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Abstract— Convergent systems constitute a practically im-
portant class of nonlinear systems that extends the class of
asymptotically stable LTI systems. In this paper we extend
frequency response functions defined for linear systems to non-
linear convergent systems. Such nonlinear frequency response
functions for convergent systems give rise to nonlinear Bode
plots, which serve as a graphical tool for performance analysis
of nonlinear convergent systems in the frequency domain. The
results are illustrated with an example.

I. INTRODUCTION

A common way to analyze the behavior of a (closed-loop)
dynamical system is to investigate its responses to harmonic
excitations at different frequencies. For linear systems, the
information on responses to harmonic excitations, which
is contained in frequency response functions, allows one
to identify the system and analyze its properties such as
performance and robustness. There exists a vast literature
on frequency domain identification, analysis, and controller
design methods for linear systems, see, e.g., [13], [22].
Most (high-performance) industrial controllers, especially for
motion systems, are designed and tuned based on these
methods, since these methods allow one to analyze the
performance of the closed-loop system. The lack of such
methods for nonlinear systems is one of the reasons why
nonlinear systems and controllers are not popular in industry.
Even if a (nonlinear) controller achieves a certain control
goal (e.g., tracking), which can be proved, for example,
using Lyapunov stability methods, it is very difficult to
conclude how the closed-loop system would respond to
external signals at various frequencies, such as, for example,
high-frequency measurement noise or low-frequency distur-
bances. Such performance characteristics are critical in many
industrial applications. So, there is a need to extend the
linear frequency domain performance analysis tools, which
are based on the analysis of frequency response functions,
to nonlinear systems. Such an extension for the class of
nonlinear convergent systems is the subject of this paper.

Convergent systems are systems that, although may be
nonlinear, have relatively simple dynamics. In particular, for
any bounded input such a system has a unique bounded
globally asymptotically stable solution, which is called a
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steady-state solution [3], [18], [17]. This property makes
convergent systems convenient to deal with. Nonlinear sys-
tems with similar properties have been considered in [1],
[4], [14]. In [7], [8] nonlinear controllers for a controlled
Optical Pickup Unit (OPU) of DVD storage drives have been
proposed to overcome linear controller design limitations.
These controllers, in fact, make the corresponding closed-
loop system convergent. The latter fact facilitates frequency-
domain performance analysis of such nonlinear though
convergent closed-loop systems. In [6] even experimental
frequency-domain performance analysis based on measuring
steady-state responses of the closed-loop OPU to harmonic
excitations has been done.

Input-output characterizations of smooth nonlinear sys-
tems have been pursued in the form of Volterra series
descriptions both in time and frequency domain, see, e.g.,
[21], [20], [23]. The practical application of such descriptions
is hampered by, firstly, the fact that the Volterra kernels
in the Volterra series are, in general, difficult to compute;
and, secondly, the accuracy of the truncated Volterra series—
and truncation is necessary for practical applications—is, in
general, an open problem.

In this paper we show that for convergent systems all
steady-state solutions corresponding to harmonic excitations
at various amplitudes and frequencies can be characterized
by one function. This function, which we call a nonlinear
frequency response function (FRF), extends the conventional
frequency response functions defined for linear systems.
Contrary to the describing functions method (see, e.g., [12]),
which provides only approximations of periodic steady-
state responses of nonlinear systems to harmonic excitations,
the nonlinear FRF provides exact steady-state responses to
harmonic excitations at various amplitudes and frequencies.
Similar to the linear case, the nonlinear FRF gives rise to
nonlinear Bode plots, which provide information on how
a convergent system amplifies harmonic inputs of various
frequencies and amplitudes. This information is essential
for performance analysis of convergent closed-loop systems
since it allows one to quantify the influence of the high-
frequency measurement noise on the steady-state response of
the system, or how close the output of a closed-loop system
will track certain low-frequency reference signals. Such
frequency-domain performance information is extremely im-
portant in control applications.

The results in this paper are based on the idea of consid-
ering harmonic excitations as outputs of a linear harmonic
oscillator or, more generally, of an exosystem. This idea
has proved to be beneficial in the steady-state analysis of
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nonlinear systems. In the scope of the local output regulation
problem it has been used in [10], [2]. Developments in
non-local steady-state analysis of nonlinear systems and its
applications can be found in [11], [18]. In [9] the idea of
using an exosystem has been used for quantitative analysis of
steady-state as well as transient dynamics of systems excited
by harmonic inputs.

The paper is organized as follows. In Section II we
present definitions and basic facts on convergent systems.
In Section III we review frequency response functions for
linear systems. The main result on frequency response
functions for nonlinear convergent systems is presented in
Section IV. Nonlinear Bode plots are presented in Section V.
In Section VI we present an example. Section VII contains
conclusions.

II. CONVERGENT SYSTEMS

Consider systems of the form

ẋ = F (x,w), (1)

where x ∈ R
n and w ∈ R

m. The inputs w(t) are assumed to
belong to the class PCm of piecewise-continuous functions
defined and bounded on R. The function F (x,w) is assumed
to be continuous with respect to w and locally Lipschitz
with respect to x. Below we give a definition of convergent
systems.

Definition 1 ([3], [18]): System (1) with a given input
w(·) ∈ PCm is said to be (uniformly, exponentially) con-
vergent if

i. all solutions xw(t) = x(t, t0, x0, w(·)) are defined for
all t ∈ [t0,+∞) and all initial conditions t0 ∈ R,
x(t0) ∈ R

n,
ii. there is a solution x̄w(t) defined and bounded on R,

iii. the solution x̄w(t) is (uniformly, exponentially) globally
asymptotically stable.

System (1) is said to be (uniformly, exponentially) con-
vergent for all inputs if it is (uniformly, exponentially)
convergent for every input w(·) ∈ PCm.

We will refer to x̄w(t) as the steady-state solution. It is
known, see, e.g., [18], that for uniformly convergent systems
the steady-state solution is unique in the sense that for any
input w(·) ∈ PCm there exists only one solution of system
(1) that is bounded on R. For our purposes we will need the
following definition.

Definition 2 ([18]): A convergent system (1) is said to
have the Uniformly Bounded Steady-State (UBSS) property
if for any ρ > 0 there exists R > 0 such that for any input
w(·) ∈ PCm the following implication holds:

|w(t)| ≤ ρ ∀ t ∈ R ⇒ |x̄w(t)| ≤ R ∀ t ∈ R. (2)
Systems that are uniformly convergent with the UBSS

property extend the class of asymptotically stable linear time-
invariant (LTI) systems. One can easily verify that a linear
system of the form ẋ = Ax + Bw(t) with a Hurwitz matrix
A is uniformly and exponentially convergent with the UBSS
property for all inputs.

A simple sufficient condition for the exponential conver-
gence property, presented in the next theorem, was proposed
in [3] (see also [15], [18]).

Theorem 1: Consider system (1) with F ∈ C1. Suppose,
there exist symmetric matrices P > 0 and Q > 0 such that

P
∂F

∂x
(x,w) +

∂F

∂x

T

(x,w)P ≤ −Q, ∀x ∈ R
n, w ∈ R

m.

(3)
Then, system (1) is exponentially convergent with the UBSS
property for all inputs.

Remark 1. It is shown in [18] that a cascade of systems
satisfying the conditions of Theorem 1 is a uniformly conver-
gent system with the UBSS property for all inputs. Further
(interconnection) properties of convergent systems can be
found in [18], [17].

Conditions for exponential and, therefore, uniform con-
vergence for systems in Lur’e form with a possibly dis-
continuous scalar nonlinearity are presented in [24], and for
piecewise-affine systems in [16].

Below we formulate a fundamental property of uniformly
convergent systems, which forms a foundation for the main
results of the paper. This property corresponds to the uni-
formly convergent system (1) excited by the input w(t) being
a solution of the differential equation

ẇ = s(w), w ∈ R
m, (4)

with a locally Lipschitz right-hand side. By w(t, w0) we
denote the solution of system (4) with the initial condition
w(0, w0) = w0.

Theorem 2: Consider system (1) coupled with system (4).
Suppose system (1) is uniformly convergent with the UBSS
property for all inputs and system (4) satisfies the assumption

BA all solutions of system (4) are defined for all t ∈
(−∞,+∞) and for every r > 0 there exists ρ > 0
such that

|w0| < r ⇒ |w(t, w0)| < ρ ∀ t ∈ R. (5)

Then there exists a unique continuous mapping α : R
m →

R
n such that for any solution w(t) = w(t, w0) of system (4)

the corresponding steady-state solution of system (1) equals
x̄w(t) ≡ α(w(t, w0)).

Proof: See the Appendix.

III. LINEAR FREQUENCY RESPONSE FUNCTIONS

Prior to considering the case of nonlinear systems, let us
have a look at LTI systems of the form

ẋ = Ax + Bu, (6)

with x ∈ R
n, u ∈ R and a Hurwitz matrix A. System (6)

can be equivalently represented in Laplace domain by its
transfer function G(s) := (sI − A)−1B. With this function
one can immediately compute the steady-state solution cor-
responding to the complex harmonic excitation aeiωt, which
equals G(iω)aeiωt. This, in turn, implies that the steady-
state solution corresponding to the real harmonic excitation
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a sin(ωt) equals x̄aω(t) = Im(G(iω)aeiωt). This method is
not applicable to nonlinear systems since the transformation
into Laplace domain is, in general, not applicable to nonlin-
ear systems.

An alternative way of finding steady-state solutions of
system (6) is based on the fact that a harmonic excitation can
be considered as an output of the linear harmonic oscillator

ẇ = S(ω)w, w :=
[

w1

w2

]
, S(ω) :=

[
0 ω
−ω 0

]
u = Γw, Γ := [1 0].

(7)

This system generates harmonic outputs of the form u(t) =
a sin(ωt + φ), where the phase φ and amplitude a are
determined by the initial conditions of (7). Therefore, to
study responses to harmonic excitations, we can consider
steady-state solutions of the system

ẋ = Ax + BΓw, (8)

with w(t) being solutions of the harmonic oscillator (7).
Since the eigenvalues of the matrices A and S(ω) do not
coincide, for any ω ≥ 0 there exists a unique matrix Π(ω) ∈
R

n×2 satisfying the matrix equation (see, e.g., [5])

Π(ω)S(ω) = AΠ(ω) + BΓ. (9)

By substitution one can easily verify that for any solution
w(t) of (7), the corresponding steady-state solution of (6)
equals x̄w(t) = Π(ω)w(t). Moreover, it can be verified that
Π(ω) = [Re(G(iω)) Im(G(iω))]. Therefore, the function
α(w,ω) := Π(ω)w can be considered as a frequency-
response function of system (6) since it contains information
on all steady-state responses to harmonic excitations at
different frequencies and amplitudes. Notice that due to the
linearity of system (8) the function α(w,ω) is linear in w
and all essential information is contained in Π(ω). For this
reason, in linear systems theory only Π(ω) or, equivalently,
G(iω), is considered as a frequency response function. For
nonlinear systems the linearity in w will apparently be lost
and we will have to consider frequency response functions
as functions of both ω and w.

IV. NONLINEAR FREQUENCY RESPONSE FUNCTIONS

In this section we consider uniformly convergent systems

ẋ = f(x, u), y = h(x), (10)

with state x ∈ R
n, input u ∈ R and output y ∈ R. Recall

that according to Definition 1, for any bounded input u(t)
system (10) has a unique steady-state solution x̄u(t), which
is UGAS. We are interested in a characterization of all
steady-state responses corresponding to harmonic excitations
u(t) := a sin(ωt) with various frequencies ω ≥ 0 and
amplitudes a ≥ 0. The main result of the paper is formulated
in the following theorem.

Theorem 3: Suppose system (10) is uniformly convergent
with the UBSS property for all inputs. Then there exists a
continuous function α : R

3 → R
n such that for any harmonic

excitation of the form u(t) = a sin(ωt), system (10) has a
unique periodic solution

x̄aω(t) := α(a sin(ωt), a cos(ωt), ω) (11)

and this solution is UGAS.
Proof: The proof of this theorem follows from the fact that

harmonic signals of the form u(t) = a sin(ωt) for various
amplitudes a ≥ 0 and frequencies ω ≥ 0 are generated by
the system

ẇ1 = w3w2, ẇ2 = −w3w1, ẇ3 = 0, (12)

u = Γw, Γ := [1 0 0],

with the initial conditions w1(0) = 0, w2(0) = a, w3(0) =
ω. Consequently, we can treat system (10) excited by the
input u(t) = a sin(ωt) as the system

ẋ = f(x,Γw) (13)

excited by a solution of the system (12). According to
the conditions of the theorem, system (13) is uniformly
convergent with the UBSS property for all inputs. One
can easily check that system (12) satisfies the boundedness
assumption BA of Theorem 2. Therefore, by Theorem 2
there exists a unique continuous function α : R

3 → R
n

such that for any solution w(t) of the system (12) the
corresponding steady-state solution of system (13), which
is UGAS due to the uniform convergence property, equals
x̄w(t) = α(w1(t), w2(t), w3(t)). In particular, for the solu-
tion of system (12) w(t) = [a sin(ωt), a cos(ωt), ω]T , which
corresponds to the input u(t) = a sin(ωt), the corresponding
steady-state solution equals x̄aω(t) given in (11). �

As follows from Theorem 3, the function α(w1, w2, ω)
contains all information on the steady-state solutions of
system (10) corresponding to harmonic excitations. For this
reason, we give the following definition.

Definition 3: The function α(w1, w2, ω) defined in The-
orem 3 is called the state frequency response function.
The function h(α(w1, w2, ω)) is called the output frequency
response function.

In the nonlinear case, the dependency of the frequency
response functions on w1, w2 and ω is, in general, nonlinear.
This implies, for example, that for nonlinear convergent
systems we may observe a non-proportional change in the
amplitude of the steady-state responses with respect to a
change of the excitation amplitude. At the same time, the
steady-state solution x̄aω(t) given in (11) is a unique periodic
solution with the same period time as the period of the
harmonic excitation. This resembles properties of asymptoti-
cally stable linear systems. Notice that for general nonlinear
systems, one can have multiple coexisting attractors, which
excludes the possibility of the existence of the single-valued
mapping α and makes analysis of the steady-state behavior
corresponding to harmonic excitations much more involved.

In general, it is not easy to find such frequency response
functions analytically. Yet, as will be illustrated with an
example in Section VI, for some systems this can be done
relatively easily. For general uniformly convergent systems
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(10), the frequency response functions can always be found
numerically by simulating system (10) with the input u(t) =
a sin(ωt). All solutions of this system converge to the UGAS
steady-state solution equal to α(a sin(ωt), a cos(ωt), ω). By
performing these simulations for various excitation ampli-
tudes a and frequencies ω we will find the state frequency re-
sponse function in the range of interest of a and ω. To reduce
computational costs for this numerical procedure, instead of
finding exact values of the periodic steady-state solutions
α(a sin(ωt), a cos(ωt), ω), one can find their approximations
using the describing function method, see, e.g., [12]. Notice
that the describing function method provides only an approx-
imation of the periodic solution α(a sin(ωt), a cos(ωt), ω)
based on its first harmonic (or the first k harmonics). Also
such an approximation requires an additional justification.
Similar to this simulation-based numerical procedure, in
practice, when one has a convergent system, its output fre-
quency response function h(α(w1, w2, ω)) can be obtained
by exciting the system with harmonic signals at various
amplitudes and frequencies and measuring the corresponding
steady-state outputs.

V. NONLINEAR BODE PLOT

In practice it is very important to know how a system am-
plifies inputs at various frequencies. In performance analysis
of control systems this information allows one to quantify
the influence of high frequency measurement noise on the
steady-state response of the system, or how close a closed-
loop system will track low-frequency reference signals. In the
case of LTI systems, this essentially important information
is usually represented in the Bode magnitude plots. The
Bode magnitude plot is a graphical representation of the gain
with which the system amplifies harmonic signals at various
frequencies.

Similar to linear systems, for uniformly convergent sys-
tems we can define a counterpart of the Bode magnitude
plot, which then can be used for the purpose of frequency
domain performance analysis. Suppose the system is excited
by the harmonic signal a sin(ωt) with amplitude a. Denote
the maximal absolute value of the output in steady-state by
B(ω, a). We are interested in the ratio γa(ω) := B(ω, a)/a
at various amplitudes and frequencies. This ratio can be
considered as an amplification gain of the convergent system.
Notice that in the nonlinear case γa(ω) depends not only on
the frequency, as in the linear case, but also on the amplitude
of the excitation.

Formally, the amplification gain γa(ω) is defined as

γa(ω) :=
1
a

(
sup

w2
1+w2

2=a2
|h(α(w1, w2, ω))|

)
. (14)

If we are interested in the maximum of the amplification
gain for a given frequency ω and over a range of amplitudes
a ∈ (a, a), then we can extend the definition of γa(ω) as
follows: Υ(a,a)(ω) := supa∈(a,a) γa(ω).

For linear SISO systems of the form ẋ = Ax + Bu with
a Hurwitz matrix A and output y = Cx, the gain γa(ω)
is independent of the amplitude a and it equals γ(ω) =

|C(iωI −A)−1B|. Therefore, we see that for linear systems
the graph of the amplification gain γa(ω) as in (14) versus the
excitation frequency ω coincides with the Bode magnitude
plot. Although for linear systems the Bode plot also contains
phase information, at the moment it is not clear yet how to
define a meaningful counterpart of the Bode phase plot for
nonlinear convergent systems.

VI. EXAMPLE

For general convergent systems it is rather difficult to find
the frequency response function α(w1, w2, ω) analytically.
Yet, for some systems this can be done rather easily, as
illustrated by the following example. Consider the system

ẋ1 = −x1 + x2
2, y = x1, (15)

ẋ2 = −x2 + u, (16)

excited by the input u(t) = a sin(ωt). This system is a series
connection of two systems satisfying the conditions of The-
orem 1. By the remark to this theorem, system (15), (16) is
uniformly convergent with the UBSS property. Consequently,
by Theorem 3 the mapping α(w1, w2, ω) exists and is unique.
We will first find α2(w1, w2, ω) (the second component of
α) from (16). Since the x2-subsystem is an asymptotically
stable LTI system, α2(w1, w2, ω) is linear with respect to w1

and w2 (see Section III), i.e. α2(w1, w2, ω) = b1(ω)w1 +
b2(ω)w2. Recall that α2(w1(t), w2(t), ω) with w(t) =
[w1(t) w2(t)]T being a solution of the linear harmonic
oscillator (7) is a solution of system (16) with u(t) = w1(t).
Substituting this α2(w1(t), w2(t), ω) into equation (16) and
equating the corresponding coefficients at w1 and w2, we
obtain b1(ω) = 1/(1 + ω2) and b2(ω) = −ω/(1 + ω2).
Then, substituting the obtained α2 for x2 in (15), we compute
α1(w1, w2, ω). In our case, it is a polynomial of w1 and w2

of the same degree as the polynomial (α2(w1, w2, ω))2, i.e.
of degree 2 (see [2] Lemma 1.2 for details). Therefore, we
will seek α1(w1, w2, ω) in the form

α1(w1, w2, ω) = c1(ω)w2
1 + 2c2(ω)w1w2 + c3(ω)w2

2. (17)

We substitute the steady-state solution α1(w1(t), w2(t), ω)
for x1(t) into (15) with x2(t) = α2(w1(t), w2(t), ω) and
then equate the corresponding coefficients at the terms w2

1 ,
w1w2 and w2

2 . This results in c1(ω) = (2ω4 + 1)/∆(ω),
c2(ω) = (ω3 −2ω)/∆(ω), and c3(ω) = (2ω4 +5ω2)/∆(ω),
where ∆(ω) := (1 + 4ω2)(1 + ω2)2. After the function
α(w1, w2, ω) is computed, one can numerically, though very
efficiently, compute the amplification gain γa(ω) for a range
of amplitudes a and frequencies ω, and Υ(0,a](ω), for some
maximal excitation amplitude a and all frequencies over
the band of interest. Since the output frequency response
function α1(w1, w2, ω) is a uniform polynomial function of
degree 2 with respect to the variables w1 and w2 (see formula
(17)), one can easily check that for arbitrary a > 0 it holds
that γa(ω) = aγ1(ω). Here we recognize the dependency of
the amplification gain on the amplitude of the excitation—an
essentially nonlinear phenomenon. Figure 1 shows the graph
of numerically computed γ1(ω) over ω—a counterpart of the
Bode magnitude plot from linear systems theory.
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γ
1
(ω

)

Fig. 1. The function γ1(ω) (nonlinear Bode plot).

VII. CONCLUSIONS

In this paper we have shown that for a uniformly con-
vergent system with the UBSS property all steady-state
solutions corresponding to harmonic excitations at various
frequencies and amplitudes can be characterized by one
continuous function, which we call a nonlinear frequency
response function (FRF). It has been shown that this func-
tion extends the notion of FRF from the linear systems
theory. In contrast to the describing function method, which
provides only approximations of the steady-state solutions
corresponding to harmonic excitations, this nonlinear FRF
contains exact information on these steady-state solutions.
For some systems, as has been illustrated with an example,
the nonlinear FRF can be found analytically. If this is not
possible, it can always be found numerically or, in case an
experimental system is available, measured in experiments
by exciting the system with harmonic signals at various
amplitudes and frequencies. An extension of the presented
results to the case of differential inclusions can be found in
[19].

The newly defined nonlinear FRF gives rise to a
frequency-dependent amplification gain, which provides in-
formation on how a system amplifies harmonic inputs of
various frequencies and amplitudes. This information is
essential for performance analysis of convergent closed-loop
systems since it allows one to quantify the influence of, e.g.,
the high-frequency measurement noise on the steady-state
response of the system, or how close the output of a closed-
loop system will track low-frequency reference signals. Such
information is important in control applications. A plot of
this gain versus the harmonic input frequency is a counterpart
of the Bode magnitude plot from linear systems theory.

The results presented in this paper may open an interesting
direction in nonlinear control systems theory. They provide
a potential link between the performance-oriented linear
systems thinking dominating in industry and the stability-
oriented nonlinear systems thinking, which is wide-spread
in academia.

APPENDIX: PROOF OF THEOREM 2

Existence: We prove the existence of α(w) by construct-
ing this mapping. Due to the boundedness assumption BA,
for every w0 ∈ R

m the solution w(t, w0) of system (4) which
satisfies the initial condition w(0, w0) = w0 is defined and
bounded for all t ∈ R. Therefore, for each w0 ∈ R

m, the

function w(t, w0), as a function of t belongs to PCm. Since
system (1) is uniformly convergent, for this w(t) = w(t, w0)
there exists a unique UGAS steady-state solution x̄w(t),
which is defined and bounded for all t ∈ R. For all w lying
on the trajectory w(t, w0), t ∈ R, define the mapping α(w)
in the following way: α(w(t, w0)) := x̄w(t). Repeating this
process for all trajectories w(t, w0) of system (4)—notice
that these trajectories do not intersect and span the whole
R

m)—we uniquely define α(w) for all w ∈ R
m.

Continuity: It remains to show that the mapping x =
α(w) constructed above is continuous, i.e. that for any w1 ∈
R

m and any ε > 0 there exists δ > 0 such that |w1 −
w2| < δ implies |α(w1) − α(w2)| < ε. For simplicity, we
will prove continuity in the ball |w| < r. Since r can be
chosen arbitrarily, this will imply continuity in R

m. In what
follows, we assume that w1 satisfying |w1| < r and ε > 0
are fixed and the point w2 varies in the ball |w2| < r.

As a preliminary observation, notice that |w1| ≤ r and
|w2| ≤ r imply, due to the boundedness assumption BA,
that |w(t, wi)| ≤ ρ for i = 1, 2 and for all t ∈ R. This, in
turn, due to the UBSS property of system (1) (see (2)) and
due to the construction of α(w), implies

|α(w(t, wi))| ≤ R, ∀t ∈ R, i = 1, 2. (18)

In order to prove continuity of α(w), we introduce
the function ϕT (w1, w2) := χ(0,−T, α(w(−T,w2)), w1),
where the number T > 0 will be specified later and
χ(t, t0, x0, w∗) is the solution of the time-varying system

χ̇ = F (χ,w(t, w∗)) (19)

with the initial condition χ(t0, t0, x0, w∗) = x0. The function
ϕT (w1, w2) has the following meaning, see Fig. 2. First,

α(w(t, w2))

α(w(t, w1))

α(w(0, w2)) = ϕT (w2, w2)

α(w(0, w1)) = ϕT (w1, w1)

ϕT (w1, w2)
α(w(−T,w2))

input w(t, w1)

input w(t, w2)

Fig. 2. The construction of the function ϕT (w1, w2).

consider the steady-state solution α(w(t, w2)), which is a
solution of system (19) with the input w(t, w2) and initial
condition α(w(0, w2)) = α(w2). We shift along α(w(t, w2))
to time t = −T and appear in α(w(−T,w2)). Then we
switch the input to w(t, w1), shift forward to the time instant
t = 0 along the solution χ(t) corresponding to this w(t, w1)
and starting in χ(−T ) = α(w(−T,w2)) and appear in
χ(0) = ϕT (w1, w2). Notice, that ϕT (w0, w0) = α(w0), for
all w0 ∈ R

m, because there is no switch of inputs and we
just shift back and forth along the same solution α(w(t, w0)).
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Thus,

α(w1) − α(w2) = ϕT (w1, w1) − ϕT (w2, w2)
= ϕT (w1, w1) − ϕT (w1, w2) (20)

+ϕT (w1, w2) − ϕT (w2, w2).

By the triangle inequality, this implies

|α(w1) − α(w2)| ≤ |ϕT (w1, w1) − ϕT (w1, w2)|
+ |ϕT (w1, w2) − ϕT (w2, w2)|.

As follows from Lemma 1 (see below), there exists T > 0
such that

|ϕT (w1, w1) − ϕT (w1, w2)| < ε/2 ∀ |w2| < r. (21)

It follows from Lemma 2 (see below), that given a number
T > 0, there exists δ > 0 such that

|ϕT (w1, w2) − ϕT (w2, w2)| < ε/2 (22)

∀ w2 : |w1 − w2| < δ.

Unifying inequalities (21) and (22), we obtain |α(w1) −
α(w2)| < ε for all w2 satisfying |w1 − w2| < δ. Due to
the arbitrary choice of ε > 0 and |w1| < r, this proves
continuity of α(w) in the ball |w| < r. Due to the arbitrary
choice of r > 0, this implies continuity of α(w) in R

m. �
Lemma 1: There is T > 0 such that inequality (21) holds.
Proof: In order to prove inequality (21), notice that

ϕT (w1, w1) = χ1(0) and ϕT (w1, w2) = χ2(0), where
χ1(t) and χ2(t) are solutions of system (19) with the
input w(t, w1) satisfying the initial conditions χ1(−T ) =
α(w(−T,w1)) and χ2(−T ) = α(w(−T,w2)). By the con-
struction of α(w), χ1(t) = α(w(t, w1)) is a UGAS solution
of system (19). This implies that for R > 0 and ε > 0 there
exists T̃ε(R) > 0 such that for any solution χ(t) of system
(19) the inequality |χ1(t0) − χ(t0)| ≤ 2R implies

|χ1(t) − χ(t)| < ε/2, ∀ t ≥ t0 + T̃ε(R), t0 ∈ R. (23)

Set T := T̃ε(R). By the definition of χ1(t) and χ2(t),
we have χ1(−T ) = α(w(−T,w1)) and χ2(−T ) =
α(w(−T,w2)). By the inequality (18) and the triangle in-
equality, we conclude that |χ1(−T )−χ2(−T )| ≤ 2R. Thus,
for t0 = −T and t = 0 formula (23) implies

|χ1(0) − χ2(0)| < ε/2, (24)

which is equivalent to (21). �
Lemma 2: Given a number T > 0 there exists a number

δ > 0 such that inequality (22) is satisfied.
Proof: In order to show (22), notice that for a fixed T > 0,

the function χ(0,−T, x0, w0) is continuous with respect to
x0 and w0. Thus, χ(0,−T, x0, w0) is uniformly continuous
over the compact set J := {(x0, w0) : |x0| ≤ R, |w0| ≤ r}.
Hence, there exists δ > 0 such that if |x0| ≤ R, |w1| ≤ r,
|w2| ≤ r and |w1 − w2| < δ, then

|χ(0,−T, x0, w1)) − χ(0,−T, x0, w2)| ≤ ε/2. (25)

Recall, that by the definition of ϕT (w1, w2)

ϕT (w1, w2) − ϕT (w2, w2) =
χ(0,−T, x0, w1) − χ(0,−T, x0, w2), (26)

where x0 := α(w(−T,w2)). Notice, that |w1| ≤ r, |w2| ≤ r
and |α(w(−T,w2))| ≤ R. Hence, as follows from (25) and
(26), |w1 − w2| < δ implies |ϕT (w1, w2) − ϕT (w2, w2)| <
ε/2. Thus, we have shown (22). �
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