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Abstract— In this paper, we tackle the position tracking
problem in a robotic tele-operation setup in the presence of
perturbations. In order to cope with the disturbance we devel-
oped a new disturbance observer. The estimation algorithm
uses only position and velocity information and we study
the estimation error dynamics in the face of constant and
nonconstant exogenous perturbation signals. The disturbance
estimator is used in a trajectory tracking controller to improve
the performance of the position tracking between the master
and the slave robot. The algorithm is tested in simulation on a
tele-operation system with two two-link robots.

I. INTRODUCTION

One of the challenges which is still unsolved in tele-

operations is the tracking of the motion of the master

robot when the slave is subject to perturbations. In recent

years, with the development of robot technology, research on

improving the tele-operation performance to achieve better

accuracy and higher speed of operation has received a lot

of attention. The main challenge to reach this goal is to

deal with the difficulties introduced by disturbances, without

adding extra sensors which would increase the price of the

setup or would even not be possible to install.

Many approaches for disturbance rejection exist. Here we are

just recalling some of the algorithms which have been shown

to perform well. Reference adaptive control ([1]) ensures

that the dynamics of a real robotic manipulator is similar

to that of a nominal model. However, this type of algorithm

requires a large computational effort to determine the control

law. Another approach is to use a Kalman filter to reject

disturbances modeled as stochastic models ([2],[3]). Robust

controllers such as those based on H∞ ([4],[5]) and sliding

mode control ([6],[7]) are also powerful methods to deal with

disturbances.

Another method which has been successfully applied to

many robotic applications is employing disturbance ob-

servers ([8],[9],[10],[11]). The main idea of a disturbance

observer (DOB) is to estimate the perturbation by comparing

the control input to the real system with the virtual control

input to a nominal system. The virtual control input is

obtained by the system output response filtered through the

inverse dynamics of the nominal model. The estimate of

the perturbation is fed back as a compensation signal and
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makes the whole system behave as the nominal system. One

can easily see the reason why disturbance observers are so

appealing: namely their potential high performance and the

fact that there is no need for additional sensors. Disturbance

observers have been developed both for linear and nonlinear

systems. In the linear case, a DOB algorithm together with

a perturbation compensation is designed to produce robust

plant behavior by rejecting the perturbation within certain

frequency ranges. The algorithm employs an inverse of the

dynamics of the nominal model of the robot and a low-

pass filter ([12]). The main issues with this method are the

use of a low-pass filter for which optimization techniques

are used to compute the parameters, which means an extra

computational burden, and the fact that the method can only

be applied to minimum-phase models. As robot dynamics

are highly nonlinear, a more appropriate approach is to

use nonlinear disturbance observers. Unfortunately, there are

only few nonlinear control schemes using a DOB for which a

rigorous stability proof is available ([13],[14],[15],[16],[17]).

In [13], a nonlinear disturbance observer is introduced for a

two-link robot manipulator. An extension to this result is

given in [15] for an n-link manipulator. In both cases, the

results consider only constant disturbances. In this paper,

we extend these results, by designing a more generic new

nonlinear disturbance observer. Similar to [15], we also do

not use acceleration information for disturbance estimation.

Moreover, we analyse the stability of the estimation error

dynamics for both constant and nonconstant disturbances.

Next, this estimator is used in a controller scheme solving

the trajectory tracking problem for a robotic tele-operation

setup. An ultimate bound on the tracking error given a bound

on the disturbance is determined using the stability concept

of the input-to-state stability property ([18]). more precisely,

this approach provides theoretical ultimate bounds on the

tracking error given the bounds on disturbance signal and its

time-derivate.

This article is structured as follows; in Section II, we recall

some mathematical concepts related to the input-to-state

stability property. In Section III, the tele-operation setup

and the related tracking problem are presented. A new

nonlinear disturbance observer is introduced in Section IV.

This nonlinear DOB is used afterwards in Section V to

solve the tracking problem for a tele-operation setup. A

comprehensive stability proof for the tracking and estimation

problem are also given. In Section VI, the theoretical results

introduced in the previous sections are tested in simulation

on a tele-operation setup consisting of two two-link robotic

manipulators. A comparison of the tracking controller with
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and without the disturbance observer shows the usefulness

of the estimation of the perturbation. In the final section,

we present the conclusions and offer some perspectives for

future research.

II. PRELIMINARIES

In this section, we recall some definitions and results con-

cerning the property of input-to-state stability as introduced

by Sontag in [18], see also [19]. The input-to-state stability

property of nonlinear systems is exploited in the proof of the

main result of this article.

Consider the general nonlinear system:

ẋ(t) = f (x(t),u(t)), x(0) = x0, (1)

with solutions ϕ(t,x0,u), where f : R
n ×R

m →R
n is contin-

uously differentiable.

Definition 1: The set of all the measurable locally

bounded functions u : R
+ → R

m, endowed with the supre-

mum norm sup{|u(t)|,t ≥ 0} < ∞ is denoted as Lm
∞.

Definition 2: A function γ : R
+ →R

+ is called a class K -

function, i.e. γ ∈ K , if it is continuous, strictly increasing

and γ(0) = 0.

A function γ : R
+ → R

+ is called a class K∞-function if

γ ∈ K and γ(s) → ∞ as s → ∞.

A function β : R
+×R

+ →R
+ is a class K L -function if for

each fixed t ≥ 0, β (·,t)∈K and for each fixed s ≥ 0, β (s,t)
is decreasing with respect to t and β (s,t) → 0 as t → ∞.

Definition 3: [18] System (1) is input-to-state stable (ISS)

if there exists a function β ∈ K L and a function γ ∈ K∞

such that, for each input u ∈ Lm
∞, all initial conditions x0 and

for all t ≥ 0 the following inequality holds:

|ϕ(t,x0,u)| ≤ β (|x0|,t)+ γ( sup
0≤τ≤t

|u(τ)|). (2)

Definition 4: [18] A smooth function V : R
n →R is called

an ISS Lyapunov function for system (1) if there exist

functions α1,α2 ∈ K∞, α3,χ ∈ K such that

α1(|x|) ≤V (x) ≤ α2(|x|) (3)

and

|x| ≥ χ(|u|) ⇒
∂V (x)

∂x
f (x,u) ≤−α3(|x|) (4)

hold for any x ∈ R
n and u ∈ R

m.

Based on the existence of an ISS Lyapunov function satisfy-

ing (3) and (4), functions β and γ for which (2) is satisfied

can be constructed, as is explained in the following result,

which is introduced in [18] and [20].

Theorem 1: If an ISS Lyapunov function exists for system

(1), then the system (1) is input-to-state stable with β (·,t) =
α−1

1 ◦µ(α2(·),t) (where ◦ is the function composition oper-

ator) and γ = α−1
1 ◦α2 ◦ χ , where µ is the solution of the

differential equation:

d

dt
µ(r,t) = −α3 ◦α−1

2 (µ(r,t)) (5)

with the initial condition µ(r,0) = r.

qm

d

q
TTCΣ

M Σ
FH τ

Fig. 1. Tele-operation Setup.

III. PROBLEM STATEMENT

In the sequel, we consider the problem of tele-operation of

a slave robotic device in the presence of external disturbances

(see Figure 1, where ΣM and Σ are the models for the

master and the slave robot, respectively, qm and q are the

position vectors of the master and the slave robot, TTC is

the trajectory tracking controller which delivers the motor

torque τ required for the motion tracking of the master by

the slave robot, FH is the human force acting upon master

robot and d is the disturbance signal). Consider the following

nonlinear dynamic equations of motion of the master:

Mm(qm)q̈m +Cm(qm, q̇m)+ fm(qm, q̇m)+ gm(qm)
= JT

m(qm)FH ,
(6)

and the slave manipulator:

M(qs)q̈s +Cs(qs, q̇s)+ f (qs, q̇s)+ gs(qs) = τ + d, (7)

where qi ∈ R
n and q̇i ∈ R

n are the generalized coordinates

and the generalized velocities, respectively, Mi(qi) is the iner-

tia matrix, Ci(qi, q̇i) is the matrix containing the centripetal

and Coriolis terms, fi(qi, q̇i) represents the frictional term,

gi(qi) contains the gravity terms, with i ∈ {m,s} designating

the master and the slave manipulators respectively. Moreover,

JT
m(qm) is the Jacobian of the master model, FH is the human

force acting at the end-effector of the master robot, τ ∈R
n is

the vector of actuator torques of the slave robot and d ∈ R
n

is the vector of disturbances acting upon the slave robot. A

key assumption made here is that the disturbance can not be

measured, which is realistic in many practical tele-operation

setups.

For simplifying the notation in the sequel, we are identifying

the vector of generalized coordinates of the slave manipulator

qs by q, unless stated otherwise.

The goal of this paper is to design a controller which ensures

that the system output vector q (generalized coordinates of

the slave) is tracking a trajectory qm (generalized coordinates

of the master), which is generated by a master robotic device

actuated by a human operator.

In order to solve the tracking problem for a nonlinear slave

system subject to exogenous perturbations, we propose to

decompose the control strategy for the slave robot in two

parts (see Figure 2):

1) a nonlinear disturbance observer (NDOB) that esti-

mates the perturbation signal;

2) a tracking controller (TTC) that uses the estimated

disturbance to achieve high-performance tracking of

the master trajectory.
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Fig. 2. Tele-operation Setup with Disturbance Observer.

IV. NONLINEAR DISTURBANCE OBSERVER

In this section, we introduce a new nonlinear disturbance

observer which extends a result developed in [13] and [15].

Let us consider the nonlinear system (7). An expression for

the disturbance vector can be given as follows:

d = M(q)q̈+C(q, q̇)+ f (q, q̇)+ g(q)− τ. (8)

Therefore, similar to [13], we propose to use the following

disturbance estimator:

˙̂
d = −Ld̂ + L(M(q)q̈+C(q, q̇)+ f (q, q̇)+ g(q)− τ), (9)

where d̂ ∈ R
n is the estimated disturbance vector and L ∈

R
n×n is an estimation gain matrix.

The estimator (9) requires knowledge of the acceleration

signal q̈. Since obtaining measured acceleration information

is a difficult task in most robotic setups, we propose to avoid

this problem by introducing the variable:

δ = d̂ − p(q, q̇). (10)

Note that unlike the work in [15], we allow the function p

to depend also on the position variables q. With respect to

the result introduced in [15], where the function p is only

velocity dependent, the more general function p(q, q̇) will

provide an easier assessment of the stability of the system

for nonconstant disturbance signals.

If we differentiate equation (10) with respect to time, we

obtain:
˙̂

d = δ̇ +
∂ p(q, q̇)

∂q
q̇+

∂ p(q, q̇)

∂ q̇
q̈. (11)

Let us now design p(q, q̇) such that it satisfies

∂ p(q, q̇)

∂ q̇
= LM(q), (12)

which means that p(q, q̇) should be of the form

p(q, q̇) = LM(q)q̇ + r(q). (13)

Consequently, we then have

∂ p(q, q̇)

∂q
= L

∂M(q)q̇

∂q
+

∂ r(q)

∂q
. (14)

Substituting equations (11), (12) and (14) in the expression

of the disturbance observer (9) and, subsequently, evaluating

the dynamics in terms of the variable δ as defined in (10)

gives:

δ̇ = −Lδ −
(

L
∂M(q)

∂q
q̇+ ∂ r(q)

∂q

)

q̇+

+L(C(q, q̇)+ f (q, q̇)+ g(q)− τ− p(q, q̇))
. (15)

Expression (15), together with the output equation d̂ = δ +
p(q, q̇) now represents the nonlinear disturbance observer,

where the disturbance estimation is based only on position

and velocity information. One can notice that in the expres-

sion (13), which defines the function p(q, q̇), the function

r(q) is freely assignable.

Let us now study the stability and the performance of the

nonlinear disturbance observer in the face of nonconstant

perturbations d.

A. Stability Analysis

In this section, we study the error dynamics of the dis-

turbance observer (9) applied on the system (7). Define the

disturbance error ed = d − d̂. Using (7), (10), (11)-(15), we

can construct the following estimation error dynamics:

ėd = −Led + ḋ. (16)

Contrary to other nonlinear disturbance observers ([13],[15]),

we do not restrict ourselves to the case of constant dis-

turbances ḋ = 0, which in most practical cases is a false

assumption. For this reason, in the sequel we study the input-

to-state stability (ISS) of the system (16) with respect to the

input vector u = ḋ.

To guarantee stability of the error dynamics, the estimation

gain matrix L is designed such that −L is a Hurwitz matrix.

One can see that due to the choice of the matrix L, system

(16) is a stable linear system with the solution:

ed(t) = e−Lted(0)+

∫ t

0
e−L(t−θ)ḋ(θ )dθ . (17)

Using simple linear system theory, we can derive that:

lim
t→∞

|ed(0)e−Lt | = 0, (18)

because −L is a Hurwitz. The steady-state error is also

ultimately bounded by:

lim
t→∞

|ed(t)| ≤ c sup
t∈(0,∞]

|ḋ(t)|, (19)

where c =
∫ ∞

0 ‖e−Lt‖dt.

V. TRACKING CONTROLLER

In this section, we design a trajectory tracking controller

for system (7) using the disturbance estimation d̂ provided by

the nonlinear disturbance observer (15) with d̂ = δ + p(q, q̇).
Given the master trajectory qm, let us define the position

tracking error e = q−qm. Consider the following trajectory

tracking controller (TTC):

τ = C(q, q̇)+ f (q, q̇)+ g(q)− d̂ + M(q)(q̈m − p1ė− p2e) ,
(20)

where p1 and p2 are feedback gain matrices.

Now, we derive the tracking error dynamics by substituting

relation (20) in expression (7):

ë + p1ė + p2e = M−1(q)ed . (21)

Define the new vector variable x = [ e ė ]T and the matri-

ces:

A =

[

0n In

−p1 −p2

]

, (22)
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and

B =

[

0n

In

]

, (23)

where 0n and In are the zero and identity matrices of size

n× n, respectively. We also introduce the new input vector

v = M−1(q)ed . Using these definitions, the tracking error

dynamics in (21) can be rewritten as:

ẋ = Ax + Bv, (24)

with A and B as in (22) and (23), respectively.

As the matrix A is defined by gain matrices p1 and p2, we

can design it to be Hurwitz, i.e. there exist a positive definite

matrix P = PT > 0 and a scalar ε > 0 such that:

AT P + PA < −εP. (25)

Let us choose the following candidate ISS Lyapunov function

V = xT Px. The time-derivative of V along solutions of (24)

is:

V̇ = xT (AT P+ PA)x + 2vTBT Px ≤−εxT Px + 2vT BT Px.
(26)

Using simple matrix inequality manipulation, one can con-

clude that:

V̇ ≤−εβV +

(

−ε (1−β )V + λ2

(

α|Bv|2 +
1

α
|x|2
))

,

(27)

for ∀α > 0, β ∈ (0,1) and λ2 = max{eig(P)}. From relation

(27) the following implication is derived:

|x| ≥

√

λ2α

(1−β )ελ1−λ2/α
|v| ⇒ V̇ ≤−εβV, (28)

with λ1 = min{eig(P)}. Note that α should be chosen such

that (1−β )ελ1−λ2/α > 0.

Let

ρ :=

√

λ2α

(1−β )ελ1−λ2/α
.

Then we can define according to Definition 4 the functions:

α1(r) = λ1r2, (29)

α2(r) = λ2r2, (30)

α3(r) = εβ r, (31)

χ(r) = ρr. (32)

Since the conditions for Theorem 1 are fulfilled, we can

conclude that the system (21) is ISS with respect to the

input v, with the ISS property as in (2) characterized by

the functions:

β (r,t) =

√

λ2

λ1

|x(0)|e−
εβ
2 t , (33)

and

γ(r) =

√

λ2

λ1

ρr. (34)

Assumption 1: The matrix norm |M(q)| is bounded from

below, i.e. ∃µ > 0 such that |M(q)| ≥ µ , ∀q ∈ R
n.

This assumption is valid in all robotic setups since it means

that there are no mass-less system components.

The norm |v| =
∣

∣M−1(q)ed

∣

∣ ≤
∣

∣M−1(q)
∣

∣ |ed | is dependent

on
∣

∣M−1(q)
∣

∣, but according to Assumption 1 |M(q)| ≥ µ ,

∀q ∈ R
n, then |M−1(q)| ≤ 1/µ , ∀q ∈ R

n. Thus, we can

conclude that |v| ≤ |ed |/µ .

Since the force estimation error dynamics (ed) is ISS with

respect to the input ḋ and the tracking error dynamics (e) is

ISS with respect to the input v, we use the result introduced

by [21] concerning the series connection of ISS systems to

conclude that the closed-loop system from Figure 2 with the

controller T TC and nonlinear disturbance estimator NDOB

is ISS with respect to the input ḋ.

Moreover, using convergence of the linear stable system

describing the disturbance estimation error dynamics and the

convergence manifolds determined for the trajectory tracking

errors, we obtain the following bounds on the tracking error:

|e(t)| ≤ β (|e(0)|,t)+ γ( sup
0≤τ≤t

|v(τ)|), (35)

and the increasing monotony of function γ given in ()34, we

can conclude that:

lim
t→∞

|e(t)| ≤ lim
t→∞

γ(
c

µ
sup

0≤τ≤t

|ḋ(τ)|), (36)

which provides an ultimate bound for the tracking errors with

respect to the time-derivative of the perturbation.

Remark 1: Relation (36) provides a quantitative guideline

for designing the gain matrices L, p1 and p2, such that

limt→∞ |e(t)| is small and satisfies tracking performance

specifications given bounds on the time-derivatives of the

disturbance.

Remark 2: For the case of constant disturbances d (i.e.

ḋ = 0), we can guarantee perfect disturbance estima-

tion (limt→∞ ed(t) = 0), see (19), and perfect tracking

(limt→∞ e(t) = 0), see (36).

VI. SIMULATION RESULTS
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l
2
,m

2
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Fig. 3. A two-link robot.
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In this section, we will apply the algorithm proposed in

the previous section to a tele-operation setup consisting of

two two-link robots in the horizontal plane, see Figure 3. We

assume that the links are rigid and the joints are frictionless.

The dynamics of two robots can be described by:

Mi(qi)q̈i +Ci(qi, q̇i) = τi + di, (37)

where Mi(qi) = [ M1
i M2

i ] with i ∈ {m,s} distinguishing

between the dynamics of the master and the slave robot,

respectively:

M1
m(qm) =

(

Jm,1 + mm,1
l2
m,1

4
+ mm,2l2

m,1

mm,2lm,1
lm,2

2
cos(qm,2 −qm,1)

)

, (38)

M2
m(qm) =

(

mm,2lm,1
lm,2

2
cos(qm,2 −qm,1)

Jm,2 + mm,2
l2
m,2

4

)

, (39)

Cm(qm, q̇m) =

(

−mm,2lm,1
lm,2

2
q̇2

m,2sin(qm,2 −qm,1)

mm,2lm,1
lm,2

2
q̇2

m,1sin(qm,2 −qm,1)

)

,

(40)

M1
s (qs) =

(

Js,1 + ms,1l2
s,1/4 + ms,2l2

s,1 + ml2
s,1

(ms,2ls,1ls,2/2 + mls,1ls,2)cos(qs,2 −qs,1)

)

,

(41)

M2
s (qs) =

(

(ms,2ls,1ls,2/2 + mls,1ls,2)cos(qs,2 −qs,1)
Js,2 + ms,2l2

s,2/4 + ml2
s,2

)

,

(42)

Cs(qs, q̇s) =

(

−(ms,2/2 + m)ls,1ls,2q̇2
s,2sin(qs,2 −qs,1)

(ms,2/2 + m)ls,1ls,2q̇2
s,1sin(qs,2 −qs,1)

)

.

(43)

The parameters li, j, mi, j and Ji, j are the length, mass and

moment of inertia about the center of mass of link j, j = 1,2,

respectively. For the slave robot we have considered an extra

load of mass m positioned at the end-effector. The motors

of the master robot do not deliver any torque, this robot is

actuated by a human operator applying force FH ∈ R
2 at the

end-effector, i.e τm = JT (qm)FH with

J(qm) =

(

−lm,1sinqm,1 −lm,2sinqm,2

lm,1cosqm,1 lm,2qsinqm,2

)

, (44)

and

FH =

[

0.2cos(0.5t)
2sin(0.5t);

]

. (45)

For simulation purposes, we consider the following parame-

ter settings: li,1 = li,2 = 0.6 m, mi,1 = mi,2 = 2 kg, Ji,1 = Ji,2 =
mi,1l2

i,1

12
= 0.06 kgm2 for the robot links and the mass of the

load m = 30kg.

The estimation gain matrix L of the nonlinear disturbance

observer is designed as follows:

L =

[

0 −1

100 10

]

. (46)

The feedback gain matrices for the trajectory tracking con-

troller are chosen: p1 = p2 = 10I2, with I2 ∈ R
2×2 the 2×2-

identity matrix.

The exogenous signal acting upon the slave system is:

d =

[

10 + 20sin(0.1t)
50 + 20sin(2t)

]

. (47)

In Figure 4, we present the disturbance estimation results
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Fig. 4. Disturbance Estimation.

(dotted line: the disturbance, and solid line: the estimation),

where d = [ d1 d2 ]T . One can see that the disturbance

observer performs well and we can obtain a good estimate

of the exogenous signal d(t). To test the performance in-

crease in the case of using the disturbance observer (see

Figure 5), we have applied the tracking controller for two

scenarios: without disturbance estimation (dashed line) and

with disturbance estimation (solid line). For comparison, one

can see the dotted line is the reference.

In Figures 6 and 7, we present the estimation errors
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Tracking without disturbance observer

Tracking with disturbance observer

Fig. 5. Trajectory tracking.

ed = [ ed1
ed2

]T and the tracking errors e = [ e1 e2 ]T

(dashed line for the case without disturbance observer and

solid line for the case with disturbance observer), respec-

tively. Clearly the performance is better for in the case in

which the nonlinear disturbance observer is used.
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Fig. 6. Estimation errors.
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Fig. 7. Tracking errors.

VII. CONCLUSIONS AND PERSPECTIVES

In this paper, we have proposed a tracking control strategy,

including a nonlinear disturbance observer, for a robotic

tele-operation setup. The nonlinear disturbance observer is

more general than those in the literature. Moreover, we have

explicitly studied the transient and steady-state performance

of the NDOB and the tracking control scheme in the face of

nonconstant perturbations acting on the slave robot.

We foresee two extensions of the work in tele-operation.

Firstly, the NDOB can be used in force sensor-less teleoper-

ation setups to estimate external forces acting at the slave

robot, which can subsequently be used to provide haptic

feedback to the master. Secondly, the NDOB can also be

used to estimate the human force acting on the master robot,

which can be used to enhance the tracking control for the

slave robot.
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