
  

  

Abstract—We propose a tracking control with collision 

avoidance for a group of unicycle mobile robots. A supervisory 

system assigns to each robot its reference path, together with 

the desired velocity profile as a function of the position along 

the path. The robot paths and velocity profiles do not neces-

sarily prevent collisions of the robots. Based on the actual robot 

coordinates, reference velocities of individual robots are coor-

dinated in real-time such as to ensure collision-free robot move-

ments along the assigned paths. The robot motion controllers 

realize globally asymptotic stable tracking of the reference 

trajectories under constraints on the actuator inputs. The 

controllers proposed here offer several advantages with respect 

to those in the literature, such as better suppression of tracking 

errors due to more freedom in controller tuning and relaxed 

constraints on the reference velocities. The suggested tracking 

control with collision avoidance has successfully been validated 

in experiments. It can be used for the realization of autonomous 

transportation tasks in warehouses, harbors, factories, etc. 

I. INTRODUCTION 

ROUP control of robots is employed to realize tasks 

that are spatially distributed or dangerous, when a 

single robot cannot accomplish the task or when a different 

number of robots is needed as the operation proceeds over 

time, in order to increase robustness in task execution (e.g. 

by means of redundant robots), to gain flexibility by assign-

ing a multitude of objectives to the robots, etc. Motion 

coordination is a popular topic of study in multi-robot sys-

tems [1]. A broad overview of the research results in group 

coordination and cooperative control is given in [2]. 

The transport of goods in warehouses is typically done by 

means of conveyers. In the absence of redundant conveyer 

lines, failure in only one conveyer can disable a great deal of 

the transport in the complete warehouse. Instead of including 

redundant conveyers, which can be expensive, robustness of 

the transportation can be improved by means of mobile 

robots. If a robot fails and obstructs a part of the transporta-

tion system, the other ones can dynamically alter their paths 

to avoid the obstacle. If many robots are used at the same 

time, their operation should be coordinated such as to effi-

ciently accomplish given tasks without collisions. 

The planning and scheduling of the tasks can be done 

centrally, but in a more flexible approach the robots could 
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negotiate with each other and with the supervisor to achieve 

robustness to different types of failures. Such a high-level 

multi-agent coordination can be solved using a holonic 

approach [3]. Holons [4] are autonomous controllers that 

cooperate in order to achieve a common goal. 

 The motion coordination of mobile robots is typically 

solved by proper path planning, traffic control, formation 

generation, and formation keeping [1]. In the latter two 

approaches particular attention is given to the stabilization 

and tracking control of wheeled mobile robots, since these 

robots belong to the class of nonholonomic dynamical 

systems that do not satisfy Brockett’s necessary condition 

for smooth stabilization [5] and no smooth time-invariant 

stabilizing control law exists for these systems. A great deal 

of the research aims at developing suitable time-varying 

stabilizing and tracking controllers for general chained-form 

nonholonomic systems, including mobile robots, see for 

instance [6-9] and the references therein. With the exception 

of [8,9] and some references therein, the stabilization and 

tracking problems with saturation constraints on control 

signals have rarely been addressed in the literature, although 

such constraints are often encountered in practice degrading 

both stability and control performance. 

 In this paper we propose a collision-free tracking control 

strategy for a group of unicycle mobile robots. A super-

visory system assigns to each robot its reference path, 

together with the desired velocity profile as a function of the 

position along this path. The robot paths and velocity prof-

iles do not necessarily prevent collisions of the robots. Since 

collisions are not allowed, the reference velocities of indi-

vidual robots are coordinated in real-time based on the actual 

robot coordinates, such as to ensure collision-free robot 

movements. Feedback controllers of the individual robots 

realize globally asymptotic stable tracking of the reference 

trajectories under constraints on the actuator inputs. 

The main contributions of the paper are: i) explicitly 

accounting for geometric properties of the tracking error 

dynamics, which facilitates Lyapunov based feedback 

control design, ii) guaranteed global asymptotic tracking of 

the reference trajectories under less conservative require-

ments on these trajectories and saturated feedback control, 

iii) high flexibility in controller tuning which allows better 

suppression of the tracking errors and higher robustness 

against disturbances and parasitic dynamics, iv) formulation 

of an effective method for collision-free robot coordination, 

and v) verification of this method in realistic experiments. 

 In section 2 we present background mathematical models 

and tools. In Section 3 we solve the global trajectory 

tracking problem. In Section 4 we propose a method for 

collision-free robot coordination. Experimental results are 

presented in Section 5. Conclusions are given at the end. 
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II.  MATHEMATICAL PRELIMINARIES 

Here, we recall some concepts from control systems 

theory that will be used in the subsequent sections. 

A. Robot Kinematic Model and Tracking Error Dynamics 

We consider a unicycle mobile robot, depicted in Fig. 1, 

whose configuration is described by the following well-

known kinematic model (see [6-9] and references therein): 

 �� � �cos�, 

 �� � �sin�, (1) 

 �� � �, 

where � and � are the forward and steering velocities, resp-

ectively, � and � are the planar coordinates of the robot 

midpoint O	 in the world coordinate frame O��, and θ is the 

heading angle relative to the �-axis of the world frame. 
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Fig. 1.  Configuration and error coordinates of a unicycle mobile robot. 

 In this paper, we consider the tracking problem: we aim to 

design control laws for � and � such that the robot 

asymptotically tracks a reference trajectory specified as 

 
����� � ��������������������, (2) 

where ���, ���, and ��� are all defined in the world frame. 

For control design, we consider tracking errors represented 

in the coordinate frame of the robot O	�	�	  (see, e.g., [6-8]): 

 ��	�	�	� � � cos� sin� 0�sin� cos� 00 0 1� �
��� � ���� � ���� � ��. (3) 

Dynamics of the errors ��	 , �	 , �	) have been modeled in [6]: 

�� !��� � �����"� !��� # $������cos�	��� � ����������sin�	��� %, 
��	��� � ������ � ����, (4a) � ! � &�	�	',    " � &0 �11 0 '. (4b) 

Here, ����t� � )���������* # ���������*, ������ � �������. 
The matrix " is skew-symmetric, featuring the well-known 

property (5) which is very useful for control design: 

 +,"+ - 0,  .+ / R*. (5) 

B. A Concept from Stability Theory 

Lemma 1. Consider a scalar system 

 ����� � �0������ # 1���, (6) 

where 0������ and 1��� are bounded and uniformly contin-

uous functions such that �0��� 2 0 if � 3 0 and 0�0� � 0. 

If, for any �4 5 0 and any initial condition ���4�, the 

solution ���� is bounded and lim89∞ ���� � 0, then 

 lim89∞ 1��� � 0. (7) 

Proof: We use standard epsilon-delta argumentation. For any :, we can find ��:� such that |��<�| = : and |0���<��| = : 

for all < 5 �. Then for any > / R?, we determine from (6): 

@ 1�<�d< B8?C8 @ |1�<�|d<8?C8   

                     B D@ d��<�8?C8 D # @ |0�<�|d<8?C8   

                     = |��� # >�| # |����| # : @ d<8?C8   

                     = :�2 # >�. 
Since : can be made arbitrarily small, then |1�<�| is also 

arbitrarily small for < 5 ��:�. F 

C. Saturation and Penalty Functions 

 First, we introduce saturation functions in a similar way as 

in [8]. We will use these functions in the control design 

presented in Section 3. We define a set BFG,H of uniformly 

continuous and bounded functions indexed by (possibly 

time-variant) bounded parameters I, J / R?: 

BFG,H � K0G,H:R 9 R | 0G,H  is uniformly continuousN 
                                 Nand � I B 0G,H�J�� B I  .� / RO (8) 

and a corresponding set of saturation functions SG,H 

SG,H � K0H,G:R 9 R | 0G,H / BFG,H, P0G,H�JP� 2 0N  
                                Nfor all P 3 0, 0G,H�0� - 0O. (9) 

Examples of nontrivial, yet simple, functions in SG  are: 

 0G,H�J�� � I H )Q?�H �R, (10a) 

 0G,H�J�� � I tanh �J��. (10b) 

Unlike [8], we use a time-varying instead of constant design 

parameter I and introduce an additional parameter J, in 

order to improve the performance of the resulting controller. 

 Second, we introduce a set PU of continuous, monotone 

and bounded penalty functions indexed by a constant para-

meter V / R?: 

P U � K>U:R 9 R | > is continuous, monotoneN  
                 and >U��� � 0  .� / RX, 0 B >U��� B 1 

               N                if 0 B � B V, >U��� � 1 if � 2 VO. (11) 

An example of a function in P U is 

 >U��� � Y 0,                             � = 0QU Z� � γ [\]�*π /U�*π _ ,    0 B � B V1,                             � 2 V N (12) 

A penalty function is used in our method for collision 
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avoidance presented in Section 4. 

III. DESIGN OF TRACKING CONTROLLER WITH SATURATION 

 In this section we will derive a tracking controller which 

guarantees global asymptotic stability of the tracking error 

dynamics (4a,b). Although this derivation will conceptually 

mimic the approach followed in [7,8], it will result in addi-

tional features to be highlighted at the end of this section. 

 Our objective is to find time-varying state-feedback 

controllers of the form 

 � � �`a�, � ! , �	b,  � � �`a�, � ! , �	b (13) 

such as to ensure global asymptotic stability of the tracking 

error dynamics (4a,b) under constraints on the inputs: 

 |����| B �cde,   |����| B �cde,  .� 5 0, (14) 

where �cde and �cde are given positive constants. 

In the following we show that the following control laws 

solve the given tracking problem: ���� � ������cos��	���� # 0Hf�8�,gf�h �	����, (15a) ���� � ������ # HiHfi!j�8�klmn�8�
oQ?aHfi j�8�bR?aHfi!j�8�bR  [\]�pj�8��pj�8�   

 #0Hq�8�,gq�hp�	����, (15b) 

where J ,J! , J ! , Jp , h , hp / R? are design parameters, and 0Hf,gf / SHf,gf, 0Hq,gq / SHq,gq . Here, the sets SHf,gf and 

SHq,gq  are defined by (9). The parameters J!, J !, h , and hp 

are constant, while J  and Jp can be time-variant. Note that 

 
[\]pjpj � @ cos �P�	�dPQ4  (16) 

is a smooth function in �	 and recall that 

 limpj94 [\]pjpj � 1. (17) 

We establish the following result. 

Theorem 1: Consider the unicycle robot dynamics (1) with 

inputs � and � constrained according to (14). Assume that 

the desired trajectory in (2) is such that the following inequ-

alities hold: |�ref���| = �cde, |������| = �cde,  .� 5 0. 

Consider the tracking controller (15). We distinguish two 

cases regarding properties of the reference velocities: 

1. Suppose that ��� is nonzero, bounded and uniformly 

continuous over � / r0,∞�, while ��� is bounded over � / r0,∞�. If parameters in (15) are chosen such that J ,J! , J ! , Jp , h , hp / R? and 

 J! , J ! , h ,  and hp are positive constants,  (18a) 

 J ��� B �cde � |������|, (18b) 

 Jp��� B �cde � |������| � J!|������|, (18c) 

then a� ! , �	b � t is a globally asymptotically stable 

equilibrium of the tracking error dynamics (4a,b), i.e. 

the tracking control problem is solved. 

2. Suppose that ��� is bounded, uniformly continuous 

over � / r0,∞�, and it converges to zero as � 9 ∞, while ��� is nonzero, bounded and uniformly continuous over � / r0,∞�. With the design parameters chosen as in 

(18), controller (15) solves the given tracking problem. 

Proof: Consider the positive definite and proper Lyapunov 

function candidate ua� ! , �	b: 
 u � HiHfio1 # aJ !b*a� !b,� ! # 0.5��	�* � HiHfi,  (19) 

where J! , J ! / R? are constant design parameters. Diffe-

rentiating u along the solutions of the closed-loop system 

(4),(15) yields 

ww8 ua� ! , �	b � HiHfia�fibx��fi
oQ?aHfibRa�fibx�fi # �	��	  

                               

� HiHfiyXza�fibx"�fi?a�fibx$klmn{|[pjXkklmn[\]pj %}
oQ?aHfibRa�fibx�fi # �	���� � �� 

� HiHfir j !j~$klmn{|[pjXkklmn[\]pj %
oQ?aHfi jbR?aHfi!jbR # �	���� � �� 

� � HiHfi j��f,�f�gf j�oQ?aHfi jbR?aHfi!jbR � �	0Hq,gq�hp�	� B 0. (20) 

We use property (5) to obtain the expression given in the 

third row of (20). The last inequality in (20), which follows 

from the definition of 0Hf,gf  and 0Hq,gq  in (9), implies that 

the trajectories of the tracking errors �	���, �	���, �	��� are 

uniformly bounded for � / r0,∞�. It remains to show global 

asymptotic convergence of these errors to a� ! , �	b � t. 

 From the last inequality in (20) we can determine 

0 5 @ du����4 5 �@ �J!J !�	���0Hf�8�,gfah �	���bN�4   

                                      N#�	���0Hq�8�,gq�hp�	�����d�, (21) 

which implies that the integrals at the right hand side exist 

and are finite. Consequently, �	0Hf,gf, 0Hq,gq / �Q�0,∞�. 
By assumption, 0Hf�8�,gf�h �	���� and 0Hq�8�,gq�hp�	���� 
are uniformly continuous for � / r0,∞�. Since �	 and �	 are 

solutions of the continuous error dynamics (4a,b), which is 

excited with inputs (15a,b) generated from uniformly 

continuous functions and bounded �ref��� and �ref���, then �	���0Hf�8�,gf�h �	���� and �	���0Hq�8�,gq�hp�	���� must be 

uniformly continuous for � / r0,∞�. By definition (9), �	0Hf,gf�h �	� and �	0Hq,gq�hp�	� are always non-negative. 

With the help of Barbălat’s lemma [10] (pp. 211), we get 

 lim89���	���0Hf�8�,gf�h �	����N 
      N#�	���0Hq�8�,gq�hp�	����� � 0, (22) 

implying 

 lim89∞r|�	���| # |�	���|~ � 0. (23) 

It remains to prove that 
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 lim89∞ �	��� � 0. (24) 

First consider the case when ������ remains nonzero. In 

the closed-loop system (4),(15), the �	 equation becomes: 

 ��	��� � �0Hq�8�,gq�hp�	���� 
                             � HiHfi!j�8�klmn�8�

oQ?aHfi j�8�bR?aHfi!j�8�bR  [\]pj�8�pj�8� . (25) 

A direct application of the Lemma 1 on (25) gives 

lim89∞ � HiHfi!j�8�klmn�8�
oQ?aHfi j�8�bR?aHfi!j�8�bR  [\]pj�8�pj�8� � � 0. (26) 

Having in mind (17), (23), and that ������ remains nonzero, 

property (24) must hold. Note that expression (25) does not 

depend on ������. Consequently, global asymptotic stability 

of the zero equilibrium of the closed-loop system (4),(15) 

does not require uniform continuity of ������. 
 Now consider the case when lim89∞ ������ � 0, while ������ remains nonzero. In the closed-loop system (4),(15), 

the �	 equation becomes: 

lim89∞ ��	��� � lim89∞��0Hf�8�,gf�h �	���� #N  
                   N#�	���a������ # 0Hq�8�,gq�hp�	����b�. (27) 

A direct application of the Lemma 1 on (27), while using 

(23), implies that �	��������� must converge to zero as � 9 ∞, which, in turn, implies (24). Uniform continuity of ������ is a precondition for using the Lemma 1 in this case. 

 Selection of the design parameters according to (18a-c) 

trivially ensures that the control inputs (15a,b) fulfill (14).  F 

 Let us point out what are the advantages of our controller. 

As first, the term �	/o1 # aJ !�	b* # aJ !�	b* in (15b) 

ensures that � monotonously depends on �	, which implies 

that � is very sensitive to large �	. Consequently, our 

controller is capable of quick suppression of large  �	-errors. The second advantage is that we make use of the 

design parameters J !, h , and hp to gain high freedom in 

tuning the transient behavior of the closed-loop system. With 

these parameters we can speed-up correction of the tracking 

errors. The third advantage is that we introduce the possi-

bility of using time-varying design parameters J ��� and Jp���. We can treat these gains as complements of the refer-

ence velocities ������ and ������, respectively. In this way, 

without violating constraints (14), we can allow high-gain 

feedback during periods of slower movements. Increased 

feedback gains can improve motion performance at low 

velocities, especially if a mobile robot is subject to parasitic 

dynamics and disturbances (e.g., friction on the robot 

wheels, noise in the feedback signals). The last advantage is 

that we emphasize that uniform continuity of ������ is not 

needed in case of ������ 3 0. This relaxation is especially 

relevant for use of mobile robots in distribution centers 

where, for the sake of time-efficiency, it is desirable that 

������ is kept at a maximum value as long as possible on a 

given robot path. While ������ is kept constant, ������ may 

become discontinuous (yet bounded), especially at blending 

points between straight- and curved-parts of the robot path. 

This will be illustrated in a case-study in Section 5. 

Compared with the results presented in [8], our controller 

offers faster suppression of large �	-errors, more freedom in 

tuning the transient behavior of the closed-loop system, and 

better error reduction at lower velocities. It also allows more 

relaxed requirements on ��� than considered in [8]. 

IV. A COLLISION-FREE ROBOT COORDINATION METHOD 

 To achieve collision-free coordination of a group of � 

mobile robots, we propose feedback-based adjustments of 

their reference velocities ���,����, � / �1,2, … , ��. The 

adjustments can be done by means of penalty functions from 

the set PU defined by (11). Within the robot group, we 

determine mutual distances between the robots. The total 

number Ε of distances equals the binomial coefficient: 

 Ε � Z�2_ � �!*��X*�!. (28) 

 If the distance between two robots is below some 

predefined threshold, then the desired velocity of the robot 

of lower priority must be reduced (penalized). We assume 

that within the group it is always possible to establish 

unequal priorities among all members, so adjustments of the 

reference velocities do not lead to deadlocks in robot 

movements. Unequal priorities can be established by rules 

that are characteristic to distribution centers: (i) one-way 

street policy, (ii) no robot may overtake another during 

failure-free operation, and (iii) on a cross-road, robots 

coming from the right hand-side should have priority over 

the others. If the given rules still allow equal priorities to 

some robots, then shorter distance to a target increases the 

priority of one robot over another. 

 Consider first the situation with two mobile robots (1 and 

2) only. The distance to collision ∆Q,* between these robots 

can be determined by subtracting the robot diameter D from 

the Euclidean distance between the robot midpoints: 

 ∆Q,* � )��Q � �*�* # ��Q � �*�* � D. (29) 

We postulate that if ∆Q,* = V, where V is some threshold, 

then the desired velocity of a robot of lower priority is 

penalized. If robot 1 is of lower priority, then it’s velocity 

should be adjusted as: 

 ���,Q��� � �w�[,Q���>Ua∆Q,*b, (30) 

where �w�[,Q��� is the desired velocity of robot 1, and >U is a 

penalty function from the set (11). If another robot has lower 

priority, then its desired velocity should be reduced in the 

similar way. Note that for robot coordination we make use of 

the feedback variables (�Q, �Q) and (�*, �*). 

 Now we consider a group of � robots. Without loss of 

generality, we may assume that the same V holds for all the 
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robot pairs from the group. If non-equal priorities are assig-

ned to these robots, then �w�[,����, such that ��w�[,����� =�cde for all � / �1,2, … , ��, can be penalized as follows: 

 ���,���� � �w�[,����∏ >U,�a∆�,�b���Q����� . (31) 

Here, ∆�,� is determined in accordance with (29) and >U,� is a 

penalty function from the set (11). Since ∆�,� - ∆�,�, one 

needs to determine Ε distances to collisions, where Ε is 

given by (28). For coordination of � robots, we use the 

feedback variables (��, ��), � / �1,2, … , ��. 
 The proposed robot coordination does not hamper global 

stability of the zero equilibrium of the closed-loop system 

(4),(15), since ���,���� remains bounded within r0, �w�[,����~ 
and uniformly continuous. The latter is ensured by uniform 

continuity of the penalty functions belonging to the set (11). 

As long as ���,� 2 0, global asymptotic stability is mainta-

ined (Theorem 1). If suppression of the desired velocity 

leads to ���,� � 0, then asymptotic stability is guaranteed if ��� is nonzero, bounded and uniformly continuous. 

V. EXPERIMENTAL CASE-STUDY 

 To illustrate the results presented so far, we conduct 

experiments with mobile robots operating in a warehouse-

like environment. The main components of the experimental 

setup are: four mobile robots (E-puck [11]), a PC and a 

camera. The PC generates robot trajectories, uses camera 

images to determine actual linear and angular coordinates of 

each robot, and implements algorithms for motion 

coordination and tracking control. The robots receive control 

inputs from the PC via a BlueTooth protocol. 

Each robot is supposed to move along a given path with 

the desired linear velocity �w�[,��P��, � / �1,2,3,4�. Here, P� is 

the distance between the initial and a given point on this 

path. To achieve an experiment where robot collisions may 

easily occur in the absence of motion coordination, we start 

the motion of each robot at a different time-instant and 

assign mutually different desired velocities to all robots. 

Ideally, the reference velocity ���,�  at distance P� coincides 

with the desired one. The layout of the path of robot � and 

the corresponding ���,��P����� determine the references ���,����,  ���,����, and ���,����. To verify robustness of the 

controllers to the initial errors, values ����0�, ���0�, ���0�� 
are chosen to be different from the reference ones. 

 We use the following tracking controller: ����� � ���,����cos�	,�  

#a�cde � ����,�����btanha20�	,����b, (32a) ����� � ���,���� # QQklmn,��8�*4!j,��8�
oQ?a*4 j,��8�bR?a*4!j,��8�bR  [\]apj,��8�bpj�8� + 

#a�cde � ����,����� � 11���,����b tanha0.5�	,����b. (32b) 

Here, �cde and �cde are the maximum values of the control 

signals: �cde � 0.1 rm/s], �cde � 2 rrad/s]. Controllers 

(32a,b) have time-varying feedback gains �cde � ����,����� 

and �cde � ����,����� � 11���,����. At lower velocities 

these gains get higher, which improves robustness against 

disturbances and parasitic dynamics. Time-variations of the 

feedback gains do not hamper constraints (14), since by 

design both controllers are saturated. We also use design 

gains in arguments of the saturation function tanh �. �, in 

order to gain more freedom in tuning the transient behavior 

of the closed-loop system. In our experiments, the controller 

(32) is applied at a sampling rate of 25 [Hz]. 

In the first experiment, we disable the algorithm for 

collision-free robot coordination presented in Section 4 and 

let ���,��P�� -  �w�[,��P��, � / �1,2,3,4�. Without motion 

coordination, robots 1 and 2 collide after 27 [s]. This is 

verified by Fig. 2 showing the actual distances to collisions. 

 
Fig. 2. Distances to collision in the first experiment. 

In the second experiment, we adopt the same desired 

velocities as in the first one, but we do enable coordination 

among the robots. As a result, all the robots successfully 

travel along the given reference paths without collisions. In 

Fig. 3 we show the reference and actual paths in the second 

experiment. The corresponding plots of distances to colli-

sion, shown in Fig. 4, confirm collision avoidance. 

 
Fig. 3. Reference (solid) and actual (dotted) robot paths in the second 

experiment; the initial reference and actual positions are indicated with ‘◊’ 

and ‘×’, respectively; the final actual positions are indicated by circles. 

In Fig. 5, we show the desired, reference, and actual linear 

velocities, while in Fig. 6 we show the reference and actual 

angular velocities. Note that the actual velocities shown in 

these figures represent the control signals. Apparently, both 

the controls meet the constraints (14). We may observe 

periods where the reference linear velocities are below the 

desired ones. In these periods the penalty functions are 
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active, i.e., the robots motions are coordinated such as to 

avoid collisions. Thanks to continuity of the applied penalty 

functions, the reference linear velocities remain uniformly 

continuous. We may also notice that the reference angular 

speeds are not uniformly continuous. In particular, disconti-

nuities occur exactly at the blending points between straight-

line and circular segments of the robot paths. Despite these 

discontinuities, our control design ensures that the 

asymptotic tracking is achieved with bounded control signal. 

 
Fig. 4. Distances to collision in the second experiment. 

 
Fig. 5. Linear velocities in the second experiment. 

VI. CONCLUSION 

In this paper, we derive and verify a feedback control 

algorithm for globally stable asymptotic tracking of refe-

rence trajectories of unicycle mobile robots under constraints 

on the robot control signals. We represent a well- known 

kinematic model of unicycle robots in a form which facili-

tates derivation of the tracking controller. 

The advantages of using our controller are: i) fast correc-

tion for large position errors in �-direction, ii) high freedom 

in tuning the transient behavior of the closed-loop system, 

iii) use of time-varying feedback gains for better robustness 

against disturbances and parasitic dynamics, and iv) 

allowing use of discontinuous (yet bounded) reference 

angular velocity ��� if the reference linear velocity ��� is 

nonzero. The last advantage is especially relevant for use of 

mobile robots in transportation tasks, where, for the sake of 

time-efficiency, it is desirable to keep ��� at the maximum. 

While ��� is kept constant, ��� may become discontinuous, 

especially at blending points between straight-line and 

curved segments of the robot path. 

We suggest an effective feedback method for collision-

free robot coordination. This method penalizes the reference 

linear velocity ��� of robots of lower priority. To avoid 

deadlocks in the robot movements, all the robots must have 

non-equal priorities during execution of their tasks. The 

robot coordination has been successfully verified in the 

experiments, confirming realization of the reference robot 

paths without collisions. 

 
Fig. 6. Angular velocities in the second experiment. 
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