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Abstract— There are many communication imperfections
in networked control systems (NCSs) such as varying sam-
pling/transmission intervals, varying delays, possible packet
loss, communication constraints and quantization effects. Most
of the available literature on NCSs focuses on only some of
these phenomena, while ignoring the others, although recently
some papers appeared that consider at least three of these
phenomena. In one paper time-varying delays, time-varying
transmission intervals and communication constraints are con-
sidered, while in an other time-varying transmission intervals,
communication constraints and quantization effects are studied.
As both approaches are based on the same underlying hybrid
modeling framework, it will be shown here that the models
can be combined in a unifying hybrid model including the
five mentioned network phenomena under some restrictions.
On the basis of this model, stability will be analyzed of
the closed-loop system in which the controller is obtained
using an emulation approach. The analysis provides tradeoffs
between the maximally allowable transmission interval (MATI),
the maximally allowable delay (MAD) and the quantization
parameters, while still guaranteeing closed-loop stability.

I. INTRODUCTION

Networked control systems (NCSs) have received consid-

erable attention in recent years, see e.g. the overview papers

[11], [23], [26], [27]. At present, there is a search for control

algorithms that can deal with the various communication

imperfections that are introduced by the presence of com-

munication networks:

(i) Quantization errors in the signals transmitted over the

network due to the finite word length of the packets;

(ii) Packet dropouts caused by the unreliability of the

network;

(iii) Variable sampling/transmission intervals;

(iv) Variable communication delays;

(v) Communication constraints caused by the sharing of the

network by multiple nodes and the fact that only one

node is allowed to transmit its packet per transmission.

It is well known that the presence of these network phenom-

ena can degrade the performance of the control loop signifi-
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cantly and can even lead to instability, see e.g. [3], [4] for an

illustrative example. Therefore, it is important to understand

how these phenomena influence the closed-loop stability and

performance properties, preferably in a quantitative manner.

However, up to now, much of the available literature on NCS

considers only some of above mentioned types of network

phenomena and there is no framework that incorporates all

of them. The closest ones (that consider more than 2 of these

imperfections) are [20], which consider imperfections of type

(i), (iii), (v), [12], [18], [19], which study simultaneously

type (ii), (iii), (iv), [21], which focusses on type (ii), (iii),

(v) and [2], [5], [9], [10] that consider type (iii), (iv) and

(v). Note that some of the mentioned approaches that study

varying transmission intervals and/or varying communication

delays can be extended to include type (ii) phenomena as

well by modeling dropouts as prolongations of the maximal

admissible transmission interval (cf. also Remark 2 below).

In this paper we will provide a unifying modeling frame-

work incorporating all these five types of networked-induced

effects based upon uniting the models adopted in [9], [10]

on one hand and [20] on the other. Both [9], [10] and

[20] are based on the same underlying modeling framework

being hybrid inclusions [7]. We exploit this commonality in

obtaining a unifying NCS model including the five different

network phenomena (under some restrictions, e.g. the delays

are smaller than the sampling interval). On the basis of this

model results for stability analysis will be presented for

the closed-loop NCS in which the controllers are obtained

through an emulation approach [1], [9], [10], [20], [21], [24],

[25]. This stability analysis will lead to tradeoff curves be-

tween the maximally allowable transmission interval (MATI),

the maximally allowable delay (MAD) and the quantization

parameters, while still guaranteeing closed-loop stability. The

benchmark example of the batch reactor will be used to

demonstrate the complete design procedure.

II. NCS MODEL AND PROBLEM STATEMENT

We first introduce the model that will describe NCSs

including quantization, communication constraints, varying

transmission intervals and delays and we will discuss how

dropouts can be included as well (see Remark 2). This model

forms an extension of the NCS models used in [21] (without

quantization and delays), [9], [10] (without quantization) and

[20] (without delays) that were motivated by the initial work

in [25]. We consider the continuous-time plant

ẋp = fp(xp, û, w), y = gp(xp) (1)

that is sampled. Here, xp ∈ R
np denotes the state, û ∈ R

nu

denotes the most recent control values available at the plant,
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w ∈ R
nw is the disturbance and y ∈ R

ny is the output. The

controller is given by

ẋc = fc(xc, ŷ, w), u = gc(xc), (2)

where the variable xc ∈ R
nc is the state of the controller, ŷ ∈

R
ny is the most recent output measurement of the plant that

is available at the controller and u ∈ R
nu denotes the control

input. The functions fp, fc are assumed to be continuous

and gp and gc are assumed to be continuously differentiable.

At times ti, i ∈ N, parts of the input u at the controller

and/or the output y at the plant are sampled and sent over

the network. The transmission times satisfy 0 ≤ t0 < t1 <

t2 < . . . and there exists a δ > 0 such that the transmission

intervals ti+1−ti satisfy δ ≤ ti+1−ti ≤ hmati for all i ∈ N,

where hmati denotes the maximally allowable transmission

interval (MATI). At each transmission time ti, i ∈ N, the

protocol determines which of the nodes j ∈ {1, 2, . . . , l}
is granted access to the network. Each node corresponds to

a collection of sensors or actuators. The sensors/actuators

corresponding to the node that is granted access at time ti,

denoted by Si ∈ {1, . . . , l}, collect their values as obtained

from a quantized measurement of the corresponding entries

in y(ti) or u(ti) that will be sent over the communication

network. They will arrive after a transmission delay of τi

time units at the controller or actuator. This results in updates

of the corresponding entries in ŷ or û at times ti +τi, i ∈ N.

As said, the values corresponding to a node that are sent

over the network are obtained by a quantizer. Each node

has a quantizer qj : R
nj → Qj ⊆ R

nj , j = 1, . . . , l,
where each Qj consists of a finite or countable collection

of quantization points. The integer nj denotes the number

of signals corresponding to node j.

Assumption 1 There exist strictly positive numbers Mj and

∆j , j = 1, . . . , l, such that for all j = 1, . . . , l and all zj ∈
R

nj it holds that

|zj | ≤ Mj ⇒ |qj(zj) − zj | ≤ ∆j

|zj | > Mj ⇒ |qj(zj)| > Mj − ∆j

where | · | denotes the standard Euclidean norm.

The variable ∆j is related to the resolution and Mj is

associated with the range of the jth quantizer. These type of

conditions for quantizers were introduced in [14]. Note that

the first condition gives a bound on the quantization e error

when the quantizer does not saturate (the variable zj is in

range). The second condition provides a way to detect the

possibility of saturation. Each quantizer qj has also a “zoom”

parameter µj , which can be adjusted in order to increase or

decrease the resolution and the range of the quantizer. This

leads to the quantizer (with a slight abuse of notation)

qj(zj , µj) := µjqj

(
zj

µj

)

,

where zj ∈ R
nj contains the values of z := (y, u) corre-

sponding to node j. We focus here on these so-called “zoom

quantizers,” which require conditions such as Assumption 1,

although some other quantizers can also be included in this

framework as long as the stated assumptions remain true. By

re-ordering we can have that z = (z1, . . . , zl). Similarly, we

denote the “networked” version of z (consisting of the latest

available information) by ẑ := (ŷ, û) and ẑ = (ẑ1, . . . , ẑl).
Hence, z and ẑ ∈ R

nz with nz = ny + nu.

If we now take µ := (µ1, µ2, . . . , µl), we define the overall

quantizer as

q(z, µ) = (q1(z1, µ1), q2(z2, µ2), . . . , ql(zl, µl)).

Using this terminology, we have now that at transmission

time ti the values qSi
(zSi

(ti), µSi
(ti)) corresponding to node

Si are collected and transmitted over the network and they

arrive at their destination after a delay of τi time units.

Moreover, at transmission time ti (after coding the message)

the “zooming” parameter µ is updated according to

µ(t+i ) = Ωzoomµ(ti) (3)

with

Ωzoom = diag(Ω1, . . . ,Ωl)

and Ωj ∈ (0, 1) for each j. In between transmission times

the zooming parameter µ remains constant and hence, we

have that

µ̇ = 0. (4)

Actually, the assumption of µ̇ = 0 does not hold for all

quantizers such as the “box” quantizers [15], [16]. Handling

these quantizers is a topic for future research.

Remark 1 In principle the networked system has zoom

parameters µc and µd corresponding to the coder and the

decoder side, respectively, of the communication channel.

Essentially, we have that at ti it holds that

µc(t
+
i ) = Ωzoomµc(ti) and µd(t

+
i ) = µd(ti),

where we assume that the value of qSi
(zSi

(ti), µSi
(ti)) is

collected before the encoder zoom parameter µc is updated.

At ti + τi the message arrives and we have the updates

µc((ti+τi)
+) = µc(ti+τi); µd((ti+τi)

+) = Ωzoomµd(ti+τi),

where we assume that the decoding action takes place

before the decoder zoom parameter µd is updated. This

guarantees that the decoding is performed with the same

zoom parameter with which the coding took place provided

that both zoom parameters were initialized at the same value,

i.e. µd(0) = µc(0). Indeed, under the latter condition, we

would have that µc(ti) = µd(ti + τi) and µc(ti+1) =
µd(ti+1) = µc((ti + τi)

+) = µd((ti + τi)
+) for all i ∈ N

due to (4). Although the practical implementation of the

networked control system requires two zoom parameters, in

the mathematical model that we derive here, it suffices to

use only one zoom parameter µ (which is actually equal

to µc). For discussions on the case of mismatch between

coder/decoder initializations, we refer to [13].

We adopt the following assumption on the quantizer,

which was also used in [20].
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Assumption 2 The initial states xp(0), xc(0), the distur-

bance inputs w and µ(0) are such that for all j ∈ {1, . . . , l}
we have that

|zj(ti)|
µj(ti)

≤ Mj for all i ∈ N.

If Mj = ∞ for all j = 1, . . . , l, meaning that all quantizers

have infinite range, this assumption always holds. For finite-

range quantizers, it is not difficult to satisfy this assumption,

at least for linear systems (see e.g. [14], [20]).

Regarding the communication delays, it is assumed that

there are bounds on the maximal delay in the sense that

τi ∈ [0, τmad], i ∈ N, where 0 ≤ τmad ≤ hmati is the

maximally allowable delay (MAD). To be more precise, we

adopt the following assumption.

Assumption 3 The transmission times satisfy δ ≤ ti+1 −
ti < hmati, i ∈ N and the delays satisfy 0 ≤ τi ≤
min{τmad, ti+1 − ti}, i ∈ N, where δ ∈ (0, hmati] can be

taken arbitrarily small.

The latter condition implies that each transmitted packet

arrives before the next sample is taken. This assumption

indicates that we are considering the so-called small delay

case as opposed to the large delay case, where delays can

be larger than the transmission interval. The inequalities

τi ≤ ti+1 − ti and τmad ≤ hmati can be taken non-strict

with the understanding that in case the update instant ti + τi

coincides with the next transmission instant ti+1, the update

is performed before the next sample is taken. At the update

instant ti + τi the value of the networked version ẑSi
is

updated to qSi
(zSi

(ti), µSi
(ti)), while the values of ẑj for

j 6= Si remain the same and thus equal to ẑj(ti+τi). This can

actually be conveniently rephrased by utilizing the Kronecker

delta δij , which is equal to 1 when i = j and equal to 0 when

i 6= j. We define now Ψ(S) := diag(δ1S , δ2S , . . . , δlS) for

S ∈ {1, . . . , l}. The update of ẑ at ti + τi is given by

ẑ((ti +τi)
+) = Ψ(Si)q(z(ti), µ(ti))+(I−Ψ(Si))ẑ(ti +τi).

(5)

In between the update times of ŷ and û, the network is

assumed to operate in a zero order hold (ZOH) fashion,

meaning that the values of ẑ = (ŷ, û) remain constant

between ti + τi and ti+1 + τi+1 for all i ∈ N:

˙̂z = 0. (6)

The network error e := ẑ−z ∈ R
ne with ne = nz undergoes

resets at the update times ti + τi given by:

e((ti + τi)
+) = ẑ((ti + τi)

+) − z((ti + τi)
+)

= Ψ(Si)q(z(ti), µ(ti)) + (I − Ψ(Si))ẑ(ti + τi) − z(ti + τi)
= Ψ(Si)q(z(ti), µ(ti)) − Ψ(Si)ẑ(ti + τi) + e(ti + τi)
= Ψ(Si)q(z(ti), µ(ti)) − Ψ(Si)[e(ti) + z(ti)] + e(ti + τi)
= e(ti + τi) − e(ti)

+Ψ(Si)[q(z(ti), µ(ti)) − z(ti)] + (I − Ψ(Si))e(ti)
︸ ︷︷ ︸

=:h̃(Si,z(ti),e(ti),µ(ti))

.

(7)

In the second equality we used that z is continuous and in the

fourth equality we used that ẑ(ti+τi) = ẑ(ti) = z(ti)+e(ti)
due to the zero order hold character of the network and the

definition of e. We also implicitly employed Assumption 3 as

we used that there always occurs an update before the next

sample is taken (ti + τi ≤ ti+1). We split the expression

(7) in two parts of which one is given by a function h̃ :
{1, . . . , l} × R

nz × R
ne × R

l
+ → R

ne , which is related to

the resets of the networked and quantized control systems

(NQCS) without delays as studied in [20]. By writing the

update of e in this form, we can exploit specific results in

[20], as we will show later. As z = (y, u) is a function of

xp and xc due to (1)-(2), we introduce x = (xp, xc) ∈ R
nx

with nx = np + nc and rewrite (7) in terms of Si, x(ti),
e(ti) and µ(ti). In addition, we will also directly introduce

the scheduling mechanism that determines which node Si

obtains access to the network at time ti. In general this is

done on the basis of i, x(ti), e(ti) and µ(ti) and therefore

we have

Si = S(i, x(ti), e(ti), µ(ti)) ∈ {1, . . . , l}. (8)

Later we will provide particular instances of the scheduling

function S : N × R
nx × R

ne × R
l → {1, . . . , l} such as the

well-known round-robin (RR) and try-once-discard (TOD)

scheduling protocols. The update of e in (7) can now be

rewritten as

e((ti + τi)
+) = e(ti + τi) − e(ti)+

+ h̃ (Si, (gp(xp(ti)), gc(xc(ti))) , e(ti), µ(ti))

=: e(ti + τi) − e(ti) + h(i, x(ti), e(ti), µ(ti)) (9)

for a new function h : N × R
nx × R

ne × R
l
+ → R

ne ,

which is often referred to as the overall protocol including

the scheduling function and the quantizer.

Combining the above derivations, we obtain the following

model for the NCS with delays and quantization:

ẋ(t) = f(x(t), e(t), w(t))
ė(t) = g(x(t), e(t), w(t))
µ̇(t) = 0






t 6= ti ∧ t 6= ti + τi,

(10a)

e((ti + τi)
+)=h(i, x(ti), e(ti), µ(ti)) +

+e(ti + τi) − e(ti), (10b)

µ(t+i )=Ωzoomµ(ti), (10c)

where f , g are appropriately defined functions depending

on fp, gp, fc and gc. See [21] for the explicit expressions of

f and g, which also reveal how we use the differentiability

conditions on gc and gp imposed earlier.

Assumption 4 f and g are continuous and h is locally

bounded. �

Observe that the system

ẋ = f(x, 0, w) (11)
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is the closed-loop system (1)-(2) without the network

(i.e. y(t) = ŷ(t) and u(t) = û(t) in (1)-(2)).

The problem that we consider here is the stability analysis

of the NCS using a controller (2) that is obtained through

an emulation approach [1], [9], [10], [20], [21], [24], [25].

Problem 1 Suppose that the controller (2) was designed for

the plant (1) rendering the closed-loop (1)-(2) (or equiva-

lently, (11)) stable in some sense. Determine the value of

hmati and τmad so that the NCS given by (10) is stable

as well when the transmission intervals and delays satisfy

Assumption 3. �

Remark 2 The inclusion of packet dropouts can be realized

by modeling them as prolongations of the transmission

interval. If we assume that there is a bound δ̄ ∈ N on

the maximum number of successive dropouts, the stability

bounds derived below are still valid for the MATI given by

h′
mati := hmati

δ̄+1
, where hmati is the obtained value for the

dropout-free case. �

III. REFORMULATION IN A HYBRID SYSTEM

FRAMEWORK

To facilitate the stability analysis, we transform the above

NCS model into the hybrid system framework discussed in

[8]. To do so, we introduce the auxiliary variables s ∈ R
n,

κ ∈ N, τ ∈ R≥0 and ℓ ∈ {0, 1} to reformulate the model in

terms of flow equations and reset equations. The variable s is

an auxiliary variable containing the memory in (10b) storing

the value h(i, x(ti), e(ti), µ(ti))−e(ti) for the update of e at

the update instant ti + τi, κ is a counter keeping track of the

transmission, τ is a timer to constrain both the transmission

interval as well as the transmission delay and ℓ is a Boolean

keeping track whether the next event is a transmission event

or an update event. The hybrid system HNCS is now given

by the flow equations

ẋ = f(x, e, w)
ė = g(x, e, w)
µ̇ = 0
ṡ = 0
τ̇ = 1
κ̇ = 0

ℓ̇ = 0







(ℓ = 0 ∧ τ ∈ [0, hmati])∨
(ℓ = 1 ∧ τ ∈ [0, τmad])

, (12)

and the reset equations are obtained by combining the “trans-

mission reset relations,” active at the transmission instants

{ti}i∈N, and the “update reset relations”, active at the update

instants {ti + τi}i∈N, given by

(x+, e+, µ+, s+, τ+, κ+, ℓ+) = G(x, e, µ, s, τ, κ, ℓ),

if (ℓ = 0 ∧ τ ∈ [δ, hmati]) ∨ (ℓ = 1 ∧ τ ∈ [0, τmad]) (13)

with G given by the transmission resets (when ℓ = 0) at ti,

i ∈ N

G(x, e, µ, s, τ, κ, 0) = (x, e,Ωzoomµ, h(κ, x, e, µ)−e, 0, κ+1, 1)
(14)

and the update resets (when ℓ = 1) at ti + τi, i ∈ N

G(x, e, µ, s, τ, κ, 1) = (x, s + e, µ, 0, τ, κ, 0). (15)

The constant δ > 0 can be chosen arbitrarily small and

it is included to prevent certain Zeno behavior (an infinite

number of reset events in a finite length time interval)

in the model. For general modeling purposes, we include

disturbance signals in the framework, but next we will

focus on asymptotic stability for zero disturbance input, i.e.

w = 0. See [10, Def. IV.1] or [9] for the exact definition

of uniform global asymptotic stability (UGAS) of the set

E := {(x, e, µ, s, τ, κ, ℓ) | x = 0, e = s = 0} that we adopt

here for the hybrid system HNCS with w = 0.

IV. STABILITY ANALYSIS

We are going to construct a Lyapunov function for HNCS

based on the following conditions for the reset part (13) (the

protocol) and the flow part (12) of the system.

Conditions on the reset part

For the delay-free case, one considers in [1], [20], [21]

protocols satisfying the following condition:

Condition 1 The protocol given by h is UGES (uniformly

globally exponentially stable), meaning that there exists a

function W : N×R
ne ×R

l → R≥0 that is locally Lipschitz

such that for all κ ∈ N,e ∈ R
ne , µ ∈ R

l and x ∈ R
nx

αW |(e, µ)| ≤ W (κ, e, µ) ≤ αW |(e, µ)| (16a)

W (κ + 1, h(κ, x, e, µ),Ωzoomµ) ≤ λW (κ, e, µ) (16b)

for constants 0 < αW ≤ αW and 0 < λ < 1. �

Additionally we assume here that

W (κ + 1, e,Ωzoomµ) ≤ λW W (κ, e, µ) (17)

for some constant λW ≥ 1 and that for almost all e ∈ R
ne

and all κ ∈ N ∣
∣
∣
∣

∂W

∂e
(κ, e, µ)

∣
∣
∣
∣
≤ M1 (18)

for some constant M1 > 0. In Lemma 1 below, we specify

appropriate values for these constants in case of the often

used Round Robin (RR) and the Try-Once-Discard (TOD)

protocols.

Conditions on the flow part

We assume the growth condition

|g(x, e, 0)| ≤ mx(x) + Me|e| (19)

on the NCS model (12), where mx : R
nx → R≥0 and we

will also use the following condition that is only slightly

modified with respect to the delay-free conditions in [1]:

Condition 2 There is a locally Lipschitz continuous func-

tion V : R
nx → R≥0 satisfying the bounds

αV (|x|) ≤ V (x) ≤ αV (|x|) (20)

FrB17.4

7932



for some K∞-functions1 αV and αV , and

〈∇V (x), f(x, e, 0)〉 ≤ −m2
x(x)−ρ(|x|)+(γ2−ε)W 2(κ, e, µ)

(21)

for almost all x ∈ R
nx and all e ∈ R

ne with ρ ∈ K∞, where

the constants in (21) satisfy 0 < ε < max{γ2, 1} and 〈·, ·〉
denotes the usual inner product in R

nx .

The constant ε > 0 is typically chosen sufficiently small.

Lumping the above parameters into four new ones, namely

L0 =
M1Me

αW

; L1 =
M1MeλW

λαW

; γ0 = M1γ; γ1 =
M1γλW

λ
,

(22)

we can determine MAD and MATI that guarantee stability

of HNCS based on the differential equations

φ̇0 = −2L0φ0 − γ0(φ
2
0 + 1) (23a)

φ̇1 = −2L1φ1 − γ0(φ
2
1 +

γ2
1

γ2
0

). (23b)

Observe that the solutions to these differential equations are

strictly decreasing as long as φℓ(τ) ≥ 0, ℓ = 0, 1.

Theorem 1 Let Assumptions 1, 2, 3 and 4 be true. Consider

the system HNCS with w = 0 that satisfies Condition 1 with

(17) and (18), and Condition 2. Suppose hmati ≥ τmad ≥ 0
satisfy

φ0(τ) ≥ λ2φ1(0) for all 0 ≤ τ ≤ hmati (24a)

φ1(τ) ≥ φ0(τ) for all 0 ≤ τ ≤ τmad (24b)

for solutions φ0 and φ1 of (23) corresponding to certain

chosen initial conditions φℓ(0) > 0, ℓ = 0, 1, with φ1(0) ≥
φ0(0) ≥ λ2φ1(0) ≥ 0 and φ0(hmati) > 0. Then for the

system HNCS with w = 0 the set E is UGAS. �

The proof is omitted due to space limitations, but is based

on the construction of Lyapunov functions as in [9]. From

the above theorem quantitative numbers for hmati and τmad

can be obtained by constructing the solutions to (23) for

certain initial conditions. By computing the τ value of the

intersection of φ0 and the constant line λ2φ1(0) provides

hmati according to (24a), while the intersection of φ0 and

φ1 gives a value for τmad due to (24b). Different values

of the initial conditions φ0(0) and φ1(0) lead, of course, to

different solutions φ0 and φ1 of the differential equations

(23) and thus too different hmati and τmad. As a result,

tradeoff curves between hmati and τmad can be obtained that

indicate when stability of the NCS is still guaranteed. This

will be illustrated in Section V. See [10] for a systematic

procedure for stability analysis based on the above ideas.

To apply the above theorem for a given protocol we need

to establish the values λ, M1, λW , αW and αW . We give

these constants for the RR and TOD protocols. For the RR

protocol the scheduling function S as in (8) is given by

S(i, x, e, µ) = SRR(i) = j, when i = j+kl for some k ∈ N

(25)

1A function ϕ : R+ → R+ belongs to class K if it is continuous, strictly
increasing and ϕ(0) = 0 and to class K∞ if additionally ϕ(s) → ∞ as
s → ∞.

and for the TOD protocol it is given by

S(i, x, e, µ) = STOD(e) = arg max
j

|ej |. (26)

Hence, in the RR protocol the node j transmits periodically

with a period l and in the TOD protocol the node j obtains

access to the network for which the networked induced

error |ej | is the largest. If these scheduling functions are

combined with the quantizers as introduced earlier, we obtain

the overall protocol h as in (9), which is given by

hRR,zoom(i, x, e, µ) := h̃(SRR(i), (gp(xp), gc(xc)), e, µ)
(27)

in case of the RR protocol, and by

hTOD,zoom(i, x, e, µ) := h̃(STOD(e), (gp(xp), gc(xc)), e, µ)
(28)

in case of the TOD protocol.

Lemma 1 Let l denote the number of nodes in the network

and suppose that 0 < Ωj < 1 for all j = 1, . . . , l. For

the overall RR zoom protocol given by (27) and for any

ω ∈ (0,
1−maxj Ωj√

l maxj ∆j

) there is a locally Lipschitz WRR,zoom :

N × R
nx × R

l → R≥0 such that the conditions (16), (17)

and (18) hold with

λRR,zoom = max

{√

l − 1

l
, ω

√
l max

j
∆j + max

j
Ωj

}

,

αWRR,zoom
= min{1, ω}, αWRR,zoom

= 1 + ω
√

l,

λWRR,zoom
=

√
l and M1,RR,zoom = ω

√
l.

For the overall TOD zoom protocol given by (28) and for any

ω ∈ (0,
1−maxj Ωj

maxj ∆j
) WTOD,zoom(κ, e, µ) = ω|e| + |µ| satisfies

the conditions (16), (17) and (18) with

λTOD,zoom = max

{√

l − 1

l
, ω max

j
∆j + max

j
Ωj

}

,

αWTOD,zoom
= min{1, ω}, αWTOD,zoom

= 1 + ω,

λWTOD,zoom
= 1 and M1,TOD,zoom = ω.

�

The proofs can be based on the results in [20].

V. CASE STUDY OF THE BATCH REACTOR

The case study of the batch reactor has developed over the

years as a benchmark example for NCSs, see e.g. [1], [9],

[10], [21], [25]. The functions in the NCS (10) for the batch

reactor are linear and given by f(x, e, 0) = A11x+A12e and

g(x, e, 0) = A21x+A22e. The batch reactor, which is open-

loop unstable, has nu = 2 inputs, ny = 2 outputs, np = 4
plant states and nc = 2 controller states and l = 2 nodes

(only the outputs are assumed to be sent over the network).

See [21], [25] for the details and the numerical values of the

matrices. The measurements are obtained through quantizers

with the specifications maxj Ωj = 0.9 and maxj ∆j = 1.

Focussing on the “TOD zoom protocol” first, Lemma 1 states
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that WTOD,zoom(κ, e, µ) = ω|e| + |µ| is a Lyapunov function

showing that the protocol is UGES for ω ∈ (0, 0.1). To

apply the developed framework for stability analysis, we take

Me = |A22| :=
√

λmax(A⊤
22A22) and mx(x) = |A21x|

in (19). To verify (21) we take ρ(r) = εr2 and consider

a quadratic Lyapunov function V (x) = x⊤Px to compute

the L2 gain (or actually a value close to the L2 gain by

selecting ε > 0 small) from |e| (which is smaller than
1
ω
WTOD,zoom(κ, e, µ)) to mx(x) by minimizing γ̄ subject to

the following linear matrix inequalities (LMIs) in the matrix

P = P⊤ ≻ 0:
(

A⊤
11P + PA11 + εI + A⊤

21A21 PA12

A⊤
12P (ε − γ̄2)I

)

� 0. (29)

Minimizing γ̄ subject to the LMI (29) with ε = 0.01
using the SEDUMI solver [22] with the YALMIP interface

[17] provides the minimal value of γ∗ = 15.9165. As

WTOD,zoom(κ, e, µ) = ω|e| + |µ| this gives that γ in (21)

can be taken as γ(ω) = γ∗

ω
(depending on the choice of ω).

From Lemma 1 and Theorem 1 we now obtain the values

L0 = |A22|, L1 =
|A22|

ω + 0.9
, γ0 = γ∗,

γ1 =
γ∗

ω + 0.9
, λTOD,zoom = ω + 0.9. (30)

According to Theorem 1, MATI is only influenced by the

choice of ω through λTOD,zoom via (24a) as L0 and γ0

are independent of ω. To obtain the largest value for MATI,

ω ∈ (0, 0.1) should be minimized. Note that the effect of

ω on the constants L1 and γ1 is relatively small and hence,

MAD cannot be significantly influenced by ω. We take ω

here equal to ω̄ = 0.005 (at 5% of its maximal value). This

results in the numerical values L0 = 15.7300, L1 = 17.3812,

γ0 = 15.9165, γ1 = 17.5872 and λTOD,zoom = 0.905.

The above numerical values provide various combinations

of (hmati, τmad) that yield stability of the NCS by varying

the initial conditions φ0(0) and φ1(0). Hence, the initial

conditions of both functions φ0 and φ1 can be used to make

design tradeoffs. For instance, by taking φ1(0) larger, the

allowable delays become larger (as the φ1 solution to (23)

shifts upwards), while the maximum transmission interval

becomes smaller as the value of λ2φ1(0) will shift upwards

as well causing its intersection with φ0 to occur for a lower

value of τ . For instance, by taking φ0(0) = φ1(0) =
λ−1

TOD,zoom, we obtain the delay-free case with τmad = 0
and hmati = 0.00315. Following this procedure for various

increasing values of φ1(0), while keeping φ0(0) equal to

λ−1
TOD,zoom, the graph in Figure 1 is obtained.

Applying a similar procedure for the RR zoom protocol

(where we exploit the special structure in the system just as

was done in [21, Ex. 3] and [9], [10]), leads to the tradeoff

curve between MATI and MAD for the RR zoom protocol as

also given in Figure 1. These tradeoff curves can be used to

impose conditions or select a suitable network with certain

communication delay and bandwidth requirements (note that

MATI is inversely proportional to the bandwidth).

Above we fixed the quantizer properties, but we could

easily add a third (or fourth) axis to the tradeoff curves in
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Fig. 1. Tradeoff curves between MATI and MAD for the TOD and RR
zoom protocols.

Figure 1 showing the tradeoffs between MATI, MAD and

the quantization properties (maxj Ωj and/or maxj ∆j). For

instance, in case of the TOD zoom protocol we would have

for q1 := maxj Ωj and q2 := maxj ∆j that

λ = max{
√

1

2
, ωq2 + q1}, αW = min(1, ω);αW = 1 + ω;

λW = 1; M1 = ω; γ0 = γ∗; γ1 =
γ∗

max{
√

1
2 , ωq2 + q1}

;

L0 =
ω|A22|

min{1, ω} ; L1 =
ω|A22|

min{1, ω}max{
√

1
2 , ωq2 + q1}

(31)

for ω ∈ (0, 1−q1

q2

). We will take ω as ω̄ = 0.05 1−q1

q2

(again

at 5% of its maximum value as before) and assume for

simplicity that q1+20q2 ≥ 1, which implies that ω̄ ≤ 1. This

gives L0 = |A22|;L1 = |A22|
max{

√
1

2
,0.05+0.95q1}

, γ0 = γ∗, γ1 =

γ∗

max{
√

1

2
,0.05+0.95q1}

and λ = max{
√

1
2 , 0.05 + 0.95q1}.

Interestingly, the dependence on q2 = maxj ∆j (the

resolution of the quantizer) disappears and we only have

a dependence on the “zooming rate” (assuming that q1 +
20q2 ≥ 1) due to the choice of ω̄ in this example. Even

more interestingly, when q1 = maxj Ωj ≤ 0.6917, we have

that 0.05 + 0.95q1 ≤
√

1
2 and thus we obtain the values

L0 = |A22|, L1 = |A22|
√

2, γ0 = γ∗, γ1 = γ∗√2 and

λ =
√

1
2 , which recover the quantization-free parameters and

hence, the quantization-free MATI and MAD curve, see [9],

[10]. Stated otherwise, if the zoom factor q1 = maxj Ωj is

small enough (smaller than 0.6917) it does not influence the

stability any longer (at least based on the sufficient stability

conditions as presented here). For various values of the zoom

factor q1 we can follow the above procedure and compute

the corresponding tradeoff curves between MAD and MATI,

which still guarantee UGAS of the NCS. This results in

Fig. 2. It can indeed be observed that for q1 ≤ 0.6917 we

recover the non-quantized curve as in [9], [10]. Note that also

the curve corresponding to the TOD zoom protocol as given

in Fig. 1 can be found in Fig. 2 for the value of q1 = 0.9.
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Fig. 2. Tradeoff curves between MATI, MAD and the zoom factor for the
TOD zoom protocol.

VI. CONCLUSIONS

For the first time a framework was presented for studying

the stability of a NCS, which involves all networked-induced

phenomena (communication constraints, varying transmis-

sion intervals, varying transmission delays, dropouts and

quantization effects). Based on the newly developed model,

that unites earlier works by the authors in which only a

subset of the phenomena were included, a characterization

of stability was provided for NCSs using deterministic

bounds on delays (MAD), varying transmission intervals

(MATI) and dropouts (δ̄ in Remark 2). The application of

the results on a benchmark example showed how tradeoff

curves between MATI, MAD and quantization properties

can be computed providing designers of NCS with proper

tools to support their design choices. As this is the first

framework to analyse NCSs encompassing all networked-

induced imperfections using deterministic bounds, various

improvements are, of course, possible. In particular, topics

of future research include tighter approximations of the true

MATI and MAD (e.g. by exploiting the possible structure

present in the model such as linearity, cf. [5], [6]), improving

the way dropouts are currently tackled using prolongation of

the MATI, including other classes of quantizers such as so-

called box quantizers, treating the large-delay case (delays

larger than the transmission interval), exploiting possible

stochastic information on dropouts, delays and sampling

intervals, etc.
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