for quadratic convergence for PWA systems with
lw] < R continuousos right-hand sides.

Combining |ne.qual|t|es (6)- () we obtain Theorem 1 ([8]) Consider system (12). Suppose the right-

W*(z,t) < |z|p(—alz|p + ©). (10) hand side of system (12) is continuous and there exists a

. L ositive definite matrix> = P > 0 such that
Hence,W*(z,t) < 0 for all ¢t € R and all z satisfying P

|z|p > ¢/a. Taking into account the relation between the PA;+ ATP <0, i=1,...,L (13)



Then system (12) is quadratically convergent. affine system is not sufficient to guarantee its convergence.
Moreover, this example shows that the continuity condgion
Remark 4 In fact, in this theorem it is shown that for a play an important role for the convergence of PWA systems
continuouspiecewise-affine vector-fielf{(z, w) of the form and we have to be careful when analyzing convergence for
discontinuous PWA systems. In fact, for bimodal piecewise-

flz,w) = Asw+bi+ Dw, forzeh;, i=1,...,1 affine systems the existence of a common Lyapunov function

condition (13) is equivalent to the inequality and the conditions similar to the continuity requirememts a
.’ even necessary and sufficient for the quadratic convergence
(1 —z2)" P(f(z1,w) — f(2z2,w)) as follows from the result presented hereafter.
< —a(zy — z2)TP(xy — x2) (14) Consider the bimodal system
for somea > 0 and allw € R™ and all 21,2, € R". P { Ajz 4+ by +Dw, for H'z >0 (15)
v Asz + by + Dw, for HTz <0,

Based on the result of Theorem 1, one can conjecture that n m )
discontinuous piecewise affine system (12) is also conmrgeW?]er.ew €R%,weR . and Az b"’. 1 =12 an.d D. are
atrices of the appropriate dimensions. The switchingelan

provided there is a common quadratic Lyapunov function for" ) -
the linear parts of the system dynamids:. However this is determined by the constant vecfére R”. DenoteAd :=
is not the case as one can see from the following simpl‘é1 — Az, Ab:=by — by,

example. Suppose that the system dynamics is governed
the following scalar differential equation with discontus
right-hand side:

ﬂ){eorem 2 Consider system (15). The following statements
are equivalent:

(i) System (15) is quadratically convergent.
i=a(r), zeR, (i) There exist a positive definite matrix = P” > 0 and

where the functiom(z) is depicted schematically on Fig. 1. constantsi > 0 andy 2 0 satisfying the following LM

It is seen that the system belongs to the class of piecewise PA, + ATP+ 31 PAA - LHHT

affine systems and in each region the dynamics is linear. < AAT p JlHHT fHIiIT ) <0, (16)
A vpp . 2

Moreover, it is not difficult to see that the system is glob-

ally asymptotically stable with common quadratic Lyapunov PAb= —vH. (17)

function 7 = z*. (i) There exist a positive definite matri = PT > 0, a
A a(z) numbery € {0,1} and a vectorG € R" such that

PA; + ATP <0, i=1,2, (18)

\. AA=GHT, (19)
1 PAb = —vH. (20)
Proof: The theorem will be proved in the following

order: (i)= (i) = (iii) = (i).

Vs

—u : (i)=-(ii). According to Remark 3, quadratic convergence
of system (15) implies that there exists a positive definite
matrix P = P” > 0 and a number > 0 such that for
any z; and z, satisfying the inequalities?”z; > 0 and
HTz, < 0 it holds that

(.’I,‘1 - .’IJQ)TP(Al.’I,‘l + b1 - A2.’L‘2 - b2)

Fig. 1. Piecewise affine characteristicér).

Now suppose that the dynamics of the system is modified < —awy — @) Py — x2). (21)
with an additive input signal, that can be either disturlmncBy denotinge :=

i — o and taking into account the fact
or reference signal:

that —aP < —3I for somes > 0 and I being the identity
i =alz) +ult), z€R. matrix, we conclude that inequality (21) implies

T _
It is clear from the picture that for some input signals e' P(Are + AAzy + Ab) < —flel? (22)
(e.g. constant) the dynamics of the system can depefst all ¢ andz, from the set() := {(e,z,) : H"z, <

on the initial conditions (one can take such a constanf [7¢ + H”z, > 0}. Let us show that inequality (22)
input signal that the system has two asymptotically stab&gems

equilibria), or, in other words, the system is not convetgen T )
This simple example illustrates that even the existence of e” P(Aie + Adwy) + Ble]” < 0 (23)
common Lyapunov function for each mode of a piecewise e'PAD < 0 (24)



for all (e, z2) € ;. Consider some poirfe, z2) € Q4. Then implication (i)=(ii).
for all A > 0 it holds that(\e, Az3) € Q;. As follows from
inequality (22), this yields (i) =(iii) First, we will show that conditions (18)-(20) hold
. - - for some matrixP? = PT > 0, vectorG € R"” and some
A (e” P(Are + AAzz) + Blef”) + Ae” PAb < 0 v > 0. If v = 0 this proves this implication. If > 0, then

for all A > 0. One can easily check that this inequality iy dividing (18) and (20) byy we obtain that relations (18)
satisfied for all\ > 0 iff the inequalities (23) and (24) hold. @nd (20) hold forP := P/y and§ = 1. This proves the
Due to arbitrary choice ofe,z,) € ©;, we conclude that "€maining part of the implication.
inequalities (23) and (24) are satisfied for @l z5) € Q. Let us show that conditions (18)-(20) hold for some

Repeating the same steps as in the first part of the prodfatrix £ = PT > 0, vectorG € R" and somey > 0.
but this time for points:; andz» satisfyingH”z, < 0 and We only need to show (18) and (19), since (20) coincides

HTz, > 0, we conclude that the inequality with (17). One can easily see that inequality (16) implies
B B PA, + ATP < —BI < 0. Next we show that inequality
el P(Aje — AAzy) + Ble)* <0 (25) PA, + ATP < —BI < 0 holds. Denote the matrix in (16)

holds for all (e, z1) € Qs, WhereQy := {(e,z1) : HTz; < by M. The inequality (16) yields
0, ~HTe+HTz, > 0}. By denotingz, := —z;, we obtain < T )TM ( T ) <0

that (31)

—I

T 5 - 3112
e P(Are+ AAZ1) + Ble]” <0 (26)  for all & € R™. After elaborating the left-hand side of (31)

holds for all (e, #,) € Q,, whereQ, := {(e, %) : H"# > we obtainz’ (PA, + AJP + I)xz < 0 for all z € R".

0, H"e + H"# < 0}. Now we can show that (16) is Hence, we have shown (18). Let us show that (19) holds

feasible. for someG € R". This is done in the same way as in [2].
Combining inequalities (23) and (26) we obtain that théupposex € ker(HT). From the structure of the matrix/

quadratic formF (e, £) := e P(A;e+AA¢) + B|e|? satisfies we obtain

F(e,§) <0 for(e,&): G(e ) <0, (27) <2>TM<2>20.

whereG(e, &) := ¢"H(H"e + H"¢). Due to continuity of Since M = M7 < 0, this equality impliesM (0, x)” = 0.

JF and non-strict inequality fof in (27), the last inequality Taking into account the structure af/, we obtain that

is equivalent to PAAyx = 0. Since P is non-degenerate, we conclude that

AAx = 0. Thus we have shown thatr(H”) C ker(AA).

Fle§) <0 for (e, &) : Gle,§) <0. (28) This relation, in turn, implies the e>£iste21ce of(a v)ector

Applying the S-procedure, see e.g. [15], [16], we obtainG € R such thatAA = GHT. This concludes the proof of

that the conditional inequality (28) is equivalent to thethe implication (ii}=(iii).

unconditional inequality

(i) =(i) Let us write the system (15) in the following
Fle, &) —1G(e,€) <0 (29)  form

for somer > 0 and all (e, ¢) € R*". The equivalence holds
because th&-procedure is lossless in case of one quadratighere
constraint, see e.g. [15]. Notice that since the quadratin f

& = f(z,w) + b(x), (32)

T
Fl(e, &) is not negative semidefinite; # 0 (otherwise the flz,w) = { ﬁlf I g:’ ]tg: ng ig (33)
equivalence between (28) and (29) does not hold). Notice >0 ’ T
that inequality (29) is equivalent to the following LMI by, for HT2 >0
= S o - ble) := by, for H'z <0 (34)
PA, + ATP+231 PAA—7HHT > '
AATP —rHHT —2rHHT <0. (30)  As follows from Remark 3, for quadratic convergence of

system (32) it is sufficient that, for some matfx= P > 0

Sincer > 0, this inequality is equivalent to (16) witk := and scalan > 0, the inequality

P/(2r) and B := B/.
It remains to show that inequality (17) holds for the (z1 — x2)" P(f(z1,w) + b(w1) — f(w2,w) — b(x2))
presentedP and some~y > 0. To this end, consider < —a(zy — 22) T P(xy — 2)
inequality (24), which holds for alle,z2) € ;. Notice (35)
that for all e satisfying H”e > 0 there existsz, such that
(e,z2) € ;. Therefore,e” PAb < 0 for all e satisfying holds for allz; andz, such thatd Tz, # 0 andH zy # 0,
HTe > 0. One can easily check that this is possibla.e. in the continuity points of the right-hand side of syste
iff PAb = —4H for some~ > 0. After dividing both (32). The vector-fieldf (z, w) is piecewise affine. Moreover,
sides of the obtained equation Ry, we obtain (17) with one can easily check that condition (19) implies continuity
P = P/(27) andv := #/(27). This finishes the proof of of f(x,w) (see [8], Lemma 1). Since the matricds and



A, satisfy (18) for some”? = P? > 0, then by Theorem 1
(see Remark 4) the inequality

(x1 — ) P(f(x1,w) — f(z2,w))
< —ar — .’L'Q)TP(.’IJl — I9) (36)
holds for allz; andz, € R". Hence,
(z1 — 22) " P(f(z1,w) + b(z1) — f (22, w) — b(x2))
< —afxy — CUQ)TP(CU] — T9)
+(x1 — @) TP (b(w1) — b(22)).
(37)
It remains to show that
(z1 — 22)" P(b(z1) — b(x2)) <0 (38)

for all z; andz, such thatdTz; # 0,4 = 1,2. If z; and
z» belong to the same cell, i.e. eith&"z; > 0,7 = 1,2
or H'z; < 0,4 = 1,2, thenb(z;) = b(x») and, therefore,
the left-hand side of (38) equals zero. 7z, > 0 and
HTzy <0, thenb(zy) — b(zz) = by — by = Ab. Taking into

have introduced the notion of quadratic convergence,dm®- c
vergence with a quadratic Lyapunov function. This quadrati
convergence serves as a useful tool for establishing the
exponential convergence. For discontinuous bimodal PWA
systems we have presented necessary and sufficient condi-
tions for the quadratic convergence. According to thisltesu

a discontinuous bimodal PWA is quadratically convergent
iff the discontinuity occurs only due to affine terms and, in
addition to that, two certain linear systems, related to the
PWA system dynamics in each mode, are simultaneously
strictly passive with the same quadratic storage function.
The obtained results provide tools for studying convergenc
properties for hybrid systems. They can be used, for example
in observer design for discontinuous hybrid systems.
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