
 

 

Abstract—We propose a synchronization approach to solve a 
problem where multiple unicycle agents are required to follow 
individual reference trajectories while maintaining a time-
varying formation. Motions of the agents are synchronized 
thanks to coupling terms in their feedback control laws. Under 
saturation constraints on the control signals, our control laws 
guarantee global asymptotic zeroing of the synchronization 
errors and global asymptotic stability of the tracking error 
dynamics. For stronger controller couplings, the robustness of 
formation keeping to perturbations is increased. The proposed 
approach is successfully validated in experiments. 
 Index Terms—Tracking control, synchronization, formation 
control, control of non-holonomic systems, input saturation. 

I. INTRODUCTION 

OR multiple nonholonomic agents (autonomous robots or 
vehicles), we propose a synchronization approach to 

solve a problem where the individual agents are required to 
follow predefined trajectories while keeping a desired spatial 
pattern (formation). Our algorithm applies to agents that 
feature nonholonomic kinematics of a unicycle [1]-[8] and 
need to maintain formations that can vary in time. 

Formation control of multi-agent systems is actively stu-
died in the field of cooperative control [3],[4]. Assignment 
of feasible formations, moving into a formation, mainten-
ance of formation shape, and switching between formations 
are some examples of formation-control tasks. There are 
three approaches that are traditionally used for formation 
control, namely, the leader-follower strategy, the behavior-
based approach, and the virtual structure approach. 

The problem of formation control for unicycle-like agents 
is already addressed in the literature, see [2]-[8] and the 
references therein. Formation control with saturation con-
straints on control signals, as studied in [6], is less often in 
the literature, although such constraints are present in prac-
tice, hampering stability and performance of formation con-
trol. Control of time-varying formations of unicycles is rare-
ly found in the literature; reference [2] is just an exception. 

In our previous works [7] and [8], we have studied the 

 
This work has been carried out as part of the FALCON project under the 

responsibility of the Embedded Systems Institute with Vanderlande Indus-
tries as the industrial partner. This project is partially supported by the 
Netherlands Ministry of Economic Affairs under the Embedded Systems 
Institute (BSIK03021) program. 

Manuscript received September 12, 2010. 
 All authors are with the Section Dynamics and Control, Department of 

Mechanical Engineering, Technische Universiteit Eindhoven, 5600 MB, 
Eindhoven, The Netherlands (phone: 31402478332; fax: 31402461418;  
e-mail: {d.kostic, s.adinandra, j.caarls, n.v.d.wouw, h.nijmeijer}@tue.nl).  

problem of motion coordination of unicycle agents. The 
scheme in [7] achieves coordination of two agents under 
certain excitation properties of the reference trajectories; no 
saturation constraints on the control signals are considered. 
The scheme in [8] relaxes the conditions on the excitation 
properties of the reference trajectories and achieves coordi-
nation of multiple agents under saturation constraints on the 
inputs. An algorithm for collision avoidance proposed in [8] 
is applicable with both control schemes. 

In [7] and [8], the coordination is established by mutual 
coupling of motion controllers of the individual agents. 
These couplings are introduced at the level of the tracking 
errors. Although each scheme practically leads to some form 
of formation control, none is derived starting from some 
explicit formation control goal. The mathematical objective 
of both schemes is, in fact, trajectory tracking, so formation 
control is only an implicit consequence of mutual coupling 
of the tracking controllers of the interacting agents. 

In this paper, we contribute a control design for multiple 
unicycle systems which guarantees formation control in 
addition to trajectory tracking. A systematic formation con-
trol design is the key advantage over [7] and [8]. Original 
contributions of this paper are: i) derivation of the general 
synchronization error dynamics for multiple unicycle sys-
tems, ii) a Lyapunov-based design of a saturated feedback 
controller for globally asymptotic stable trajectory tracking 
and globally asymptotic zeroing of the synchronization  
errors, iii) simultaneous trajectory tracking and control of 
time-varying formations where the linear and steering refer-
ence velocities of the individual agents can be mutually 
different, while the steering velocities can even be disconti-
nuous, and iv) experimental verification. 

Mathematical preliminaries are given in Section II. Sys-
tem dynamics are modeled in Section III. An algorithm for 
multi-agent trajectory tracking and formation control is de-
rived in Section IV. Experimental results are shown in Sec-
tion V. Conclusions are given in Section VI. 

II. MATHEMATICAL PRELIMINARIES 

From [8], we recall a lemma and class of saturation func-
tions, as both are used in the control design in Section IV. 

Lemma 1:  Consider a scalar system: 

 , (1) 

where  and  are bounded and uniformly continuous func-
tions of ∈  and ∈ , respectively, such that 0 0 
and 0 if 0. If, for any 0 and any initial 
condition , the solution  is bounded and 

Saturated Control of Time-Varying Formations and 
Trajectory Tracking for Unicycle Multi-agent Systems 

D. Kostić, Member, IEEE, S. Adinandra, J. Caarls, N. van de Wouw, Member, IEEE, 
and H. Nijmeijer, Fellow, IEEE 

F

49th IEEE Conference on Decision and Control
December 15-17, 2010
Hilton Atlanta Hotel, Atlanta, GA, USA

978-1-4244-7744-9/10/$26.00 ©2010 IEEE 4054



 

lim →∞ 0, then 

 lim →∞ 0. (2) 

Proof: See [3]. ∎ 

 Like in [8], we define a class BF ,  of uniformly conti-
nuous and bounded saturation functions indexed by (possi-
bly time-variant) bounded parameters , ∈ R : 

BF , : →  |  is uniformly continuous 
                             and   ∀ ∈ . (3) 

A class S ,  of functions within BF ,  is considered here: 

S , : →  | ∈ BF , ,  0 ≡ 0,

0 for all  0, ≡ 0 . (4) 

An example of a nontrivial, yet simple, function in S ,  is: 

  tanh  . (5) 

III. PROBLEM FORMULATION AND SYSTEM MODELS 

Here, we present a well-known model for unicycle sys-
tems and propose a model of synchronization between these 
systems. The models introduced here are used in Section IV 
for the purpose of control design. 

A. Agent’s Kinematics, Tracking and Coordination Errors, 
 and Control Goal 

We consider formation control of a group of  unicycle 
agents. The kinematics of an agent  ( ∈ 1,2, … , ) is 
described by the following non-holonomic model [1]: 

 cos , 
 sin , (6) 
 , 

where  and  are the linear and steering velocities, res-
pectively,  and  are the planar coordinates of the agent in 
the world coordinate frame, and   is the heading angle rela-
tive to the horizontal axis of the world frame. We define the 
following vectors of the state coordinates: 

 , (7) 
 . (8) 

The reference trajectory of agent  is given by: 

   , ,    , ,   ,   , . (9) 

Feasible reference trajectories satisfying the non-holonomic 
constraint in (6) should satisfy , sin , + , cos , 0. 
For , 0, , 0, the reference linear and steering ve-
locities inducing the reference trajectory are given by 

 , , , , 

, , , , , / , . (10) 

Now, the tracking errors are defined by: 

 , , (11a) 

 , , . (11b) 

The reference trajectories define the desired spatial pattern 
of the agents (formation, such as a platoon). In this pattern, 
the Cartesian distances , , , ∈ 1,2, … , , 

, of the agents change according the desired shape of 
the formation, which may vary in time according to: 

 , , . (12) 

Hence, the formation control objective is to let Cartesian 
tracking errors satisfy the following synchronization goal: 

 →   as → ∞, ∀ , ∈ 1,2, … , ,  . (13) 

Motivated by [9], we define the position synchronization 
error as the difference between two tracking errors: 

 , = ,   , ∈ 1,2, … , ,  . (14) 

Since , , , to achieve the synchronization goal (13) it 
is sufficient to realize 

,  for all ∈ 1,… , 1  and ∈ 1,… , . (15) 

 We point out that the synchronization goal (13) and its 
equivalent (15) do not per se require convergence of the 
individual Cartesian tracking errors  to zero. In other 
words, the robots can maintain the desired formation (i.e. 
properties (13) and (15) can hold) even when each robot 
deviates from its own reference trajectory. 

Our goal is to design control laws for  and  in (6), 
∈ 1,2, … , , such that each agent asymptotically tracks its 

own reference trajectory ,  while maintaining the pre-
scribed spatial pattern (12). Moreover, if the motion of any 
of the agents is perturbed, then the control of the interacting 
agents should be coordinated such as to restore the formation 
(properties (13) and (15) are achieved) even at the cost of 
transient performance of tracking the individual trajectories. 

B. Tracking and Coordination Errors Dynamics 

For the control design, we consider Cartesian tracking  
errors of the agent , ∈ 1,2, … , , represented in its own 
coordinate frame [1]: 

 , , ,   , (16) 

where  is the rotation matrix 

 
cos sin
sin cos

. (17) 

According to [1], the tracking error dynamics is given by: 

 , ,
, cos ,

, sin ,
, (18a) 

 , , , (18b) 

 0 1
1 0

. (18c) 

Considering the errors relative to the coordinate frame of 
the agent itself is convenient because of the appearance of 
the skew-symmetric matrix  in equation (18a). This matrix 
features several properties that facilitate control design using 
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Lyapunov functions that are quadratic in , . For the sake 
of the formation control design, we represent the coordina-
tion errors ,  in the coordinate frame which is rotated about 
an angle  relative to the world coordinate frame: 

 , , . (19) 

Clearly, , ,  since , , . To derive dynamics 
of the errors , , we use the model (18a) and several well-
known properties of the rotation matrix  and the skew-
symmetric matrix  defined by (17) and (18c), respectively: 

 , (20a) 
 , (20b) 

 = , (20c) 

 , (20d) 
 ≡ 0,  ∀ ∈ , (20e) 
 . (20f) 

From (14), (16), (19), and (20b) we can determine: 

, , ,  

           , , . (21) 

The obtained relation between the tracking errors , ,  ,  
and the synchronization error ,  facilitates the derivation of 
the synchronization error dynamics: 

,   , ,   

              , cos ,

, sin ,
  ,    

               ,
, cos ,

, sin ,
  

       , ,   

           , cos ,

, sin ,

, cos ,

, sin ,
.  

By substituting (21) into the last expression, we finalize the 
model of the synchronization error dynamics: 

, ,
, cos ,

, sin ,
  

           
, cos ,

, sin ,
. (22) 

The derived model features the same property as (18a): the 
skew-symmetric matrix  premultiplies the vector of states 

, . This property is a direct consequence of representing 
the synchronization error ,   in the coordinate frame rotated 
about  relative to the world frame. The appearance of 
the term ,  in (22) encourages a Lyapunov-based design 
of a formation controller using a Lyapunov function candi-
date which is quadratic in , . 

IV. CONTROL DESIGN 

Here, we propose control laws for simultaneous trajectory 
tracking and formation control of  unicycle agents. In par-

ticular, we search for time-varying state-feedback control 
laws for  and , ∈ 1,2, … , , that achieve global 
asymptotic stability of the tracking error dynamics (18) and 
global asymptotic convergence to zero of the synchroniza-
tion errors whose dynamics are described by (22). We aim to 
achieve these goals under the input saturation constraints: 

 , ,   | | , ,  ∀ 0. (23) 

Here, ,  and ,  are given positive constants. To 
solve this problem, we propose the following control law: 

, cos ,  
, ,   , (24a) 

, , ,   ,   

                      ,
,

,

 
, (24b) 

where ,  and  are the scalar functions defined by 

, ∑ , , , (25) 

  

∑ , , ∑ ∑ , , , .

  (26) 

Here, , ,   , , , ,   , , , , and ,  are the  
design parameters, while 

, ,  and 
, ,  are 

the saturation functions from the class S ,  defined by (4). 
The parameters ,  and   ,  define ranges of the 
corresponding saturation functions and both can be chosen 
as time-dependent. A rational behind time-dependency is 
explained at the end of this section. The parameters ,  , ,  
and  are the gains of the control terms that take care of 
tracking the reference trajectories of the individual agents. 
The parameter ,  is a coupling gain, and it appears in the 
control terms that take care of synchronization between the 
interacting agents, as defined by (13). The gain  normalizes 
the last term in (24b) to [0,  , ]. 

In this paper, we consider only the case where all interact-
ing agents are mutually coupled with identical coupling 
gains, i.e. , , 0, ∀ , ∈ 1,2, … , , . It is not 
difficult to modify the control law (24) such as to cover 
scenarios with non-equal coupling gains including the coupl-
ing gains equal to zero (distributed control). Such scenarios 
will be studied in the future. 

In the following theorem, we use Lyapunov stability 
theory to prove that the control law (24) leads to global 
asymptotic stability of the tracking error dynamics (18),(24) 
and global asymptotic convergence of the synchronization 
errors, obeying dynamics (22),(24), to zero under the input 
saturation constraints (23). Global asymptotic convergence 
of the synchronization errors implies realization of the syn-
chronization goal formulated by (13). 

Theorem 1: Consider a group of  unicycle agents with 
the kinematics of the agent , ∈ 1,2, … , , described by 
(6). Suppose that the reference trajectory of agent  is given 
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by (9), and this trajectory satisfies the non-holonomic con-
straint , sin , + , cos , 0. Consider the control 
laws (24a,b) with r,  and ,  as in (10) and the design  
parameters satisfying: 

, , , , , , , , , ∈ , (27a) 

, ;   ∈ , (27b) 

, , , , (27c) 

, , ω , , , (27d) 

where , ∈ 1,2, … , , , ∈ 0,∞ . Moreover, for all 
∈ 1,2, … ,  we adopt the following assumptions: 
 , (t) is nonzero, bounded ∀ ∈ 0,∞ ,  and uniformly 

continuous; 
 ,  is bounded ∀ ∈ 0,∞ ; 
 for given input constraints , , , ∈ , we have 

r, ,  and , , , ∀ ∈ 0,∞ . 

Then, the following two statements are valid: 

1. the tracking error dynamics (18a,b) are globally asymp-
totically stable for all ∈ 1,2, … , ; 

2. the synchronization errors ,  defined by (21) and 
satisfying dynamics (22) with , ∈ 1,2,… , , ,  
globally asymptotically converge to zero, i.e. 
lim → , → 0 0 , 

while the actuator constraints (23) are respected for all 
∈ 1,2, … , . 

Proof: Consider a positive definite and proper Lyapunov 
function candidate: 

∑ , , ∑ ∑ , , ,   

        0.5∑ , , (28) 

where , , , ∈  are constant design parameters, 
, ∈ 1,2,… , , . Having in mind (25), (26), by diffe-

rentiating  along the solutions of the closed-loop system 
(18), (22), (24) with , ∈ 1,2, … , , , we obtain 

∑ , , ∑ ∑ , , ,   

            ∑ , ,   

∑ , ,
, cos ,

, sin ,
  

           ∑ ∑ , , ,   

           , cos ,

, sin ,

, cos ,

, sin ,
  

           ∑ , ,   

∑ , ∑ , ,
, cos ,

, sin ,
  

          +∑ , ,  

∑ , ,  

, sin ,

  

           +∑ , , ,   , ,
,

,

 
  

∑
, , , , , , 0, (29) 

where we used (20e) and (27b). The last inequality in (29), 
which follows from properties of functions 

,
, 

,
 from 

the class S ,  defined by (4), implies that the tracking error 
dynamics in (18), in terms of the tracking errors , , 

, , , , ∈ 1,2, … , , are stable. By virtue of (21), 
the synchronization errors ,  are uniformly bounded for all 
, ∈ 1,2,… , , , over ∈ 0,∞ . It remains to prove 

the global asymptotic convergence of both the tracking and 
synchronization errors to zero. 
 From the last inequality in (29), we can determine 

0 d ∑
, , d   

                           , , , , d , (30) 

which, having in mind that  is nonnegative (i.e. lower 
bounded by zero), implies that the integrals at the right-hand 
side in (30) exist and are finite. Since by definition (4), both 

, ,  and , , , ,  are 

non-negative, then for all , ∈ 1,2, … , , ,  we have 

, , ∈ 0,∞  and  , , , , ∈ 0,∞ . 

Since 
 , (t), ,  and ,  are solutions of the continuous 

error dynamics (18a,b), 
 ,  is solution of the continuous error dynamics (22), 
  is solution of the continuous system (6), 
  and  are continuous functions of , ,   , ,

,  and  according to (25), 
  is by assumption uniformly continuous over 

∈ 0,∞ , 
 the systems (6), (18a,b) and (22) are all excited with con-

trol inputs (24a,b) depending on uniformly continuous 
functions , , ,  and bounded functions 

r,  and r, , 
we can conclude that for all ∈ 1,2, … ,  

, ,  and , , , ,  must 

be uniformly continuous over ∈ 0,∞ . With the help of 
Barbălat’s lemma [10], we get 

       lim
→

∑
, ,  

   , , , , 0, (31) 

implying 

lim →∞ | | , 0,  ∀ ∈ 1,2, … , . (32) 

It remains to prove 

 lim →∞ ,
0
0

,  ∀ ∈ 1,2, … , , (33) 

which will, according to (21), imply 

 lim →∞ , ,  ∀ , ∈ 1,2, … , , . (34) 
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From the closed-loop system (18b), (24b) we obtain: 

, , , ,
,

,

, . (35) 

Since (32) implies lim →∞ , 0, a direct application of 
the Lemma 1 to (35) results in: 

 lim →∞
,

,

, 0. (36) 

Since in the theorem every ,  is assumed to be nonzero 
∀ ∈ 0,∞ , and using the fact that 0 ∞ for all 
∈ 0,∞ , we can conclude that 

 lim →∞ 0,  ∀ ∈ 1,2, … , . (37) 

Note that expressions (31) and (35) do not depend on 

, . Consequently, uniform continuity of ,  is not 
required to guarantee (34) and (37). 
 From (25), (32) and (37), we find for all ∈ 1,2, … , : 

 lim → , ∑ , , . (38) 

If we insert expression (21) into (38) and apply properties 
(20a) and (20b), we obtain: 

lim → 1 ∑ , ,   

                     ∑ , , .  (39) 

Having in mind assumption (27b), we can define gain  as: 

 ,

∑ ,
 . (40) 

Since a multi-agent system implies 2, and since accord-
ing to (27b) we have 0, then the following is guaranteed: 

   and  0. (41) 

Now, we can rewrite (39) as follows: 

lim → , ∑ , .  

By taking all ∈ 1,2, … ,  into account, we can rewrite the 
previous expression as follows: 

 lim → , (42) 

where ∈  is a square symmetric matrix given by 

, , … ,   
⋯

⋯
⋮ ⋮ ⋱ ⋮

⋯

, 

  (43)  

 , , ⋯ , . (44) 

Although  depends on , … , its determinant is  

always constant: 

 1 1 . (45) 

Expression (45) is derived from (43) by means of mathemat-
ical induction, starting from 2, using the well-known 
property (46) for matrices ∈ , ∈ , ∈ , 
∈   with 0: 

 . (46) 

Having in mind (41), in other words that all coupling gains 
,  satisfy (27b), from (45) we conclude that 0 

for 2. Then, from (42) it follows that property (33) must 
hold. Consequently, property (34) is also satisfied. By virtue 
of (14), (15) and (19), the fulfillment of property (34) im-
plies achievement of the synchronization objective (13). 
 Selection of the design parameters according to (27c,d) 
trivially ensures that the control inputs (24a,b) fulfill (23).  ∎ 

We point out that our control design leads to globally 
asymptotically stable trajectory tracking error dynamics and 
the global asymptotic convergence of the synchronization 
errors to zero, even if ,  is discontinuous (yet bounded). 

The design parameters in (24a,b) offer high freedom in 
tuning the transient behavior of the closed-loop system. 
During periods of slower movements, we can allow high-
gain feedback by increasing the time-varying parameters ,  
and , , without violating the constraints (23). Higher gains 
can improve the tracking performance at low velocities, 
especially if an agent is subject to disturbances (e.g., friction 
on the robot wheels, noise in the feedback signals). If the 
individual agents suffer from perturbations, by means of the 
strictly positive coupling gain , see (27b), the controller 
(24a,b) mediates between tracking of the reference trajecto-
ries of the individual agents and keeping of the formation. 
Higher  increases interactions among the agents and  
improves robustness of the formation keeping against per-
turbations. This will be illustrated in the next section.  

V. EXPERIMENTAL CASE-STUDY 

 To illustrate the results presented so far, we conduct expe-
riments using four mobile robots (model E-puck [11]). The 
reference trajectories , ,   ∈ 1,2,3,4 , are chosen such 
that the robots form a platoon-like formation. The platoon of 
robots makes a round trip along an ellipse. The desired mu-
tual Cartesian distances , , , , , , , ∈

1,2, … , , , vary in time along an ellipse. The refer-
ence robot paths are depicted in Fig. 1 with the solid lines. 

For , ∈ 1,2,3,4 , , we use , 0.1 m/s, 

, 1.7 rad/s and the controller (24a,b) with the satu-
ration function defined by (5b), , 10, 

, 1, , , , , , 0.4, and ,

2. Time-varying feedback gain ,  is higher at lower 
velocities, which increases robustness against disturbances 
(e.g. friction) at these velocities without violating the con-
straints in (23). The design parameters are tuned such as to 
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demonstrate that in the absence of perturbations four robots 
asymptotically track their own reference trajectories, while, 
if subject to perturbations, the robots prefer to maintain the 
prescribed formation at the cost of the tracking performance. 
The emphasis on formation keeping is achieved by choosing 
a relatively strong coupling coefficient of  2. 

 
Fig. 1. Reference (solid) and actual (dotted) robot paths in the experiment; 
the initial and terminal positions are coinciding and are indicated with ‘’. 

To practically verify formation keeping, during the expe-
riment we manually perturbed the formation two times, by 
repositioning robots 2 and 1 at time instants 20 s and 41 s, 
respectively. The actual robot paths are depicted in Fig. 2 by 
the dotted lines. Each time a robot is repositioned, the other 
ones start moving away from their reference trajectories 
aiming to restore the prescribed platoon-like formation. 
After recovering the formation, the robots continue tracking 
their own reference trajectories. As an illustration, in Fig. 2 
we show the tracking errors defined by (11a,b) together with 
errors in keeping the formation  , ∆ , , ∆ , . 

 
Fig. 2. Experimentally measured tracking errors (ex,i, ey,i, e,i ) and errors in 

keeping the formation i,j; the vertical dashed lines identify finishing of 
transients of the formation errors. 

Here, ∆ , ,  and ∆ ,  are the reference and actual Euclidean 
distances between robots  and , respectively: 

 ∆ , , (47) 

, ∈ 1,2,3,4 , . A closer inspection of Fig. 2 confirms 
that the transients of the formation errors are faster than the 
transients of the tracking errors: after perturbations, the  
robots first restore the desired formation and then converge 
to their reference trajectories. This property is gained by 
introducing the synchronization errors in the control law 
(24a,b). If formation keeping is more important than tracking 
the reference trajectories of the individual robots , then a 
higher value of the coupling gain  is needed; a lower value 
of  is used if the trajectory tracking has the priority. 

VI. CONCLUSIONS 

We propose a synchronization approach to formation con-
trol of multiple nonholonomic agents. In addition to tracking 
their own reference trajectories, the interacting agents syn-
chronize their motions such as to maintain the desired time-
varying formation. We define synchronization errors as 
difference position errors between every pair of the interact-
ing agents and derive a model describing the synchronization 
error dynamics. This model facilitates a Lyapunov-based 
design of the synchronization controller. Herewith, we de-
rive a controller which leads to global asymptotic stability of 
the tracking errors dynamics and global asymptotic conver-
gence of the synchronization errors to zero, under saturation 
constraints on the control inputs of the individual agents. 
The reference linear and steering velocities of the individual 
agents can all be different, while the steering velocities can 
even be discontinuous. Experimental results verify quality of 
the proposed approach. 

REFERENCES 
[1] Y. Kanayama, Y. Kimura, F. Miyazaki, T. Noguchi, “A Stable Track-

ing Control Method for an Autonomous Mobile Robot,” IEEE Conf. 
Rob. Automat., pp. 384–389, Cincinnati, OH, 1990. 

[2] E.W. Justh, P.S. Krishnaprasad, “Equilibria and Steering Laws for 
Planar Formations,” Sys. Contr. Lett., Vol. 52, No. 1, pp. 25-38, 2004. 

[3] Y.Q. Chen, Z. Wang, “Formation Control: a Review and a New Con-
sideration,” IEEE/RSJ Int. Conf. Int. Robots and Systems, pp. 3181-
3186, Alberta, Canada, 2005. 

[4] K.Y. Pettersen, J.T. Gravdahl, H. Nijmeijer, Eds. Group Coordination 
and Cooperative Control. Springer-Verlag, London, 2006. 

[5] C. Yoshioka, T. Namerikawa, “Formation Control of Nonholonomic 
Multi-vehicle Systems Based on Virtual Structure,” 17th IFAC World 
Congress, pp. 5149-5154, 2008. 

[6] L. Consolini, F. Morbidi, D. Prattichizzo, M. Tosques, “Stabilization 
of a Hierarchical Formation of Unicycle Robots with Velocity and 
Curvature Constraints,” IEEE Trans. on Robotics, Vol. 25, No. 5,  
pp. 1176-1184, 2009. 

[7] T.H.A. van den Broek, N. van de Wouw, H. Nijmeijer, “Formation 
Control of Unicycle Mobile Robots: a Virtual Structure Approach,”  
IEEE Conf. Dec. Control, pp. 3264-3269, Shanghai, China, 2009. 

[8] D. Kostić, S. Adinandra, J. Caarls, H. Nijmeijer, “Collision-free 
Motion Coordination of Unicycle Multi-agent Systems,”  
American Control Conf., pp. 3186-3191, Baltimore, USA, 2010. 

[9] D. Sun, C. Wang, W. Shang, G. Feng, “A Synchronization Approach 
to Trajectory Tracking of Multiple Mobile Robots While Maintaining 
Time-Varying Formations,” IEEE Trans. on Robotics, Vol. 25, No. 5, 
pp. 1074-1086, 2009. 

[10] V.M. Popov, Hyperstability of Control Systems, Springer-Verlag, 
Berlin, 1973. 

[11] F. Mondada, M. Bonani, E-puck education robot, www.e-puck.org 

4059


