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Abstract— The notion of convergent systems is a pow-
erful tool both in the analysis and synthesis of nonlinear
systems. Sufficient conditions for convergence have been
under investigation for smooth systems and for classes
of non-smooth switching systems in the literature. In
this paper, we look at a very particular class of non-
smooth systems, namely complementarity systems. These
systems have the capability of capturing the non-smooth
dynamics of various interesting applications from differ-
ent fields of engineering. The main contribution of this
paper is to show that a linear complementarity system is
convergent if the underlying linear dynamics possesses a
certain positive realness property.

I. INTRODUCTION

In this paper, we will provide conditions under which
a complementarity system is convergent. A system,
which is excited by an input, is called (uniformly)
convergent if it has a unique solution that is bounded
on the whole time axis and this solution is globally
asymptotically stable. Obviously, if such a solution
does exist, all other solutions, regardless of their initial
conditions, converge to this solution, which can be
considered as a steady-state solution [12], [24]. The
property of convergence was formalized in the notion
of convergent systems and studied first for periodically
excited systems in [29] and then for systems with
arbitrary excitations in [12], see also [24]. Also, these
kind of properties were considered in [41], [20]. For
systems in Lur’e form convergence was investigated in
[40]. For piecewise affine systems, sufficient conditions
for convergence have been proposed in [28]. Other
notions describing the property of solutions converging
to each other are studied in literature. The notion of
contraction has been introduced in [21] (see also ref-
erences therein). An operator-based approach towards
studying the property that all solutions of a system
converge to each other is pursued in [13], [14]. In [1],
a Lyapunov approach has been developed to study the
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global uniform asymptotic stability of all solutions of
a system (in [1], this property is called incremental
stability) and the so-called incremental input-to-state
stability property, which is compatible with the input-
to-state stability approach (see e.g. [35]).

The property of convergence can be beneficial from
several points of view. Firstly, in many control prob-
lems it is required that controllers are designed in such
a way that all solutions of the corresponding closed-
loop system “forget” their initial conditions. Actually,
one of the main tasks of feedback is to eliminate
the dependency of solutions on initial conditions. In
this case, all solutions converge to some steady-state
solution that is determined only by the input of the
closed-loop system. This input can be, for example, a
command signal or a signal generated by a feedforward
part of the controller or, as in the observer design
problem, it can be the measured signal from the ob-
served system. Such a convergence property of a system
plays an important role in many nonlinear control
problems including tracking, synchronization, observer
design, and the output regulation problem, see e.g.
[27], [26], [30], [37] and references therein. Secondly,
from a dynamics point of view, convergence is an
interesting property because it excludes the possibility
of coexisting, different steady-state solutions: namely, a
uniformly convergent system excited by a periodic in-
put has a unique globally asymptotically stable periodic
solution with the same period. Moreover, the notion of
convergence is a powerful tool for analysis of time-
varying systems. This tool can be used, for example,
for performance analysis of nonlinear control systems,
see e.g. [18].

The organization of the paper is as follows. In the
remaining of this section, we summarize the notational
conventions that are in force. In Section II, we intro-
duce complementarity systems, convergent dynamics,
and the notion of passivity. This will be followed by
the main results in Section III. The paper is closed by
conclusions in Section IV.

The following notational conventions will be in
force. The set of real numbers is denoted by R, nonneg-
ative real numbers by R+, rational functions with real
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coefficients by R(s), complex numbers by C, complex
numbers with nonnegative real parts by C+. To denote
k-tuples and k×` matrices having elements that belong
these sets we write X k and X k×`, respectively, where
X is any of the mentioned sets. The conjugate of
a complex number z is denoted by z̄. For complex
vectors and matrices the superscripts T and H denote,
respectively, the transpose and Hermitian. Inequalities
for real vectors must be understood componentwise.
For two matrices M and N with the same number of
columns, col(M,N) will denote the matrix obtained
by stacking M over N . For a nonempty set Q (not
necessarily a cone), the dual cone of Q is the set {v |
uT v > 0 for all u ∈ Q}. It is denoted by Q∗. We say
that a triple of matrices (A,B, C) is minimal if (A,B)
is controllable and (C,A) is observable. The notation
‖ξ‖ is used for the Euclidean norm, i.e. ‖ξ‖ =

√
ξT ξ.

We say that a square matrix M is nonnegative definite
if xT Mx > 0 for all real vectors x. It is said to be
positive definite if it is nonnegative definite and the
implication xT Mx = 0 ⇒ x = 0. We use the notation
M > 0 and M > 0 for nonnegative and positive
definite matrices. In the obvious manner, we define
nonpositive and negative definiteness.

II. LINEAR COMPLEMENTARITY SYSTEMS

Consider the linear system

ẋ(t) = Ax(t) + Bz(t) + Ev(t) (1a)

w(t) = Cx(t) + Dz(t) (1b)

where x ∈ Rn is the state, v ∈ Rp is the input,
and (z, w) ∈ Rm+m are external variables that are
constrained through the so-called complementarity re-
lations

0 6 z(t) ⊥ w(t) > 0. (1c)

We call these systems complementarity systems and
denote (1) by LCS. A wealth of examples, from various
areas of engineering as well as operations research,
of these piecewise linear (hybrid) systems can be
found in [9], [34], [33], [15]. We refer to [2] for
related/equivalent classes of systems, to [8], [16], [5],
[31], [32], [17] for well-posedness analysis, to [6],
[4], [7], [3] for controllability studies, to [10] for
observability analysis, and to [11] for stability analysis.

A few words on the function classes of interest is
in order. Let B denote the Bohl functions, i.e. sines,
cosines, polynomials, and all finite sum and products
of these. More precisely, a function f is said to be
a Bohl function if there exist real matrices (F,G,H)

with appropriate sizes such that f(t) = H exp(Ft)G
holds for all t ∈ R. We denote the set of locally
square-integrable functions defined over the closed set
Ω ⊆ R by L2,loc(Ω). The set of absolutely continuous
functions defined over the closed set Ω ⊆ R is denoted
by AC(Ω). We write X k to denote the k-tuples of these
function spaces.

In this paper, we are interested in absolutely contin-
uous state trajectories, Bohl type inputs, and L-type
complementarity variables. The following definition
formalizes the solution concept that we will work with.

Definition II.1 Let Ω ⊆ R be a closed set that contains
zero. We say that a triple (x, z, w) ∈ ACn(Ω) ×
Lm+m

2,loc (Ω) is a solution on Ω of (1) for the initial state
x0 and the input v ∈ Bp if

x(0) = x0 (2a)

ẋ(t) = Ax(t) + Bz(t) + Ev(t) (2b)

w(t) = Cx(t) + Dz(t) (2c)

0 6 z(t) ⊥ w(t) > 0 (2d)

holds for almost all t ∈ Ω.

A. CONVERGENT DYNAMICS

Instead of a definition of convergent dynamics for
a general class of systems (e.g. see [27]), we will
work with the following definition that is adapted to
complementarity systems.

Definition II.2 A complementarity system (1) is said
to be

• convergent if, for every bounded input v ∈ Bp,
there exists a solution (x̄v, z̄v, w̄v) satisfying the
following conditions:
(i) x̄v(t) is defined and bounded for all t ∈ R,

(ii) x̄v(t) is globally asymptotically stable.
• uniformly convergent if it is convergent and x̄v(t)

is globally uniformly asymptotically stable.
• exponentially convergent if it is convergent and

x̄v(t) is globally exponentially stable.

For the definition of Lyapunov stability of solutions
of differential equations we refer to [39], [27]. The
solution x̄v is called a steady-state solution; the sub-
script v emphasizes its dependency on the input v.
As follows from the definition of convergence, any
solution of a convergent system “forgets” its initial
condition and converges to some steady-state solution.
In general, the steady-state solution x̄v may be non-
unique. But for any two steady-state solutions x̄v1
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and x̄v2 , related to the same input v, it holds that
‖x̄v1(t) − x̄v2(t)‖ → 0 as t → +∞. At the same
time, for uniformly convergent systems the steady-state
solution is unique, as formulated below.

Property II.3 ([27]) If system (1) is uniformly con-
vergent, then the steady-state solution x̄v is the only
solution defined and bounded for all t ∈ R.

The latter property is very useful since it excludes
the possibility of coexisting limit solutions (and of
bifurcations leading to such coexistence). Convergent
systems enjoy various properties which are encountered
in asymptotically stable LTI systems, but which are not
usually met in general asymptotically stable nonlinear
systems. As an illustration, we provide a statement that
summarizes some properties of uniformly convergent
systems excited by periodic or constant inputs.

Property II.4 ([12], [27]) Suppose that system (1)
with a given input v is uniformly convergent. If the
input v is constant, the corresponding steady-state so-
lution x̄v is also constant; if the input v is periodic with
period T , then the corresponding steady-state solution
x̄v is also periodic with the same period T .

This property is, for example, instrumental in the
analysis of the steady-state behaviour of convergent
systems to harmonic disturbances.

The next definition extends the uniform convergence
property to the input-to-state stability (ISS) framework.

Definition II.5 System (1) is said to be input-to-state
convergent if it is uniformly convergent and for every
bounded input v ∈ Bp the system is input-to-state stable
(ISS) along the steady-state solution x̄v, i.e. there exist
a KL-function β(r, s) and a K-function γ(r) such that
any solution x of the system corresponding to some
input v̂ := v + ∆v satisfies

‖x(t)− x̄v(t)‖ ≤β(‖x(t0)− x̄v(t0)‖, t− t0)

+ γ( sup
t0≤τ≤t

‖∆v(τ)‖). (3)

In general, the functions β(r, s) and γ(r) may depend
on the particular input v.

Similar to the conventional ISS property [35], the prop-
erty of input-to-state convergence is especially useful
for studying convergence properties of interconnected
systems. In [27], it is shown that a series connection
of two input-to-state convergent systems is an input-
to-state convergent system and that a feedback inter-
connection of an input-to-state convergent system and

a uniformly asymptotically stable system is an input-
to-state convergent system. The latter property can be
used for establishing the separation principle for input-
to-state convergent systems.

Sufficient conditions for convergence properties of
smooth nonlinear systems were proposed in [12] (see
also [24]). However, results for several classes of non-
smooth systems only recently appeared. Sufficient con-
ditions (in terms of LMIs) for exponential convergence
and input-to-state convergence are stated in [25] for the
class of continuous piecewise affine (PWA) systems and
in [23] for a class of discontinuous PWA systems, see
also [28].

B. LINEAR PASSIVE SYSTEMS

One of the main ingredients of the current paper
is passivity. In what follows we review the notion of
passivity and Kalman-Yakubovich-Popov lemma.

Definition II.6 ([38]) A linear system Σ(A,B, C, D)
given by

ẋ(t) = Ax(t) + Bz(t) (4a)

w(t) = Cx(t) + Dz(t) (4b)

is called passive if there exists a nonnegative function
V : Rn → R+ such that for all t0 6 t1 and
all trajectories (z, x, w) of system (4) the following
inequality holds:

V (x(t0)) +
∫ t1

t0

zT (t)w(t)dt > V (x(t1)). (5)

If exists the function V is called a storage function.

A closely related concept is positive realness.

Definition II.7 A rational matrix H(s) ∈ Rm×m(s) is
positive real if the following conditions are satisfied:

• H is analytic in C+;
• H(s̄) = H(s) for all s ∈ C;
• H(s) + HH(s) > 0 for all s ∈ C+.

For the sake of completeness, we quote the well-
known Kalman-Yakubovich-Popov lemma that links
the notions of passivity and positive realness.

Theorem II.8 [38] Assume that (A,B, C) is minimal.
Let G(s) := D + C(sI − A)−1B be the transfer
matrix of the system Σ(A,B, C, D). Then the following
statements are equivalent:

1) The system Σ(A,B, C, D) is passive.
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2) The matrix inequalities

K = KT > 0 (6a)

and [
AT K + KA KB − CT

BT K − C −(D + DT )

]
6 0 (6b)

have a solution.
3) G(s) is positive real.

Moreover, the following holds:
1) V (x) = 1

2xT Kx defines a quadratic storage
function if and only if K satisfies the above
system of linear matrix inequalities.

2) All solutions K of (6) are positive definite.

In this paper, we will work with a somewhat stronger
positive realness notion. We say that a rational transfer
matrix H(s) is strictly positive real if H(s − ε) is
positive real for some ε > 0. One can modify the
above theorem to capture a state-space characterization
of strict positive realness as follows.

Theorem II.9 ([22], [36]) Assume that (A,B, C) is
minimal. Let G(s) := D + C(sI − A)−1B be the
transfer matrix of the Σ(A,B, C, D). Suppose that the
real parts of the poles of G(s) less than −µ for some
positive constant µ. Then the following statements are
equivalent:

1) The matrix inequalities

K = KT > 0

and[
(AT + µI)K + K(A + µI) KB − CT

BT K − C −(D + DT )

]
6 0

have a solution for µ > 0.
2) G(s− µ) is positive real for µ > 0.

III. FROM PASSIVITY TO CONVERGENCE

The main aim of this paper is to show that a linear
complementarity system has convergent dynamics if
the underlying linear system has a strictly positive real
transfer matrix.

We first quote the following auxiliary results that will
be used later on. The first guarantees existence of a
solution that is defined on the whole time axis.

Lemma III.1 Consider the LCS (1). Let v ∈ Bp be
bounded. Suppose that

1) it admits a unique solution on R+ for initial
states x0 ∈ X ⊆ Rn and for the input v,

2) these solutions depend on the initial state x0 in
a continuously manner,

3) there exists a positively invariant compact set
X̄ ⊆ X , i.e. whenever x(t̄) ∈ X̄ for some t̄ > 0
it holds that x(t) ∈ X̄ for all t > t̄.

Then, there exists a solution on R that is bounded.

The proof is analogue to that of [40, Lemma 2] and
will be omitted for the sake of shortness.

The second auxiliary result concerns
existence/uniqueness of solutions and their continuous
dependence on the initial states.

Theorem III.2 ([5], [16]) Consider the LCS (1). Sup-
pose that the system Σ(A,B, C, D) is passive,
(A,B, C) is minimal, and col(B,D + DT ) is of full
column rank. Let

QD = {v | v > 0, Dv > 0 and vT Dv = 0}.

Then, the following statements are equivalent:

1) There exists a solution of (1) on R+ for the initial
state x0 ∈ Rn and the input v ∈ Bp.

2) The initial state x0 satisfies Cx0 ∈ Q∗
D.

Moreover, when the input is fixed continuous depen-
dence on initial states is guaranteed.

For later use, we define X = {x | Cx ∈ Q∗
D}. Note

that the set X is positively invariant according to the
above theorem.

These auxiliary results will be employed in the proof
of our main result that is stated in the following
theorem.

Theorem III.3 Consider the LCS (1). Suppose that
(A,B, C) is minimal, and col(B,D + DT ) is of full
column rank. Let G(s) := D + C(sI − A)−1B be a
strictly positive real transfer matrix. Then, the LCS (1)
is

1) exponentially convergent.
2) input-to-state convergent.

Proof. 1: Proof of exponential convergence consists
of two steps. First, we prove existence of a positively
invariant compact set for any given input. In view of
Lemma III.1, this would prove existence of a solution
that is defined and bounded on R. The second step is to
prove the global exponential stability of this solution.
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In both steps, we will employ an inequality that is
derived in what follows. Let ξ, ρ, η, and ζ be such that

ξ̇ = Aξ + Bρ + Eζ (7a)

η = Cξ + Dρ. (7b)

Take W (ξ) = ξT Kξ where K is as in Theorem II.9.
Note that

Ẇ (ξ) = ξ̇T Kξ + ξT Kξ̇

=
[
ξ
ρ

]T [
AT K + KA KB

BT K 0

] [
ξ
ρ

]
+ 2ξT KEζ.

Further, strict positive realness implies that

Ẇ (ξ) 6 −2µξT Kξ + 2ρT η + 2ξT KEζ. (8)

To prove the existence of the above-mentioned posi-
tively invariant compact set, take any bounded input
v ∈ Bp. Consider a single trajectory (z, x, w) of the
LCS (1) for the initial state x0 and for the input v .
Take ξ = x, ρ = z, ζ = v, and η = w. The equations
(7) are obviously satisfied by these choices. Note that
ρT η = 0 due to the complementarity relations. In this
case, inequality (8) results in

Ẇ (x) 6 −2µW (x) + 2xT KEv (9)

6 −2‖x‖K(µ‖x‖K − 2‖Ev‖K) (10)

where ‖ξ‖K =
√

ξT Kξ. This means that Ẇ (x) 6 0
whenever µ‖x‖K > 2‖Ev‖K . So,

{x ∈ X | ‖x‖K 6 2µ−1 sup
t∈R

‖Ev(t)‖K}

characterizes a positively invariant compact set. Then,
Lemma III.1 can be used to show that there exists a
solution that is defined and bounded on R. We denote
this solution by (z̄v, x̄v, w̄v).

To prove the global exponential stability of this
solution, consider the trajectories (zi, xi, wi) for i =
1, 2 of the LCS (1) for some initial state xi

0 and the
same function v. Take ξ = x1−x2, ρ = z1−z2, ζ = 0,
and η = w1 − w2. Clearly, these functions satisfy (7).
Note that ρT η 6 0 due to the complementarity relations
(1c). Therefore, it follows from (8) that

V̇ (x1 − x2) 6 −2µV (x1 − x2). (11)

From Belmann-Gronwall lemma, one can conclude that

V (x1(t)−x2(t)) 6 e−2µ(t−t′)V (x1(t′)−x2(t′)) (12)

for all t > t′. By taking one of the xi in (12) as x̄v,
we can conclude its global exponential stability.

2: To prove input-to-state convergence, take any
bounded v ∈ Bp. Let (z, x, w) be a solution for the
initial state x0 and the input v + ∆v. Take ξ = x− x̄v,
ρ = z − z̄v, ζ = ∆v, and η = w − w̄v. Clearly,
these choices satisfy (7). Note that ρT η 6 0 due to
the complementarity relations (1c). Then, inequality (8)
results in

Ẇ (x− x̄v) 6 −2µW (x− x̄v) + 2(x− x̄v)T KE∆v.
(13)

Then, one gets

Ẇ (x− x̄v) 6 −µW (x− x̄v)

whenever ‖x − x̄v‖ > β‖∆v‖ for some positive con-
stant β that depends on K and E. Then, it follows from
[19, Thm. 4.19] that the system (7) with ξ = x − x̄v,
ρ = z − z̄v, ζ = ∆v and η = w − w̄v is input-to-state
stable. Since exponential convergence has already been
proven, the system (1) is input-to-state convergent. �

IV. CONCLUSIONS AND FUTURE WORKS

In this paper, we discussed the convergence prop-
erty in the context of complementarity systems. After
adapting a suitable definition of convergence for these
systems, we proved that a complementarity system
is exponentially and input-to-state convergent if the
underlying linear system has a strictly positive real
transfer matrix.

A line of further research is to investigate con-
vergence of the so-called switched complementarity
systems that capture dynamics of various non-smooth
systems including the power converters.
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