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Abstract— Research on the output regulation problem is
mainly focused on theoretical developments and studies on
simulation level. In this paper we present experimental results
on the nonlinear output regulation problem for a benchmark
mechanical system, the so-called TORA system. The effective-
ness of the approach is shown and its practical limitations are
illuminated.

I. INTRODUCTION

The output regulation problem is one of the most important
problems in control theory. It includes the problems of
tracking reference signals and rejecting disturbances gener-
ated by an external autonomous system (exosystem). For
linear systems, this problem was thoroughly investigated
in the 1970-s, see e.g. [1], [2]. For nonlinear systems,
intensive research started with the papers [3] and [4], which
provided solutions to the local output regulation problem for
general nonlinear systems. These papers were followed by
a number of results dealing with different aspects of the
output regulation problem for nonlinear systems: approxi-
mate, robust and adaptive output regulation. For the latest
list of references on the subject the reader is referred to the
recent monographs [5], [6]. Despite the significant interest to
this problem, most of the known results are theoretical and
the proposed controllers solving the problem are validated
only in simulations. To the best of our knowledge, at the
moment there are only two publications [7] and [8] related
to experimental output regulation for nonlinear systems. This
motivates further studies in experimental nonlinear output
regulation.

In this paper we present experimental results on output
regulation for the so-called TORA system (Translational
Oscillator with a Rotational Actuator). This system is a
benchmark mechanical system used for testing many nonlin-
ear control techniques, see e.g. [9], [10]. The local nonlinear
output regulation problem for the TORA system has been
considered in [11], [12]. First, in Section II we describe
the TORA system and state a local disturbance rejection
problem for this system. This problem is a particular case of
the local nonlinear output regulation problem. In Section III
a controller solving the disturbance rejection problem is
presented. The experimental setup is described in Section IV.
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In Section V we present and discuss experimental results.
Section VI contains conclusions. The results presented in
this paper are part of the work [13].

II. OUTPUT REGULATION OF THETORA SYSTEM

Consider the so-called TORA-system (Transitional Oscil-
lator with a Rotational Actuator), which is shown in Fig. 1.
This system consists of a cart of massM which is attached
to a wall with a spring of stiffnessk. The cart is excited by
a disturbance forceFd. In the center of the cart, there is a
rotating arm of massm. The center of mass of the armCM is
located at a distance ofl from the rotational axis and the arm
has an inertiaJ with respect to this axis. The arm is actuated
by a control torqueTu. The cart and the arm move in the
horizontal plane and, therefore, gravity effects are omitted.
The horizontal displacement of the cart is denoted bye and
the angular displacement of the arm is denoted by�.

The control problem is to find a control law for the torqueTu such that the horizontal displacemente tends to zero in
presence of a harmonic disturbance forceFd. The frequency
of the disturbance force is fixed and known in advance,
while the amplitude and phase may vary from experiment to
experiment. This is a particular case of the output regulation
problem. Firstly we find a controller solving this problem
locally, i.e. for small initial conditionse(0), _e(0), �(0), and_�(0) and for disturbances with small amplitudes.

III. C ONTROLLER DESIGN FOR THETORA SYSTEM

In this section we design a simple controller for the
disturbance rejection problem considered in Section II. The
equations of motion for the TORA system are given by [9]:�M�e+ml(�� os � � _�2 sin �) + ke = Fd; (1)J �� +ml�e os � = Tu;
where �M :=M +m. The disturbance forceFd is generated
by the linear exosystem_w1 = !w2; _w2 = �!w1; Fd = w1; (2)
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Fig. 1. The TORA system.



where! is the oscillation frequency. The initial conditions of
the exosystem (2) determine the amplitude and phase of the
excitation. The control problem is to asymptotically regulatee(t) to zero for all sufficiently small initial conditions of the
closed-loop system and for all sufficiently small initial con-
ditions of the exosystem and at the same time to guarantee
that forFd = 0 the closed-loop system has an asymptotically
stable linearization at the origin. This is a particular case of
the local output regulation problem, see e.g. [14], [15]. We
assume thate, _e, �, _�, w1 and w2 are measured and all
parameters of the system are known.

Following [14], we seek a controller solving this problem
in the form Tu = (w) +K(x� �(w)); (3)

wherex := [e; _e; �; _�℄T is the state of the system (1) andw := [w1; w2℄T is the state of the exosystem (2). The
matrixK is such that forw = 0 the closed-loop system (1),
(3) has an asymptotically stable linearization at the origin.
The mappings�(w) := [�1(w); �2(w); �3(w); �4(w)℄T and(w), with �(0) = 0 and(0) = 0, areC1 mappings which
are defined in a neighborhood of the originw = 0 and
satisfy the so-called regulator equations [15]. The solutions
to the regulator equations have the following meaning: for
any sufficiently small solution of the exosystemw(t), for
the disturbance forceFd(t) = w1(t) and controller actionTu(t) = (w(t)), the functionx(t) = �(w(t)) is a solution
of system (1) and along this solution the displacemente(t)
equals zero. By substitution one can easily check that the
mappings�1(w) = 0; �2(w) = 0; �3(w) = �arsin� w1ml!2� ; (4)�4(w) = � !w2(m2l2!4 � w21)1=2 ; (5)(w) = !2w1(m2l2!4 � w21 � w22)J(m2l2!4 � w21)3=2 (6)

satisfy the regulator equations.
The requirement on the matrixK is equivalent to the

requirement thatA + BK is a Hurwitz matrix, where the
matricesA :=2664 0 1 0 0� kJ�MJ�m2l2 0 0 00 0 0 1kml�MJ�m2l2 0 0 0 3775 ; B :=2664 0� ml�MJ�m2l20�M�MJ�m2l2 3775
follow from the linearization of system (1) at the origin. No-
tice that in the model (1),J > ml2 and �M > m. Therefore,�MJ � m2l2 > 0. For all non-zero system parameters the
pair of matrices(A;B) is controllable. Therefore, we can
always choose a matrixK such thatA + BK is Hurwitz.
Consequently, we have found a controller solving the local
output regulation problem. The controller (3) admits some
freedom in the choice of the matrixK. This freedom can be
used, for example, in tuning the controller to obtain desirable
performance of the closed-loop system. Controller (3) is

implemented in the experimental setup described in the next
section.

IV. EXPERIMENTAL SETUP

The experimental setup has been constructed by adapting
an existing X-Y positioning system (the H-bridge setup)
in the Dynamics and Control Technology Laboratory at
Eindhoven University of Technology. The setup is shown
in Fig. 2.

Fig. 2. The adapted H-bridge setup.

A. Setup description

The adapted H-bridge setup is schematically shown in
Fig. 3. It consists of the following components. The two
parallel axes Y1 and Y2 are equipped with Linear Magnetic
Motor Systems LiMMS Y1 and LiMMS Y2 that can move
along their axes. These two carriages support the X-axis.
In all experiments that are performed on this setup, the Y1
and Y2 carriages are controlled to maintain a fixed position
with a low-level PID controller. Therefore, in the sequel we
assume that these two carriages stand still and that the X-axis
is fixed.

In the sequel we will refer to the X-LiMMS carriage
moving along the X-axis as the cart. The mass of the cart
is M [kg]. The displacement of the carte [m] is measured
using a linear incremental encoder (Heidenhain LIDA 201)
with a 1 �m resolution. The force applied to the cart by the
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Fig. 3. The adapted H-bridge setup scheme, top view.
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Fig. 4. The adapted H-bridge setup: rear view and connectionscheme.

linear motor is proportional to the (voltage) control signaluF which is fed to the linear motor through a proportional
current amplifier, i.e.F = �FuF . The constant�F has the
value of 74.4 N/V ([16]). In addition to the actuating force,
a friction forceFf = Ff ( _e) is present in the roller bearings
of the cart, which depends on the cart velocity. Moreover,
there is a position dependent cogging forceF = F(e). This
cogging force is caused by the interaction of the permanent
magnets in the X-axis stator base and the iron-core coils of
the electromagnets in the cart, see [16] for details.

In order to transform theH-bridge into a TORA system,
additional hardware has been added to the cart, see Fig. 4. A
vertical shaft supported by a set of (deep-groove and angular
contact) ball bearings is attached to the back of the cart, thus
forming a rotational joint. An arm of massm [kg] is attached
to the lower end of the shaft. The center of mass of the arm
is located at the distancel [m] from the shaft center line. The
angular position of the shaft (and consequently of the arm)� is measured by a rotational incremental encoder (Maxon,
HEDL55) with a (quadrature decoded) resolution of0:18Æ
at the motor shaft. A 48V, 150W DC motor (Maxon RE40),
fitted with a ceramic planetary gearhead (Maxon GP42C),
drives the shaft via an adapted flexible coupling (ROBA-DX,
type 931.333). The gear ratiogr equals113. The backlash in
the gearhead is approximately0:5Æ at the output shaft. The
total inertia of all rotating parts (the arm, shaft, coupling,
bearings, gearhead and motor) with respect to the shaft isJ [kg�m2]. Due to the friction in the motor, gearhead and
ball bearings of the shaft, an additional friction torqueTf =Tf ( _�) acts on the arm. The torqueTm generated by the DC
motor is proportional to the currenti [A] fed to the motor,
i.e. Tm = �T i, where�T = 60:3 mN �m=A is the motor
constant. The currenti is generated by an analog current
amplifier. It is proportional to the (voltage) control signal uT
fed to the amplifier, i.e.i = �AuT , where�A = 1:6A=V is
the amplifier constant.

Taking into account all the active forces and torques, we
use the equations of Lagrange for the setup consisting of the
cart moving along the fixed X-axis and the (horizontally)
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rotating arm attached to the cart. The corresponding model
has the following form�M�e+ml(�� os � � _�2 sin �) = F � Ff ( _e) + F(e);J �� +ml�e os � = T � Tf ( _�); (7)

where �M := M +m, the actuator force acting on the cart
equalsF = �FuF and the actuator torque acting on the arm
equalsT = gr�T�AuT , whereuF and uT are the control
signals for the cart and for the arm, respectively.

The cogging forceF(e) and the friction forceFf ( _e)
have been identified using dedicated experiments [16], see
Fig. 5 and 6, respectively. The friction torqueTf ( _e) has been
identified using constant angular velocity tests. The resulting
graph is given in Fig. 7.

Initial estimates of the mass�M , the productml and the
inertia J are computed from the CAD drawings, material
data and specifications of the motor and gearhead. These
estimates are�M = 20:965 kg, ml = 1:2514 kg � m andJ = 0:5405 kg�m2. These estimates will be used as a starting
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Fig. 7. The identified friction torqueTf ( _�).



point to obtain more accurate estimates based on closed-loop
experiments.

In order to implement the TORA system in the resulting
setup, we need to compensate for the friction in the cart and
the arm, and for the cogging force in the X-axis. Moreover,
we need to implement the virtual spring action�ke and the
disturbance forceFd along the X-axis. For the cart, this is
achieved by the controlleruF = 1�F (F̂f ( _e)� F̂(e)� ke+ Fd); (8)

where F̂f ( _e) and F̂(e) are the friction compensation and
cogging compensation forces (based on the identified values
of these forces, see Fig. 6 and 5),k [N/m] is the stiffness
of the virtual spring (which we can set arbitrarily) andFd(t) = w1(t) is the disturbance force acting on the cart.
In the experiments performed on the setup, parameterk
is set equal tok = 500 N=m: The exosystem (2), withw(t) = [w1(t); w2(t)℄T , is integrated in the PC/dSpace-
system and the disturbance forceFd(t) = w1(t) is computed
from the obtained solutions.

Next, we need to implement friction compensation in the
rotating arm. This is achieved by the controlleruT = 1gr�T�A (Tu + T̂f ( _�)); (9)

where T̂f ( _�) is the friction compensation torque based on
the identified friction torque in the arm, see Fig. 7, andTu
is a new control input.

After implementing the low-level controllers (8), (9) and
the exosystem (2), the resulting system takes the form�M�e+ml(�� os � � _�2 sin �) + ke = Fd + "F (10)J �� +ml�e os � = Tu + "T ;
where Fd(t) = w1(t) is the disturbance force,Tu is the
control torque (new input) and"F and "T are the residual
terms due to non-exact friction and cogging compensation
and due to uncertainties in the system parameters. System
(10) is now in the form of system (1) (if the residual terms
are not taken into account) for which the controller (3) solves
the local output regulation problem. This controller requires
the values fore and�, which are measured by the encoders,_e and _�, which are obtained by numerical differentiation and
filtering of the measured signalse and�, and the values ofw1(t) andw2(t), which are computed in the dSpace-system.

V. EXPERIMENTS

In this section we present experimental results performed
on the adapted H-bridge setup in closed loop with the
controller (9), (3).

A. Parameter settings

The gain matrixK in the controller (3) is set toK :=[29; �1:5; �11; �1:9℄: The eigenvalues of the linearized
closed-loop system corresponding to this value ofK and to
the estimated system parameters given in the previous section
equal�1:0313�5:8493i and�0:9121�3:8901i. The choice

of the matrixK is determined by several requirements. The
first and the third entries in the matrixK, which correspond
to the displacement of the carte and angular position of the
arm � must be large enough to compensate for the residual
friction and backlash present in the system. At the same
time, the real part of the eigenvalues of the linearized closed-
loop system must be less than a certain threshold in order
to guarantee fast convergence rates and sufficient robustness
properties of the closed-loop system. Finally, the control
signal resulting from this matrixK must not exceed, in most
operating conditions, the bounds imposed by the amplifier
and DC motor specifications. Taking these requirements
into account, a combination of some optimization procedures
with trial and error resulted in the matrixK presented above.

The estimates for the parametersJ and ml are tuned
based on closed-loop experiments using the output regulation
controller (in order to obtain better performance). The new
estimates arêJ = 0:4270 N�m2 (21% smaller than the initial
estimate) andml = 1:3389 kg �m (7% larger than the initial
estimate). These estimates are used in the feedforward partof
the output regulation controller in the experiments presented
in this paper.

The friction compensation torque in the rotating armT̂f ( _�) is set 1:5 times larger than the identified friction
torqueTf ( _�) given in Fig. 7. It has been noticed that for
this friction compensation in the rotating arm the controller
has a better performance. Such a large deviation from the
identified values may be explained by the fact that the
friction in the gearhead, which is the main contributor to the
friction in the arm motion, depends not only on the angular
velocity _�, but also on the torque applied to the shaft. The
identification of the friction torque has been performed for
very low torques (constant velocity experiments), while in
the experiments with the TORA controller the torques are
much higher. The cogging compensation forceF̂ (e) is set
equal to the identified cogging force presented in Fig. 5.
The friction compensation forcêFf ( _e) in the cart motion is
set to90% of the identified friction force presented in Fig. 6
to avoid overcompensation. Moreover, for a cart velocity_e
of magnitude less than0:035 m=s, it is set toF̂f ( _e) := j _ej0:900:035 Ff ( _e):
This under-compensation of the friction in the cart motion
reduces the friction-induced limit-cycling which exceedsin
experiments if the friction compensation force is set equal
the real friction force, see e.g. [17]. At the same time,
friction under-compensation makes the equilibrium set in
terms of the position of the cart larger. In the experiments,
this equilibrium set can be easily observed when the cart
sticks in a pointe�, which is close, but not equal to zero.

In the experiments, the frequency of the disturbance forceFd(t) (the frequency of the exosystem) is set to1 Hz,
which corresponds to! in the exosystem (2) equal to! =2� rad=s:



e0 [m] �0 [deg]
Experiment # 1 -0.2 20
Experiment # 2 0.2 20
Experiment # 3 0.1 90

TABLE I

INITIAL CONDITIONS e0 AND �0 USED IN THE EXPERIMENTS.
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Fig. 8. Experiments for a disturbance force of amplitudeA = 15 N and
predefined initial conditions.

B. Experimental results

All experiments are performed for the initial conditions of
the exosystem equal tow1(0) = 0, w2(0) = A. These initial
conditions correspond to the disturbance forceFd(t) :=A sin(!t): We perform the experiments for two values of
the amplitudeA: A = 15 andA = 25 N.

Two types of experiments are performed. In the experi-
ments of the first type, the system starts in a given initial
condition e(0) = e0 [m], _e(0) = 0 [m/s], �(0) = �0 [deg],_�(0) = 0 [deg/s]. For each value of the amplitudeA we
perform three experiments corresponding to different initial
conditionse0 and �0. These initial conditions are given in
Table I. The results of the experiments corresponding to the
disturbance amplitudesA = 15 andA = 25 N are presented
in Fig. 8 and 9, respectively. In these figures the controller
effort is represented by the currenti = �AuT [A] fed by the
amplifier to the DC motor.

In the experiments of the second type, the system is
affected once again by a disturbance forceFd(t) of amplitudeA. Initially, only the feedback part in the controller (3) is
active, i.e.Tu = Kx, and there is no compensation for
the disturbance forceFd(t). Since there is no disturbance
compensation, the cart starts oscillating. At an arbitrary
time instant t� the feedforward part of the controller is
activated, i.e.Tu = (w) + K(x � �(w)). This results
in disturbance rejection in the position of the carte. The
results of the experiments corresponding to the disturbance
amplitudesA = 15 and 25 N are presented in Fig. 10 and
11, respectively.
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Fig. 9. Experiments for a disturbance force of amplitudeA = 25 N and
predefined initial conditions.
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Fig. 10. Experiments for a disturbance force of amplitudeA = 15 N.
Disturbance compensation is activated during the experiment.

From these experimental results we can immediately draw
the following conclusion. The output regulation controller
(3) does compensate a significant part of the harmonic
disturbance force acting on the cart, and the output regulation
occurs. The residual friction in the cart motion manifests
itself in the sticking phenomenon: after transients the cart
stabilizes at an equilibrium position which is close, but not
equal to zero.

In Fig. 12 the cart displacement signal related to an ex-
periment, performed at a different time, is depicted. Clearly,
exact output regulation is not attained and a limit cycle
of small amplitude remains. In this respect, it should be
noted that the friction characteristics in the setup are subject
to change due to temperature and humidity change in the
laboratory. However, exactly the same friction compensation
as in the previous experiments was used. Consequently, the
limit cycling can be caused by an interaction of several
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factors: friction and friction compensation in the cart motion,
friction and friction compensation in the rotating arm, feed-
back controller and backlash in the gearhead. These problems
require an additional investigation which is outside the scope
of our research.

VI. CONCLUSIONS

In this paper we have presented experimental results on
the local output regulation problem for the TORA system.
First, we have constructed a simple state-feedback controller
which solves a disturbance rejection problem for the TORA
system. This problem is a particular case of the local output
regulation problem. In order to validate this controller in
experiments, an experimental setup for the TORA system
has been built from an existing H-bridge setup. The proposed
state-feedback controller has been implemented in this setup
and tested in a row of experiments.

As follows from the results of these experiments, for the
setup in closed loop with the proposed controller, output reg-
ulation occurs, though only approximately. This means that
the regulated outpute(t) does not tend to zero exactly, but
either sticks in an equilibrium position close to zero or keeps
on oscillating with a small amplitude. These phenomena are
due to non-exact compensation of the friction and due to the
backlash problem in the gearhead of the rotating arm.

In practice there is always some type of (non-)parametric
uncertainty present in the system. It can be either due to inac-
curately identified parameters of the system or due to friction,
backlash or other parasitic phenomena acting on the system,
which are not taken into account in the system model. These
uncertainties may significantly reduce the performance of
a controller. This performance deterioration may manifest
itself, for example, in a steady-state regulation error, as
illustrated by the experimental results on the TORA system
presented above. It should be noted that most theoretical
works on robust output regulation for nonlinear systems
are focused mainly on parametric uncertainties. The results
presented in this paper urge the need for further work on
the robustness of output regulation controllers with respect
to non-parametric uncertainties.

The results given in this paper represent one of the first
steps in the field of experimental output regulation for non-
linear systems. They illustrate applicability of the nonlinear
output regulation theory in experiments. Further work is
under way to implement an output-feedback controller for
the disturbance rejection problem and to reduce the sticking
and limit cycling phenomena caused by friction and backlash.
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