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Abstract— This paper considers the problems of controlled
synchronization and regulation of oscillatory systems. For a
specific class of nonlinear systems, namely for minimum phase
systems with relative degree one, we propose a systematic
design procedure for finding nonlinear couplings between the
systems – both unidirectional and bidirectional – that guarantee
asymptotic synchronization of the systems’ states for arbitrary
initial conditions. The corresponding coupling has the form of
an integral and it can be considered as a generalized distance
between the outputs of the coupled systems. It combines both
the low- and the high-gain coupling design in one nonlinear
function. The results are illustrated with simulations of coupled
Hindmarsh-Rose neuron oscillators.

I. INTRODUCTION

Synchronization of oscillatory systems and, in particular,
of chaotic systems is a phenomenon that received huge
attention in scientific literature for the last 15 years. The co-
existence of very complex, chaotic or ”irregular” dynamics of
relatively simple systems on the one hand, and the possibility
of some kind of ”order” or synchrony in such interconnected
systems, on the other hand, forms an intriguing combination
for specialists in physics, mathematics, control, neuroscience
and biology, thus generating a seemingly endless sequence
of various results on this subject. This interest is also
explained by a number of applications, already implemented
or potential, of synchronization phenomena in various fields
of science and technology, see, e.g., [1]–[3].

When considering synchronization phenomena in inter-
connected systems, one can distinguish two directions: syn-
chronization analysis of interconnected systems with given
couplings and interconnection structure, and design of in-
terconnection couplings that guarantees systems synchro-
nization (in a certain sense). The last problem, called the
controlled synchronization problem is closely related to
several control problems such as observer design and the
output regulation problem, see, e.g., [4] for links between
these problems. Browsing through the literature on syn-
chronization of nonlinear systems (and synchronization in
this paper is understood as asymptotic convergence of the
states of the interconnected systems to each other), one
encounters multiple results with linear system couplings.
While for analysis of interconnected systems with given
linear couplings this is a normal approach, for the problem
of couplings design, limiting oneself only to linear couplings
may be too restrictive, especially for highly nonlinear sys-
tems. In some cases the restriction of exploiting only linear
couplings forces one to use linear high-gain designs to cope
with nonlinearities in a certain set of the state space to
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achieve synchronization in this set [5]. At the same time,
nonlinear couplings, which can be considered as couplings
with varying gains, seem to be more natural for nonlinear
systems: the gain should be high in the parts of the state
space where the nonlinearities are essential and need to be
suppressed, while it can be small in other parts of the state
space. Synchronization in nonlinearly coupled systems has
been considered mostly from the analysis point of view, see,
e.g. [6], [7]. There are not so many results focusing on design
aspects of synchronization through nonlinear coupling.

In this paper a systematic approach to the design of
nonlinear coupling functions is presented for the case of
two unidirectionally or bidirectionally coupled systems and
for the case multiple systems interconnected via all-to-all
coupling. We restrict the design to coupling functions in the
form of the definite integral of some weight function with
the limits being the outputs of the synchronized systems.
For two systems the magnitude of the coupling can be
considered as a generalized distance between the systems’
outputs. For the case of a constant weight function it leads
to the conventional linear coupling. The introduction of a
nonlinear weight function in such an integral coupling leads
to greater flexibility, which may lead to reduced coupling
gains as it will be demonstrated with an example. Lower
coupling gains, in turn, lead to lower (measurement) noise
sensitivity. Moreover, this form of coupling is very conve-
nient for analysis, providing neat results with constructive
design methods.

This approach has its roots in the passivity-based synchro-
nization of chaotic systems with linear couplings developed
in [5] on the one hand, and recent developments in the
nonlinear output regulation problem [4], [8], on the other
hand. In fact, as it has been pointed out in [4], the controlled
synchronization problem, at least for the case of master-slave
synchronization, can be considered as a particular case of the
output regulation problem. Moreover, the methods that are
used both in the controlled synchronization and the output
regulation problems overlap in several aspects. Controllers
developed within the output regulation problem often con-
tain the so-called internal model [9], [10] – an auxiliary
dynamical system which, being a part of the controller,
guarantees the existence of a solution of the closed-loop
system corresponding to zero regulation error. Whether or not
this solution is stabilized depends on synchrony between the
system and the internal model. This synchrony is achieved
by another part of the controller, usually called a stabilizer.
Apart from this conceptual similarity, there is also similarity
in techniques and methods employed in these problems, see,
e.g., [5], [11], and the works on the convergence property [4],
[12], which is the key property in terms of stabilization in
both the output regulation problem and the synchronization
problem.

The rest of the paper is organized as follows. The con-
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trolled synchronization problem and the proposed design
method are explained in Section II. In Section III we
present preliminary definitions and results on semipassivity
and incremental passivity. Sections IV and V contain main
theoretical results of the paper while Section VI illustrates
the developed theory with an example of two nonlinearly
coupled Hindmarsh-Rose oscillators. Conclusions are drawn
in Section VII.

II. CONTROLLED SYNCHRONIZATION PROBLEM

In this paper we will consider systems of the form

ẋi = f(xi, ui), i = 1, . . . , k,

yi = h(xi), xi ∈ R
n, yi, ui ∈ R,

(1)

which satisfy standard assumptions on existence and unique-
ness of solutions and exhibit, for zero inputs, some bounded
oscillatory dynamics. The problem of controlled synchro-
nization of such systems that will be studied in this paper is
to find coupling functions

ui = Gi(y1, . . . , yk), i = 1, . . . k (2)

that interconnect k identical systems of the form (1) such that
for arbitrary initial conditions x1(0), . . . xk(0) all solutions
of the closed-loop system (1), (2) are defined and bounded
on the infinite interval of existence, and asymptotically
synchronize, i.e.

|xi(t) − xj(t)| → 0, as t → ∞, ∀i, j. (3)

Moreover, it is required that for identical outputs y1 = y2 =
. . . = yk = y the coupling functions must vanish,

Gi(y, . . . , y) = 0, i = 1, . . . , k, (4)

thus allowing for the k interconnected systems to exhibit,
in exact synchrony, the oscillatory dynamics of the original
unforced system: (1) with ui = 0.

We will begin with a particular case of this problem corre-
sponding to synchronization of two interconnected systems
(1). In this case we propose a coupling in the following
integral form

u1 =

y2
∫

y1

λ(s)ds, u2 =

y1
∫

y2

λ(s)ds (5)

with some weight function λ(s). For a class of nonlinear sys-
tems, we will propose a design procedure to find the weight
function λ(s) that will guarantee asymptotic synchronization
of the coupled systems’ states for arbitrary initial conditions.

Notice that for a constant function λ(s) = λ, integral
coupling (5) becomes the linear coupling u1 = λ(y2 − y1),
u2 = λ(y1 − y2). Linear coupling has the benefit that it is
simple and uniform over various values of y1 and y2. Yet, the
systems’ nonlinearities are not the same throughout the state
space and for some values of the outputs y1 and y2 one could
use a lower gain λ than for the other values and still achieve
asymptotic synchronization. The proposed integral coupling
(5) overcomes the lack of versatility of the linear coupling.
It allows one, through shaping the weight function λ(s), to
adjust the coupling gain depending on y1 and y2 (in this case
the gain is understood as the ratio

∫ y2

y1

λ(s)ds/(y2 − y1)). A

smart choice of λ(s) may lead to gain reduction (at least in
some average sense), which, in turn may improve sensitivity
of the closed-loop system to noise.

III. PASSIVITY PRELIMINARIES

Before presenting the main results of the paper, let us
recall some definitions that will be useful for subsequent
results. Consider the system

ẋ = f(x, u), y = h(x), x ∈ R
n, y, u ∈ R, (6)

Definition 1 ( [5])
System (6) is called C1-semipasive if there exist a C1 con-
tinuous nonnegative function V : R

n → R and a function
H : R

n → R such that

V̇ =
∂V

∂x
f(x, u) ≤ yT u − H(x) (7)

holds globally, where H(x) is such that there exists ρ > 0
satisfying H(x) ≥ 0 for all |x| ≥ ρ.

The main property of semipassive systems that will be
exploited in this paper is that when interconnected through
an integral coupling of the form (5) with a positive weight
function λ(s), two semipasive systems will have bounded
solutions defined on an infinite interval of existence. This
result is based on the ideas from [5].

Lemma 1
Consider two systems

ẋ1 = f1(x1, u1), y1 = h1(x1), (8)

ẋ2 = f2(x2, u2), y2 = h2(x2). (9)

Suppose both systems are C1-semipassive with radially un-
bounded storage functions V1 and V2. Then all solutions of
these systems interconnected with the integral coupling (5)
with a nonnegative continuous weight function λ(s) ≥ 0, s ∈
R, are defined and bounded on the infinite time interval t ≥
0. Moreover, there exists a radially unbounded nonnegative
function W (x1, x2) and a constant c∗ ≥ 0 such that for each
c ≥ c∗ the set W (x1, x2) ≤ c is a compact positively invariant
set with respect to (8), (9).

Proof: Consider W (x1, x2) := V1(x1) + V2(x2), which
is a radially unbounded function. Then the semipassivity
inequality (7) for the individual systems implies

Ẇ = V̇1 + V̇2 ≤ y1u1 − H1(x1) + y2u2 − H2(x2)

= (y1 − y2)

∫ y2

y1

λ(s)ds − H1(x1) − H2(x2), (10)

where we have substituted (5) for u1 and u2. Notice that
since λ(s) ≥ 0 for all s ∈ R, then

(y1 − y2)

∫ y2

y1

λ(s)ds = −(y2 − y1)

∫ y2

y1

λ(s)ds ≤ 0

for all y1, y2 ∈ R. Hence,

Ẇ ≤ −H1(x1)−H2(x2) ≤ 0, ∀|x1| ≥ ρ1, |x2| ≥ ρ2, (11)

where ρ1 > 0 and ρ2 > 0 are the constants from the defi-
nition of semipassivity of systems (8) and (9), respectively.
Hence, since the function W is radially unbounded, there
exists c∗ > 0 such that Ẇ (x) ≤ 0 for all x = (xT

1 , xT
2 )T

satisfying W (x) ≥ c ≥ c∗. Thus, the set W (x1, x2) ≤ c is a
compact positively invariant set. This implies, see e.g. [13]
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that all solutions x(t) = (x1(t)
T , x2(t)

T )T are defined for
all t ≥ 0 and bounded. �

Definition 2 ( [8])
System (6) is called C1-incrementally passive if there exists a
C1 function ∆V (x1, x2) : R

2n → R+ such that

∆V̇ =
∂∆V

∂x1
f(x1, u1) +

∂∆V

∂x2
f(x2, u2)

≤ (y1 − y2)
T (u1 − u2) − ∆W (x1 − x2), (12)

for all x1, x2 ∈ R
n, u1, u2, y1 = h(x1), y2 = h(x2) and

some nonnegative continuous function ∆W (x) ≥ 0. System
(1) is called strictly C1-incrementally passive if ∆W (x) is
positive definite.

The main property of incrementally passive systems that
we will use for our purposes is formulated in the next lemma.

Lemma 2
Consider two identical systems

ẋ1 = f̃(x1, v1), y1 = h(x1), (13)

ẋ2 = f̃(x2, v2), y2 = h(x2), (14)

interconnected through the integral coupling

v1 =

∫ y2

0

λ(s)ds, v2 =

∫ y1

0

λ(s)ds, (15)

where λ(s) ≥ 0 for all s ∈ R. Suppose the system

ẋ = f̃(x, v), y = h(x) (16)

is strictly C1-incrementally passive and there exists a constant
c∗ > 0 and a nonnegative radially unbounded function
W (x1, x2) ≥ 0 such that for each c ≥ c∗ the set W (x1, x2) ≤
c is compact and positively invariant with respect to the
interconnected systems (13), (14), (15). Then each solution
of the interconnected system (13), (14), (15) is defined and
bounded on the infinite time interval t ≥ 0 and satisfies

x1(t) − x2(t) → 0, as t → +∞. (17)

Proof: From the strict incremental passivity of system (16)
we conclude (see inequality (12) ) that the time derivative of
the function ∆V (x1, x2) along any solution (x1(t), x2(t))
of system (13), (14), (15) satisfies

∆V̇ ≤ (y1 − y2)(v1 − v2) − ∆W (x1 − x2) (18)

for some positive definite function ∆W (x). Notice that since
λ(s) ≥ 0 in (15), we have

(y1 − y2)(v1 − v2) = −(y1 − y2)

∫ y1

y2

λ(s)ds ≤ 0

for all y1, y2. Hence,

∆V̇ ≤ −∆W (x1 −x2) < 0, ∀x1, x2 ∈ R
n, x1 6= x2,

(19)

since ∆W (x) is positive definite. Thus, applying LaSalle’s
invariance principle [13] to system (13), (14), (15) in any
compact positively invariant set W (x1, x2) ≤ c for arbitrary
c ≥ c∗, we conclude that any solution of the interconnected
system (13), (14), (15) is defined and bounded on the interval

t ≥ 0 and satisfies ∆W (x1(t) − x2(t)) → 0 as t → +∞,
which, in turn, implies (17). �

Remark 1
If the storage function ∆V (x1, x2) is taken in the form

∆V (x1, x2) = Ṽ (x1 − x2) for some C1 positive definite

function Ṽ (x), one can easily show that for each c ≥ c∗ there
exists a class KL function βc(r, t) such that

|x1(t) − x2(t)| ≤ βc(|x1(0) − x2(0)|, t) (20)

for every x1(0), x2(0) satisfying W (x1(0), x2(0)) ≤ c. In
particular, if ∆V (x1, x2) = (x1 − x2)

T P (x1 − x2) and
∆W (x1 − x2) = (x1 − x2)

T R(x1 − x2) for some positive
definite matrices P = PT > 0 and R = RT > 0 independent
of c, then there exist µ > 0 and ν > 0 such that any solution
of (13), (14), (15) is bounded and satisfies

|x1(t) − x2(t)| ≤ µe−νt|x1(0) − x2(0)|. (21)

As a tool to determine incremental passivity of a system, we
provide the following lemma, which is a minor modification
of a result from [8].

Lemma 3
Consider the system

ẋ = f̃(x) + Bv, y = Cx, (22)

with x ∈ R
n, y, v ∈ R and function f̃(x) being C1. If there

exist matrices P = PT > 0 and R = RT > 0 such that

P
∂f̃

∂x
(x) +

∂f̃T

∂x
(x)P ≤ −R, ∀x ∈ R

n, (23)

PB = CT , (24)

then system (22) is incrementally passive with ∆V (x1, x2) =
(x1−x2)

T P (x1−x2) and ∆W (x1−x2) = (x1−x2)
T R(x1−

x2).

IV. CONTROLLED SYNCHRONIZATION OF TWO SYSTEMS

In this section we consider the controlled synchronization
problem for two nonlinear systems of the form

ẋi = f(xi) + Bui,

yi = Cxi,
(25)

where xi ∈ R
n, yi, ui ∈ R, i = 1, 2, B and C are constant

matrices of appropriate dimensions and function f(x) is C1.
The following theorem provides conditions on the weight
function λ(s) such that the states of the interconnected
systems exponentially synchronize.

Theorem 1
Suppose that each system in (25) is C1-semipassive and there
exists a continuous function λ(s) ≥ 0, s ∈ R, such that

P
∂f

∂x
(x) +

∂fT

∂x
(x)P − 2CT Cλ(Cx) < −R ∀x ∈ R

n,

PB = CT . (26)

Then all solutions of the systems (25) interconnected through
integral coupling (5) with λ(s) satisfying (26) are bounded
and satisfy

|x1(t) − x2(t)| ≤ µe−νt|x1(0) − x2(0)|, (27)
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for some constant µ > 0, ν > 0.

Proof: Firstly, since λ(s) is non-negative and each system
in (25) is C1-semipasive, Lemma 1 implies that there is
a constant c∗ > 0 and a radially unbounded nonnegative
function W (x1, x2) such that the set W (x1, x2) ≤ c for
any c ≥ c∗ is compact and positively invariant with respect
to (25), (5). Secondly, notice that the coupling (5) can be
decomposed as

∫ y2

y1

λ(s)ds =

∫ 0

y1

λ(s)ds +

∫ y2

0

λ(s)ds.

Hence, the interconnected systems (25) , (5) can be equiva-
lently written as systems

ẋi = f̃(xi) + Bvi, yi = Cxi, i = 1, 2, (28)

with f̃(x) = f(x) + B
∫ 0

y
λ(s)ds, y = Cx, interconnected

through the coupling

v1 =

∫ y2

0

λ(s)ds, v2 =

∫ y1

0

λ(s)ds. (29)

Notice that

∂f̃

∂x
(x) =

∂f

∂x
(x) − BCλ(Cx).

Since PB = CT , condition (26) implies that f̃(x) satisfies
condition (23) of Lemma 3. By this lemma, system

ẋ = f̃(x) + Bv, y = Cx (30)

is strictly C1-incrementally passive with ∆V (x1, x2) =
(x1−x2)

T P (x1−x2) and ∆W (x1−x2) = (x1−x2)
T R(x1−

x2). Applying Lemma 2 we conclude that any solution of
systems (28) interconnected through (29) is defined and
bounded for t ≥ 0 and the states x1(t) and x2(t) asymp-
totically synchronize. In particular, due to Remark 1, the
convergence is exponential, i.e. (27) holds. �

In the case when one coupling function is set to zero,
the result of the previous theorem remains the same and
synchronization is still achieved. It corresponds to the so-
called controlled master-slave synchronization, which can be
also considered as a variant of the output regulation problem
[4].

Finding λ(s) that satisfies condition (26) is, in general,
not an easy task. In the next result we specify a particular
class of systems for which one can find an explicit formula
for λ(s) satisfying the conditions of Theorem 1. To that end,
consider the following system

ż = q(z, y)

ẏ = p(z, y) + u,
(31)

where y, u ∈ R, z ∈ R
n−1 and the functions q(z, y)

and p(z, y) are continuously differentiable. Notice that this
system is of the form (25) with x = [zT , y]T , f(x) =
[qT , p]T , B = [0T , 1]T and C = [0T , 1].

Theorem 2
Consider system (31). Suppose there exist (n − 1) × (n − 1)
constant matrices Q = QT > 0 and S = ST > 0 such that
the inequality

Q
∂q

∂z
(z, y) +

∂qT

∂z
(z, y)Q ≤ −S (32)

holds for all z, y. Suppose there exists a continuous function
λ(y) ≥ 0 satisfying

λ(y) ≥ ǫ +
∂p

∂y

+
1

2

(

Q
∂q

∂y
+

∂pT

∂z

)T

(S − ǫIn−1)
−1

(

Q
∂q

∂y
+

∂pT

∂z

)

(33)

for all (z, y) and some ǫ > 0 satisfying

S − ǫIn−1 > 0, (34)

where In−1 is the (n−1)×(n−1) identity matrix. Then λ(y)
satisfies (26).

Proof: Choose the matrices P and R in (26) as

P :=

[

Q 0
0 1

]

, R :=

[

ǫIn−1 0
0 2ǫ

]

.

Notice that this P satisfies the equality PB = CT . By
combining all the terms in the first inequality in (26) in the
right-hand side, one can see that for the chosen P = PT > 0
and R = RT > 0 this matrix inequality is equivalent to

J :=

[

A M
MT N

]

≥ 0, (35)

where

A = −Q
∂q

∂z
−

∂qT

∂z
Q − ǫIn−1,

M = −Q
∂q

∂y
−

∂pT

∂z
, N = −2

∂p

∂y
+ 2λ(y) − 2ǫ.

Due to (32), inequality (35) holds if

J̃ :=

[

S − ǫIn−1 M
MT N

]

> 0. (36)

Recall that J̃(z, y) is positive definite if and only if S −
ǫIn−1 > 0 and N − MT (S − ǫIn−1)

−1M > 0. The first
inequality is guaranteed by (34), while the last one holds
due to the choice of λ(y) satisfying (33). �

Function λ(y) satisfying (33) can be found if the right-
hand side of (33) is independent of z or can be bounded from
above by a y-dependent function. Condition (32) guarantees
that zero dynamics of system (31) (i.e. the z-dynamics) are
convergent [12], which implies that for a given function y(t)
all solutions of the system ż = q(z, y) converge to a unique
bounded globally asymptotically stable steady-state solution
determined only by y(t). This property of the zero dynamics
can be considered as a specific minimum phase property of
the overall system (31).

V. CONTROLLED SYNCHRONIZATION OF MULTIPLE

SYSTEMS

In this section we consider k identical systems (1) inter-
connected by the all-to-all integral coupling of the form

ui =

k
∑

j=i,j 6=i

∫ yj

yi

λ(s)ds, i = 1, . . . , k. (37)

The following results are counterparts of the corresponding
results from the two-systems case.
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Lemma 4
Assume that each subsystem in (1) is C1-semipassive with a
radially unbounded storage function Vi. Then all solutions of
the network of k interconnected systems (1), (37) with λ(s) ≥
0 are defined and bounded over the infinite time interval t ≥ 0.

The proof of this lemma follows the same line of reasoning
as the proof of Lemma 1 with the overall storage function

equal to W :=
∑k

i=1 Vi.

Theorem 3
Consider k identical C1-semipassive systems (25). Suppose

there exist P = PT > 0 and R = RT > 0 such that

P
∂f

∂x
(x) +

∂f

∂x

T

(x)P − 2(k − 1)CT Cλ(Cx) ≤ −R,

PB = C⊤.

(38)

Then all solutions of the k interconnected systems (25), (37)
are bounded and satisfy

|xi(t)−xj(t)| ≤ µe−νt|xi(0)−xj(0)|, ∀i, j ∈ {1, 2, . . . , k}

(39)

for some ν > 0, µ > 0.

Proof: Boundedness of solutions follows from Lemma 4.
To prove synchronization of systems’ states let us rewrite
systems (25), (37) as follows:

ẋi = f̃(xi) + Bvi, yi = Cxi, (40)

where f̃(x) = f(x) + (k − 1)B
∫ 0

Cx
λ(s)ds and

vi =

k
∑

j=1,j 6=i

∫ yj

0

λ(s)ds.

Let X1 := col (x1, x1, . . . , x1) and X2 :=
col (x2, x3, . . . , xk). Consider the following incremental
storage function ∆V = (X1 − X2)

T (Ik−1 ⊗ P )(X1 − X2),
where ⊗ denotes the Kronecker product. Then

∆V̇ =2(X1 − X2)
⊤(Ik−1 ⊗ P ) (F (X1) − F (X2))

−

k
∑

i=2

(y1 − yi)
⊤

y1
∫

yi

λ(s)ds,
(41)

where

F (X1) =











f̃(x1)

f̃(x1)
...

f̃(x1)











, F (X2) =











f̃(x2)

f̃(x3)
...

f̃(xk−1)











.

Note that −
k
∑

i=2

(y1 − yi)
⊤

y1
∫

yi

λ(s)ds ≤ 0 since λ(s) ≥ 0 for

all s ∈ R. Then it follows that (38) implies (see, e.g. [12])

2(X1 − X2)
T (Ik−1 ⊗ P ) (F (X1) − F (X2))

≤ −(X1 − X2)
T (Ik−1 ⊗ R)(X1 − X2) < 0.

(42)

This, in turn, implies exponential convergence of X2(t) to
X1(t) and concludes the proof of the theorem. �

Finally, to apply Theorem 3 to systems of the form (31),
one can still use Theorem 2 with the only modification that
in the case of k systems the right-hand side of (33) should
be divided by (k − 1).

VI. EXAMPLE

Let us consider the Hindmarsh and Rose oscillator, which
represents a simplified model of neuron dynamics [14]:

ż1 = c − dy2 − z1

ż2 = ε(m(y + y0) − z2)

ẏ = −ay3 + by2 + z1 − z2 + I + u,

(43)

where y, z1 and z2 represent various states of a neuron
and external stimulation is provided by input u. All other
parameters are positive constants. Analysis of synchroniza-
tion in a network of such oscillators with linear coupling is
presented in [2], [15]. Let us apply the theory developed in
the previous sections and find a nonlinear integral coupling
(5) that guarantees global exponential synchronization of
two identical oscillators (43). It is known that system (43)
is semipassive [2], [15], so there is no need to verify this
condition. Moreover, this system is in the form (31). Let us
find λ(y) ≥ 0 for the integral coupling using Theorem 2.
Condition (32) is satisfied with

Q =
1

2

[

γ 0
0 η

]

, S =

[

γ 0
0 ηε

]

,

where γ and η are arbitrary positive constants. The right-
hand side of inequality (33) is independent of z. Hence we
can find λ(y) ≥ 0 from (33):

λ ≥ ǫ−3ay2+2by+
1

2

(

(1 − γdy)2

γ − ǫ
+

(ηǫm/2 − 1)2

2ηε − ǫ

)

,

(44)

where ǫ > 0 is an arbitrary parameter satisfying ǫ < 2ηε
and ǫ < γ due to (34). Since we want to minimize this gain
function λ(y) (for example, for reducing noise sensitivity),
we get rid of the last component in (44) by choosing η =
2/(mǫ). This results in

λ(y) ≥ ǫ − 3ay2 + 2by +
(1 − γdy)2

2(γ − ǫ)
. (45)

Notice that the right-hand side of (45) is a quadratic function
of y. If we choose if we choose γ > 0 satisfying γ < 6a/d2,
then for all sufficiently small ǫ > 0 the right-hand side of
(45) has a global maximum, which depends on γ. Further
optimization of γ within the set (0, 6a/d2) allows us to
minimize this maximum. This can be done analytically, but
here we have opted for using a simple MATLAB code for
such an optimization. The parameter ǫ should be taken very
small. After finding an optimal γ and choosing a small ǫ, we
define λ(y) as

λ(y) = max

{

0, ǫ − 3ay2 + 2by +
(1 − γdy)2

2(γ − ǫ)

}

, (46)

since λ(y) has to be nonnegative.
For simulations we choose the following values of system

parameters: a = 1, b = 3, c = 1, d = 5, m = 4, I = 3.25,
y0 = 1.618, ε = 0.005 [15]. For these values of parameters
the optimal value of γ (for ǫ = 0) equals γ = 0.2. The
corresponding λ(y) is shown in Figure 1. In fact, as follows
from (45), one can also choose λ(y) to be constant, which
corresponds to conventional linear coupling. As follows from
Figure 1, the lower bound for constant λ that guarantees
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Fig. 1: Nonlinear gain function λ(y).

global exponential synchronization equals 3. This is already
a significant improvement compared to the results from [2],
where such a lower bound is computed to be equal to 10.75
(for the chosen values of parameters).

Still, the main benefit of the nonlinear integral coupling
is the fact that it works like a coupling with a variable
gain. It makes the gain high where necessary (e.g. where
the nonlinearities are severe) and low where it is possi-
ble without compromising synchronization. This is clearly
demonstrated in Figure 2, where simulation results for two
coupled systems starting at the initial states [3, 0, 2]T and
[10, 5, 0]T are presented. The three upper plots depict the
states of the systems, while the lower plot shows the variable
gain g(t) of the nonlinear integral coupling defined as

g(t) =
∫ y2(t)

y1(t)
λ(s)ds/(y2(t)−y1(t)). The gain varies from 3

down to 0.055. The average value of the gain over the final
700s is 1.27. In fact, in a number of simulations performed
for various initial conditions, the average gain computed
over intervals longer than 3000s after synchrony had been
achieved was never higher than 1.3. This value is even lower
than an estimate of the lower bound for the constant coupling
gain that guarantees local exponential synchronization found
in [2], which equals 1.5. As follows from Figure 1, at some
parts of the state space, e.g. when both y1 and y2 lie to
the left or to the right of the parabola in Figure 1, no
coupling is needed at all to maintain convergence of the
system states to each other regardless of the distance between
y1 and y2. This intriguing phenomenon has been observed
in several simulations including one (with system parameters
as in [2]) in which zero-coupling phenomenon occurred not
only in transients, but even on the attractor. Lower gain
means lower sensitivity to noise. This example demonstrates
the advantages of the proposed approach to synchronization
based on nonlinear integral coupling.

VII. CONCLUSIONS

In this paper we have considered the controlled synchro-
nization problem for a class of nonlinear systems. It has
been shown that the proposed nonlinear integral coupling
guarantees global exponential synchronization of two sys-
tems (either unidirectionally or bidirectionally coupled) and
of k systems with the all-to-all interconnection topology. A
systematic procedure for finding such nonlinear couplings in
the integral form is presented. The performance of the pro-
posed method is successfully verified with simulations of two
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Fig. 2: Simulation results: system states and the variable gain g(t).

Hindmarsh-Rose oscillators. Through this case study it has
been demonstrated that the nonlinear integral coupling may
lead to lower (in average) coupling gains while preserving
synchronization. This, in turn, may lead to improved noise
sensitivity characteristics of the overall system.
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