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Abstract— This paper presents linear matrix inequalities
for stability analysis for networked control systems (NCSs)
that incorporates various network phenomena: time-varying
sampling intervals, packet dropouts and time-varying delays
that may be both smaller and larger than the sampling
interval. The problem is approached from a discrete-time
modelling perspective. A comparison is made between the use
of Parameter Dependent Lyapunov functions and Lyapunov-
Krasovskii functions for stability analysis. Examples illustrate
the developed theory.

Index Terms— network control systems, time-varying delay,
sampled-data control, linear matrix inequalities (LMIs), stabil-
ity analysis.

I. INTRODUCTION

The literature on modeling, analysis and controller design

of networked control systems (NCSs) expanded rapidly over

the last decade [1], [26]. The use of networks offers many

advantages (low installation and maintenance costs, flexibil-

ity, etc.). However, it also induces side effects such as time-

varying delays, aperiodic sampling or packet dropouts which

have undesirable effects on the system performance and sta-

bility. Both continuous-time and discrete-time models have

been developed for the purpose of the stability analysis of

NCSs. For continuous-time NCS models, several approaches

can be distinguished: the work in [7], [18], [24], [25] on

the Lyapunov-Krasovskii functional method, the robust para-

metric modeling of the delay operator [14] and the impulsive

delay differential equations NCS approach [17]. The majority

of NCS models are based on the exact discretization of the

continuous-time linear plant over a sample interval (see [2],

[5], [6], [9], [15], [20], [26] and the references therein). In

the literature, the authors treat the case when the variation of

the delay is smaller than the sampling period. In this case,

the analysis/control design problems can be addressed by

using robust control methods for parametric uncertainties [2],

[11] or by applying the Lyapunov-Krasovskii function (LKF)

approach [19], [21]–[23] (for the LKF approach in discrete-

time, see [8]). In this context, the main problems are the

conservatism inherent to the use of upper boundings in the
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increment of the LKF and the reduced applicability of the

results since they are able to deal only with delay variations

smaller than the sampling interval. Generalizing such models

to the case of large delay variations, packet dropouts and

time-varying sampling intervals is not a trivial task.

In the current paper, we propose a discrete-time NCS

model that can deal simultaneously with packet dropouts and

time-varying delays smaller and larger than a possibly time-

varying sampling interval. This model is obtained using exact

discretization over a sampling interval and also takes into

account the complicated case in which the delay variations

may be larger than the sampling interval. The possibility

of packet dropouts is modeled explicitly. Based on this

model, stability analysis conditions in terms of linear matrix

inequalities (LMIs) will be derived, using both a common

quadratic and a parameter dependent Lyapunov approach.

Note that recently, in [12], a simplified event-based discrete-

time model has been proposed using the system’s represen-

tation at both sampling and actuation times. The advantage

of the model presented in this paper in comparison to this

event-based model is that it generally leads to a discrete-

time representation of a smaller dimension. Moreover, it

generalizes several of the models that exist in the literature

to the case in which all the mentioned network effects appear

simultaneously. This enables the theoretical comparison with

existing approaches. A discussion on the stability characteri-

zation based on LKFs and on parameter dependent Lyapunov

functions (PDLF) will be given. This discussion is inspired

by the results in [13] in which a comparison between LKFs

and Lyapunov functions for switched systems is presented in

the case of difference equations with time-varying delays in

the state. The approach in [13] can deal only with delays that

are a multiple of the sampling time, and therefore it does not

apply to continuous-time systems as the NCSs studied here.

We show that the stability analysis based on the most general

LKF of a quadratic type is always more conservative than

the novel stability characterization presented here. This result

applies to the context of NCSs in which we are faced with

an interaction between continuous-time systems and discrete-

time controllers under different perturbing networked effects.

In particular, we will show that the existence of general

LKFs as used in the literature, implies also the existence

of a Lyapunov function in our framework.

This paper is structured as follows: In Section II we

present our NCS model. Section III is dedicated to the

theoretical comparison of stability characterizations. It also

presents LMI-based stability analysis methods that are illus-

trated by numerical examples in Section IV. Section V closes

the paper with concluding remarks.
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II. NCS MODELING

In this section, the discrete-time model of a NCS including

delays larger than the uncertain, and time-varying sampling

interval and packet dropouts is presented. The NCS consists

of a linear continuous-time plant

ẋ(t) = Ax(t) + Bu∗(t), (1)

with A ∈ R
n×n and B ∈ R

n×m, and a discrete-time

static time-invariant controller, which are connected over a

communication network that induces network delays (e.g.

sensor-to-controller delay, controller-to-actuator delay). The

state measurements are sampled resulting in the sampling

time instants sk given by: sk =
∑k−1

i=0 hi, ∀k ≥ 1, and

s0 = 0, which are non-equidistantly spaced in time due to

the time-varying sampling intervals hk, hmin ≤ hk ≤ hmax.

The sequence of sampling instants is strictly increasing,

i.e. s0 < s1 < s2 < . . .. We denote by xk := x(sk)
the kth sampled value of x and by uk the control value

corresponding to xk. Packet drops may occur. They are

modeled by the parameter mk (mk = 1 if xk and/or uk

is lost, mk = 0 otherwise). We assume that the number

of subsequent dropouts is upper bounded by δ. The zero-

order-hold (ZOH) function transforms the discrete-time input

uk to a continuous-time control u∗(t) being the actual

actuation signal of the plant. We assume that the sensor

acts in a time-driven fashion and that both the controller and

the actuator act in an event-driven fashion (i.e. responding

instantaneously to newly arrived data). Furthermore, we

consider that not all the data are used due to packet dropouts

and message rejection and that the most recent control input

remains active in the plant if a packet is dropped. Under

these assumptions, all delays (sensor-to-controller, controller-

to-actuator and control computation delays) can be captured

by a single delay τk, τmin < τk < τmax (see [26]). Define

d := ⌊ τmin

hmax
⌋, the largest integer smaller than or equal to τmin

hmax

and d := ⌈ τmax

hmin
⌉, the smallest integer larger than or equal to

τmax

hmin
. Then, the control action u∗(t) in the sampling interval

[sk, sk+1) is described by

u∗(t) = uk+j−d−δ for t ∈ [sk + tkj , sk + tkj+1), (2)

where tkj ∈ [0, hk] , j = 0, . . . , d + δ − d represent the

actuation update instants in the considered sampling interval.

The discrete-time NCS model can be given by:

xk+1 = eAhkxk +

d+δ−d∑

j=0

∫ hk−tk
j

hk−tk
j+1

eAsdsBuk+j−d−δ. (3)

The parameters tkj can be bounded in the interval [0, hmax].
We denote by tj,min and tj,max, the minimum and max-

imum values of the tkj parameters, respectively. Explicit

methods for the computation of these bounds as functions

of δ, hmin, hmax, τmin and τmax are given in [3]. Let θk

denote the vector of uncertain parameters consisting of

the sampling interval and the actuation instants at discrete

time k: θk := (hk, tk1 , . . . , tk
d+δ−d

) The set in which these

parameters evolve is denoted by:

Θ = {θk ∈ R
d+δ−d+1 |hk ∈ [hmin, hmax],

tkj ∈ [tj,min, tj,max], 1 ≤ j ≤ d + δ − d, (4)

0 ≤ tk1 ≤ . . . ≤ tk
d+δ−d

≤ hk}.

System (3) represents a discrete-time system with multiple

delays in the input. Moreover, the system matrices are time-

varying according to the uncertain parameters θk ∈ Θ. In

the following section, we will show how to characterize the

stability of this system based on LMIs and compare this to

the Lyapunov-Krasovskii Function (LKF) approach.

III. STABILITY CHARACTERIZATIONS AND RELATIONS

WITH LKF-BASED THEORY

In this section we discuss the stability characterization for

the NCS (3) with a state feedback of the form

uk = −Kxk. (5)

We can without loss of generality assume that K has a full

row rank. When it is not the case, it is always possible to

write the controller in the form

uk =
(
ua

k
T ub

k

T
)T

=
(
I GT

)T
Kaxk =

(
I GT

)T
ua

k,

where Ka has full row rank (using a permutation of the

inputs) and we obtain a model similar to (3) that does satisfy

the full row rank condition on the feedback gain, with Ka

instead of K, B
(
I GT

)T
instead of B and ua

k instead of

uk.

To render the model (3) with the feedback (5) suitable for

analysis, we consider an equivalent delay-free model, based

on a lifted state vector ξk =
(
xT

k uT
k−1 . . . uT

k−d−δ

)T

that includes past system inputs. This leads to the lifted

model

ξk+1 = Ã1(θk)ξk, (6)

where Ã1(θk) =
0
BBBBBBBBBB@

Λ(θk) fMd+δ−1
(θk) fMd+δ−2

(θk) . . . fM1(θk) fM0(θk)

−K 0 0 . . . 0 0
0 I 0 . . . 0 0

.

.

.
. . .

. . .
. . .

.

.

.

.

.

.

.

.

.
. . .

. . . 0 0
0 . . . . . . 0 I 0

1
CCCCCCCCCCA

with Λ(θk) = eAhk − M̃d+δ(θk)K and

M̃j(θk) =





∫ hk−tk
j

hk−tk
j+1

eAsdsB if 0 ≤ j ≤ d + δ − d,

0 if d + δ − d < j ≤ d + δ.
(7)

The goal of this section is twofold: to derive LMI-based

conditions for stability of NCS and to prove that characteriz-

ing the stability of the closed-loop NCS (3) using the lifted

model (6) and (parameter dependent) quadratic Lyapunov

functions is less conservative than the methods available in

the literature based on discrete-time LKF. In order to show

the latter, we will use an alternative lifted state space model
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as an intermediate step in the proof. This model uses the

state vector χk =
(
xT

k xT
k−1 . . . xT

k−d−δ

)T

, i.e.

χk+1 = Ã2(θk)χk, (8)

where Ã2(θk) =
0
BBBBBB@

Λ(θk) −fMd+δ−1
(θk)K −fMd+δ−2

(θk)K . . . −fM0(θk)K
I 0 0 . . . 0
0 I 0 . . . 0

.

.

.
. . .

.

.

.

0 . . . 0 I 0

1
CCCCCCA

.

This second lifted model is important since it is easy to show

that if there exists a LKF (even the most general LKF that

can be obtained using quadratic terms), then there exists a

parameter dependent quadratic Lyapunov function for (8),

as well. This relation will be described in detail at the end

of the section. First we will show that the existence of a

parameter dependent Lyapunov function for (8) is equivalent

to the existence of a parameter dependent Lyapunov function

for (6). This issue is relevant since it would formally prove

that we can base the stability analysis for the NCS (3) with

state feedback controller (5) on (6) without loosing stability

properties that could be obtained via (8). Note that the state

dimension of ξk in (6) is smaller than the dimension of

χk in (8), which clearly has both modeling and numerical

advantages.

A. Equivalence of stability characterizations for the two

lifted models

Let us discuss the equivalence of the lifted models (8)

and (6) with respect to stability and Lyapunov functions in

more detail. Clearly, for a given constant parameter θ, the

stability of (8) is equivalent to the stability of (6) and vice

versa. Moreover, since for linear time-invariant systems the

existence of a quadratic Lyapunov is a necessary and suffi-

cient stability condition, there exists a quadratic Lyapunov

function for (8) if and only if there exists one for (6) when θ
is constant. However, assuming that there exists a quadratic

Lyapunov function for one of the systems, (8) or (6), there

is no constructive method available in the literature for

deducing a Lyapunov function for the other one. As follows

we will provide such a constructive method. Moreover, we

will even consider a more general case of this problem as

(8) and (6) are uncertain systems that vary over time as θk

is changing. In this case, quadratic Lyapunov functions are

known to be sufficient only for characterizing stability, but

not necessary. The question now is whether, in the time-

varying uncertain case, the existence of a quadratic Lyapunov

function for system (8) is equivalent to the existence of

a quadratic Lyapunov function for (6). In Theorem 2, we

will answer this question and we will show that there exists

a quadratic-like Lyapunov function for system (6) if and

only if there exists one for the alternative representation (8).

To prove this result for any parameter dependent quadratic

Lyapunov function, the following lemma will be needed.

Lemma 1: Consider the matrix R ∈ R
q×p and the matri-

ces A(θ) ∈ R
p×p that depend continuously on θ ∈ Θ, where

Θ ⊂ R
l is a compact set. Define the matrices

Ā(θ) =

(
A(θ) 0
R 0

)
∈ R

(p+q)×(p+q), (9)

for θ ∈ Θ. The following statements are equivalent:

• There exist symmetric positive definite matrices P (θ) ∈
R

p+q×p+q, θ ∈ Θ such that

Ā(θ1)
T P (θ2)Ā(θ1) − P (θ1) < 0, ∀ θ1, θ2 ∈ Θ. (10)

• There exist symmetric positive definite matrices Q(θ) ∈
R

p×p, θ ∈ Θ such that

A(θ1)
T Q(θ2)A(θ1) − Q(θ1) < 0, ∀ θ1, θ2 ∈ Θ. (11)

Moreover, there exists a common solution P (θ) = P > 0,

for all θ ∈ Θ to (10) if and only if there exists a common

solution Q(θ) = Q > 0 to (11).

Proof: Suppose that (10) holds for some matrices

PT (θ) = P (θ) > 0,∀θ ∈ Θ. Decompose the matrices as

follows:

P (θ) =

(
P1(θ) P2(θ)
PT

2 (θ) P3(θ)

)

in accordance with the matrix Ā(θ). By expanding (10) we
obtain for all θ1, θ2 ∈ Θ that the matrix
0
B@

"
A

T
(θ1)P1(θ2)A(θ1) − P1(θ1) + R

T
P2(θ2)A(θ1)

+ A
T

(θ1)P2(θ2)R + R
T

P3(θ2)R

#
−P2(θ1)

−P T
2 (θ1) −P3(θ1)

1
CA

is negative definite. This is equivalent (using the Schur

lemma) to

AT (θ1)P1(θ2)A(θ1) − P1(θ1) + RT P2(θ2)A(θ1)+

AT (θ1)P2(θ2)R + RT P3(θ2)R+

P2(θ1)P
−1
3 (θ1)P

T
2 (θ1) < 0.

Adding and subtracting AT (θ1)P2(θ2)P
−1
3 (θ2)P

T
2 (θ2)A(θ1)

to the previous inequality implies for all θ1, θ2 ∈ Θ that

AT (θ1)Q(θ2)A(θ1) − Q(θ1) + W (θ1, θ2) < 0,

where Q(θ) = P1(θ) − P2(θ)P
−1
3 (θ)PT

2 (θ), ∀ θ ∈ Θ, and

W (θ1, θ2) = (P2(θ2)A(θ1) + P3(θ2)R)
T
× P−1

3 (θ2)

× (P2(θ2)A(θ1) + P3(θ2)R) .

As W (θ1, θ2) ≥ 0 and Q(θ) > 0 (since P3(θ) > 0 and Q(θ)
is the Schur complement of P (θ)), clearly Q(θ), θ ∈ Θ,
satisfy condition (11). Notice that when the matrices P (θ)
are constant, i.e.

P (θ) = P =

(
P1 P2

PT
2 P3

)
, ∀θ ∈ Θ,

the corresponding matrices Q(θ) that satisfy (11) are constant

as well, Q(θ) = Q = P1 − P2P
−1
3 PT

2 , θ ∈ Θ.
To prove the converse, assume that (11) holds. Then,

due to the continuity of A with respect to θ and to the

compactness of Θ, there exists ǫ > 0 such that for all

θ1, θ2 ∈ Θ
(

AT (θ1)Q(θ2)A(θ1) − Q(θ1) + ǫRT R 0
0 −ǫI

)
< 0.
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This inequality shows that the matrices P (θ) defined as

P (θ) =

(
Q(θ) 0

0 ǫI

)
> 0, θ ∈ Θ

satisfy (10). Clearly, when Q(θ) = Q, θ ∈ Θ, the common

matrix

P (θ) = P =

(
Q 0
0 ǫI

)
> 0, θ ∈ Θ

satisfies the inequality (10), which completes the proof.

Theorem 2: Consider the NCS (3) with state feedback

controller (5) and the two representations (6) and (8). The

following statements are equivalent :

• There exist symmetric positive definite matrices P (θ),
θ ∈ Θ such that

ÃT
1 (θk)P (θk+1)Ã1(θk) − P (θk) < 0, (12)

for all θk, θk+1 ∈ Θ, thus

V (ξk) = ξT
k P (θk)ξk (13)

is a parameter dependent Lyapunov function for system

(6).

• There exist symmetric positive definite matrices Q(θ),
θ ∈ Θ such that

ÃT
2 (θk)Q(θk+1)Ã2(θk) − Q(θk) < 0, (14)

for all θk, θk+1 ∈ Θ, thus

V (χk) = χT
k Q(θk)χk (15)

is a parameter dependent Lyapunov function for system

(8). Moreover, system (6) has a common quadratic

Lyapunov function V (ξk) = ξT
k Pξk if and only if

system (8) has a common quadratic Lyapunov function

V (χk) = χT
k Qχk.

Proof: Since the state feedback matrix K has full row
rank there exists a matrix S ∈ R

(n−m)×n such that the matrix(
K

T
ST

)T

is invertible. Define the matrices Ã3(θk) =

0
BBBBBBBBBBBBBB@

Λ(θk) fMd+δ−1
(θk) . . . . . . fM1(θk) fM0(θk) 0 0

−K 0 . . . . . . 0 0 0 0
0 I 0 . . . 0 0 0 0

.

.

. 0
. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. . . 0

.

.

.

.

.

.

.

.

.

0 0 . . . 0 I 0 0 0
S 0 . . . . . . 0 0 0 0
0 0 . . . . . . 0 0 I 0

1
CCCCCCCCCCCCCCA

W =

0
BBBBBBBBBBBBBBBBBBBBBBBB@

I 0 . . . . . . 0 0

0 −K 0 . . . 0 0

.

.

. 0
. . .

.

.

.

.

.

.

.

.

.

.

.

.
. . . 0

.

.

.

0 0 . . . 0 −K 0

0 0 . . . . . . 0 −K

0 S 0 . . . 0 0

.

.

. 0
. . .

.

.

.

.

.

.

.

.

.

.

.

.
. . . 0

.

.

.

0 0 . . . 0 S 0
0 0 . . . . . . 0 S

1
CCCCCCCCCCCCCCCCCCCCCCCCA

.

Notice that Ã3(θk)W = WÃ2(θk) =

0
BBBBBBBBBBBBBBBBBBBBBBBB@

Λ(θk) −fMd+δ−1
(θk)K . . . . . . −fM1(θk)K −fM0(θk)K

−K 0 . . . . . . 0 0

0 −K 0 . . . 0 0

.

.

. 0
. . .

.

.

.

.

.

.

.

.

.

.

.

.
. . . 0

.

.

.

0 0 . . . 0 −K 0
S 0 . . . . . . 0 0
0 S 0 . . . 0 0

.

.

. 0
. . .

.

.

.

.

.

.

.

.

.

.

.

.
. . . 0

.

.

.

0 0 . . . 0 S 0

1
CCCCCCCCCCCCCCCCCCCCCCCCA

.

This implies that Ã3(θk) is similar to Ã2(θk). It is easy to

show that (14) holds if and only if there exists symmetric

positive definite matrices P̃ (θk) = W−T Q(θk)W−1 such

that ÃT
3 (θk)P̃ (θk+1)Ã3(θk) − P̃ (θk) < 0. Furthermore,

notice that Ã3(θk) can be expressed as

Ã3(θk) =




Ã1(θk) 0 0
S | 0 0 0

0 I 0


 .

Then, apply Lemma 1 with

A(θ) :=

(
Ã1(θk) 0
S | 0 0

)
and R :=

(
0 I

)
.

Next apply Lemma 1 again for A(θ) := Ã1(θk) and R :=
(S 0) in order to complete the proof.

B. Relations with the Lyapunov-Krasovskii stability charac-

terization

For discrete-time uncertain systems with delay in the input
such as (3), several stability results exist based on Lyapunov-
Krasovskii functions (LKFs). Using an adequate partition of
the Lyapunov matrix

Q(θk) =

0

B

B

B

B

B

@

Q0,0(θk) Q0,1(θk) . . . Q0,d+δ(θk)

Q0,1(θk) Q1,1(θk)
. . .

.

.

.

.

.

.
. . .

. . .
.
.
.

Q0,d+δ(θk) . . . . . . Qd+δ,d+δ(θk)

1

C

C

C

C

C

A

, (16)

it can be shown that the Lyapunov function (15) is equivalent

to the LKF

V (xk, . . . , xk−d−δ) =
d+δ∑

i=0

d+δ∑

j=0

xT
k−iQ

i,j(θk)xk−j , (17)

which is the most general LKF that can be obtained using

quadratic forms. Any of the quadratic LKFs found in the

literature (see [19], [21]–[23] ) are a particular case of (17).

As a consequence of Theorem 2, we know that there exists

a Lyapunov function (15) for (8) iff there exists one of the

form (13) for (6), i.e. iff the equations (12) are satisfied.

Consequently, condition (12) represents a necessary and

sufficient condition for the existence of the most general

form of LKFs that can be obtained using quadratic terms

as in (17). Hence, using a stability characterization based on

the model (6) is less conservative than the stability analysis
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results based on quadratic LKF that are available in the

literature [19], [21]–[23].

In the next subsection, we will present a constructive LMI

method for stability analysis using characterizations based on

parameter dependent Lyapunov functions such as in (13).

C. LMI stability conditions

To derive the LMI stability conditions, one has to deal

with the non-linear representation of the exponential uncer-

tainties (7) in the model (6). Several methods exist in the

literature for dealing with such uncertainties. The basic idea

is to embed this uncertainty in a more classical parametric

uncertainty, by considering a polytopic approximation of

the convexhull of Ã1(θk). Such an embedding aims at

finding a set of ζ matrices Hi, i = 1, . . . , ζ, such that

Ã1(θk) ∈ H = co {H1, . . . ,Hζ} , for all θk ∈ Θ. Analytical

methods for deriving such a representation can be found in

literature based on the Taylor series expansion [11], Jordan

decomposition [2] or the application of the Caley-Hamilton

lemma [10]. Using such an over-approximation with a finite

number of ζ vertices, Hj , a finite number of LMI stability

conditions can be obtained based on the reformulation of

the stability analysis method developed in [4] for polytopic

systems.

Theorem 3: Consider the NCS model (6). If there exist

matrices Pj = PT
j > 0, j = 1, 2, . . . , ζ, that satisfy

HT
j PlHj − Pj < 0,

for all j, l ∈ {1, 2, . . . , ζ}, then the closed-loop NCS (6) is

globally asymptotically stable (GAS).

This theorem is based on the existence of a Lya-

punov function that changes according to the unknown

parameters θk, i.e. V (ξk) = ξT
k P (θk)ξk, with P (θk) =∑ζ

j=1 µj(θk)Pj , where µj(θk) represent the barycentric co-

ordinates of Ã1(θk) in the polytope H, i.e. 0 ≤ µj(θk) ≤

1,
∑ζ

j=1 µj(θk) = 1. Using the results from the previous

section, this shows that, if the LMIs in Theorem 3 are

satisfied, they imply the existence of a LKF of the form (17).

Notice that using this approach we avoid the conservative

upper boundings in the difference of the LKF, which are

usually encountered in the literature to arrive at LKF-based

stability conditions in LMI form. The case of a common

quadratic Lyapunov function (CQLF) V (ξ) = ξT
k Pξk is a

particular case of this theorem by taking Pj = P, ∀ j =
1, . . . , ζ.

Similarly to the results in [3], [11], it can be shown that the

previous theorem also guarantees the stability of continuous-

time NCS.

IV. ILLUSTRATIVE EXAMPLES

In this section we will present several examples that illus-

trate the approach presented in this paper and compare it with

other approaches in the literature. The convex embedding has

been constructed based on the Taylor expansion [11].
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m
0
2
(h

k
)

Fig. 1. Illustration of the construction of the convex embedding using the
Taylor expansion for the system in Example 1. In this case we have only

one exponential uncertainty M0(θk) =
R hk
0

eAsdsB in equation (7) that

represents a 2D vector M0(hk) = (m01(hk), m02(hk))T that depends
only on the sampling period hk . This uncertainty is represented by the dark
curve in the figure. The polytope represents the convex polytope and the
vertex are marked by stars.

A. Variation on the sampling period (τmin = τmax = δ = 0)

We consider now the case where the system (1) is de-

scribed by the matrices

A =

(
0 1
0 −0.1

)
, B =

(
0

0.1

)
.

and the controller in (5) is given with K = − (3.75 11.5).
For this example, the results in [26], [7] and [16] indicated

the that the system is stable for any time-varying sampling

period in the interval (0, 0.0593], (0, .86] and (0, 1.36],
respectively. We construct a convex embedding with 4 ver-

tices based on a 3th-order Taylor expansion (a graphical

illustration of this embedding is given in Figure 1). Using the

approach provided here, we can show that the system is GAS

for h ∈ (0.01, 1.72]. In fact, for a constant sampling interval

h = 1.73 the equivalent discrete-time system is unstable1,

which illustrates that the stability characterisation proposed

in this paper is hardly conservative in this example.

B. Comparison with the LKF approach

Consider a NCS (1) with

A =

(
0 1
0 0

)
, B =

(
0
1

)

(i.e. a double integrator), K =
(
0.0032 0.1085

)
, a constant

sampling interval hmin = hmax = h = 10 and τk < h. We

consider the case of δ̄ = 0 , i.e. packet dropouts do not

occur. The system is GAS for a constant time delay up to

τmax = 7.05. In [22] it has been shown that the system

is stable for a time varying-delay in the interval (0.2, 1.4].
Using the approach proposed here we can show that the

system is stable for any time-varying delay in the interval

(0, 6.49]. Alternatively, we can show that the systems is

stable for any delay in (6.89, 7.05].

1This interval has also been recently confirmed by [9].
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Fig. 2. Time response with delay and packet-dropouts for h = 0.25,

τmax = h and δ = 1.

C. Large delays and packet dropouts

Consider the system from the previous example with K =(
0.0363 0.2525

)
. We consider time-delays larger than the

constant sampling interval hmin = hmax = h. In this case

τmax = 2.8h and τmin = 0. Note that the same results hold

also for the situation with packet dropouts δ = 1 and τmax =
1.8h or δ = 2 and τmax = 0.8h. In this case the GAS can

be shown using the Theorem 3 for sampling intervals up to

h = 1.1s. A simulation with both delay and packet dropouts

is presented in Figure 2 for h = 0.25, τmax = h and δ = 1
which shows GAS of the NCS as confirmed by our theory.

V. CONCLUSIONS

A discrete-time NCS model, based on an exact discretiza-

tion of the continuous-time linear plant at the sampling

instants, is presented. This model includes various relevant

network phenomena: the presence of time-varying delays

that may be larger than the sampling interval, message

rejection, packet dropouts, and variations in the sampling

interval. Based on this model, stability characterizations

using parameter dependent Lyapunov functions are proposed.

It is proven that the stability characterizations presented here

are less conservative than the methods available in the litera-

ture based on Lyapunov-Krasovskii functions. Exploiting the

developed model and the proposed stability characterizations,

stability conditions are derived in terms of LMIs. Examples

illustrate that these stability results are less conservative than

those found in the literature.
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