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Abstract— In this paper we develop a framework for the
stabilising controller design for nonlinear Networked Control
Systems (NCSs) with time-varying sampling intervals, time-
varying delays and packet dropouts. As opposed to emulation-
based approaches where the effects of sampling-and-hold and
delays are ignored in the phase of controller design, we
propose an approach in which the controller design is based
on approximate discrete-time models constructed for a nominal
(non-zero) sampling interval and a nominal delay while taking
into account sampling-and-hold effects. Subsequently, sufficient
conditions for the global exponential stability of the closed-loop
NCS are provided. The results are illustrated by means of an
example.

I. INTRODUCTION

Networked control systems (NCSs) are control systems in

which sensor data and control commands are being commu-

nicated over a communication network. The recent increase

of interest in NCSs is motivated by many benefits they offer

such as the ease of maintenance and installation, large flexi-

bility and low cost [1]. However, still many challenges need

to be faced before all the advantages of networked control

systems can be exploited to their full extent. One of the

major challenges is related to guaranteeing the robustness of

stability and performance of the control system in the face of

imperfections and constraints imposed by the communication

network, see e.g. the survey papers [1], [2].

The literature on the stability analysis and controller

synthesis for linear NCSs is extensive, see e.g. [1], [3]–[9].

Results on the stability analysis and controller design for

nonlinear NCSs have also been obtained in the literature,

though to a lesser extent than those for linear systems.

In [10], [11] a continuous-time approach leading to NCS

models in terms of delay-differential equations (DDEs) and

stability analysis results based on the Lyapunov-Krasovskii

functional method is pursued for certain classes of nonlinear

systems. In [12]–[16], an emulation-based framework for the

stability analysis of nonlinear NCSs has been developed.

These results consider network-induced effects such as time-

varying sampling intervals, delays, packet dropouts, commu-

nication constraints and quantisation; however, the results

N. van de Wouw and W.P.M.H. Heemels are with the Department of
Mechanical Engineering, Eindhoven University of Technology, P.O.Box
513, 5600 MB Eindhoven, The Netherlands n.v.d.wouw@tue.nl,
w.p.m.h.heemels@tue.nl
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are limited to the small delay case (delays smaller than

the sampling interval). Although discrete-time approaches

towards the modelling and analysis of NCSs have been

proven succesfull for linear NCSs, see e.g. [7], [17], results

on discrete-time approaches for nonlinear NCSs are rare.

Some extensions of the discrete-time approach for sampled-

data systems as developed in [18], [19] towards NCS-related

problem settings have been pursued in [20], [21]. In [20],

an extension towards multi-rate sampled-data systems is

proposed. In [21], results for NCSs with time-varying sam-

pling intervals and delays for a specific predictive control

scheme and matching protocol are presented. However, in

these results the delays are always assumed to be a multiple

of the sampling interval, which is in practice generally not

realistic, and delays are artificially elongated to match a

‘worst-case’ delay, which may be detrimental to the stability

and performance of the NCS.

In this paper we develop a framework for the stabilising

controller design based on approximate discrete-time models

for NCSs with time-varying sampling intervals, potentially

large and time-varying delays, not being limited to multiples

of the sampling interval, and packet dropouts. Although an

emulation-based approach is powerful in its simplicity since,

in the phase of controller design, one ignores sampled-data

and network effects, an approach towards stability analysis

and controller design based on approximate discrete-time

models may exhibit several advantages over an emulation-

based approach. Firstly, in the emulation approach one

typically designs the controller for the case of fast sampling

(and no delay) and subsequently investigates the robustness

of the resulting closed-loop NCS with respect to uncertainties

in the sampling intervals (and delays), see e.g. [13], [15].

In the context of networked control one generally faces the

situation in which sampling intervals exhibit some level of

jitter (uncertainty) around a nominal (non-zero) sampling

interval and the delays exhibit some uncertainty around a

nominal delay. It appeals to our intuition, which is supported

by earlier results for nonlinear sampled-data systems in [18],

[19], [22], that it is beneficial to design a discrete-time

controller based on a nominal (non-zero) sampling interval

and a nominal delay. Secondly, it has been shown in [18],

[22] for the case of nonlinear sampled-data systems with

fixed sampling intervals (and no delays) that controllers

based on approximate discrete-time models may provide

superior performance (in terms of the domain of attraction

and convergence speed). Finally, we would like to note that,

for the case of linear NCSs, it has been shown in [23],

that the discrete-time approach may provide less conservative
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Fig. 1: Schematic overview of the networked control system.

bounds on network-induced uncertainties.

The contributions of this paper can be summarised as

follows. Firstly, the results in this paper extend the results

of [18], [19] on the stabilisation of nonlinear sampled-data

systems based on approximate discrete-time models to the

case with delays. Secondly, we develop a framework for

the robustly stabilising discrete-time controller design for

nonlinear NCSs with time-varying sampling intervals, large

time-varying delays and packet dropouts, which extends

discrete-time approaches for linear NCSs, as developed e.g.

in [7], [17], to the realm of nonlinear systems.

The outline of the paper is as follows. In Section II, an (ap-

proximate) discrete-time modelling approach for nonlinear

NCSs will be discussed. Based on the resulting approximate

discrete-time models, parametrised by the nominal sampling

interval and delay, and discrete-time controllers designed to

stabilise these approximate models, we propose sufficient

conditions for the global exponential stability of the closed-

loop sampled-data NCS in Section III. The results are

illustrated by means of an example in Section IV. Finally,

concluding remarks are given in Section V.

The following notational conventions will be used in this

paper. R denotes the field of all real numbers and N denotes

all nonnegative integers. By | · | we denote the Euclidean

norm. A function α : [0,∞) → [0,∞) is said to be of class-

K if it is continuous, zero at zero and strictly increasing.

It is of class-K∞ if it is of class-K and unbounded. We

denote the transpose of a matrix A by AT . For a symmetric

positive definite matrix P = PT > 0, λmax(P ) denotes

the maximum eigenvalue of P . For a locally Lipschitz

function f(x), ∂f(x) denotes the generalised differential of

Clarke [24].

II. DISCRETE-TIME MODELLING OF NONLINEAR NCSS

Consider a NCS as depicted schematically in Figure 1.

The NCS consists of a nonlinear continuous-time plant

ẋ = f(x, u), (1)

where f(0, 0) = 0 and f(x, u) is globally Lipschitz in x
and u, x ∈ R

n is the state and u ∈ R
m is the continuous-

time control input, and a discrete-time static time-invariant

controller, which are connected over a communication net-

work. The state measurements of the plant are being sampled

at the sampling instants sk. The related sampling intervals

hk = sk+1 − sk are possibly time-varying and satisfy hk ∈
[

h, h
]

, ∀k ∈ N, with 0 < h ≤ h. We write xk := x(sk).
Moreover, uk denotes the discrete-time controller command

corresponding to xk. In the model, both the varying computa-

tion time (τck), needed to evaluate the controller, and the time-

varying network-induced delays, i.e. the sensor-to-controller

delay (τsck ) and the controller-to-actuator delay (τcak ), are

taken into account. The sensor acts in a time-driven fashion

and we assume that both the controller and the actuator act

in an event-driven fashion (i.e. responding instantaneously to

newly arrived data). Under these assumptions and given the

fact that the controller is static and time-invariant, all three

delays can be captured by a single delay τk := τsck +τck+τcak ,

see also [1]. Furthermore, we account for the fact that not all

the data may be used due to message rejection, i.e. the effect

that more recent control data is available before the older data

is implemented and therefore the older data is neglected. We

assume that the time-varying delays are bounded according

to τk ∈ [τ , τ ] , ∀k ∈ N, with 0 ≤ τ ≤ τ . Note that the delays

may be both smaller and larger than the sampling interval.

Define d := ⌊τ/h⌋, the largest integer smaller than or equal

to τ/h and d := ⌈ τ
h
⌉, the smallest integer larger than or

equal to τ
h

. Finally, the zero-order-hold (ZOH) function (in

Figure 1) is applied to transform the discrete-time control

input uk to a continuous-time control input u(t) = uk∗(t),

where k∗(t) := max{k ∈ N|sk + τk ≤ t}. More explicitly,

in the sampling interval [sk, sk+1), u(t) can be described by

u(t) = uk+j−d for t ∈ [sk + tkj , sk + tkj+1), (2)

where the actuation update instants tkj ∈ [0, hk] are defined

as, see [17]:

tkj = min
{

max{0, τk+j−d −
k−1
∑

l=k+j−d

hl},

max{0, τk+j−d+1 −
k−1
∑

l=k+j+1−d

hl},

. . . ,max{0, τk−d −
k−1
∑

l=k−d

hl}, hk
}

(3)

with tkj ≤ tkj+1 and j ∈ {0, 1, . . . , d − d}. Moreover, 0 =

tk0 ≤ tk1 ≤ . . . ≤ tk
d−d

≤ tk
d−d+1

:= hk. See Figure 2 for a

graphical explanation of the meaning of the control update

instants tkj . Note that the expression for the continuous-time

control input in (2), (3) accounts for possible out-of-order

packet arrivals and message rejection.

Remark 1

Packet dropouts can be directly incorporated in the above

model, see [17] for the appropriate expressions for tkj in the

case of packet dropouts (replacing (3)) assuming a bound on

the maximal number of subsequent packet dropouts.

sk sk + tk1 sk + tk2 sk + tk3 sk + tk
d−d

sk+1

uk−d

u
k−d+1

uk−d+2

uk−d

j = 0 j = 1 j = 2 j = d− d

= =

sk + tk0
sk + tk

d−d+1

Fig. 2: Graphical interpretation of t
k
j .
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Moreover, let us define the vector ψkj =
[

τk−d+j τk−d+j+1

. . . τk−d hk−d+j hk−d+j+1 . . . hk
]T

containing all past

delays and sampling intervals defining tkj , i.e. tkj = tkj (ψ
k
j ).

Note that ψkj ∈ Ψj := [τ , τ ]d−d−j+1 ×
[

h, h
]d−j+1

for all

k ∈ N and j ∈ {0, 1, . . . , d− d}.

Next, let us consider the exact discretisation of (1), (2), (3)

at the sampling instants sk:

xk+1 =xk +

∫ sk+1

sk

f(x(s), u(s)) ds

=xk +

d−d
∑

j=0

∫ sk+tkj+1

sk+tk
j

f(x(s), uk+j−d) ds

=:F eθk
(xk, ūk, uk)

(4)

with θk :=
[

hk tk1 tk2 . . . tk
d−d

]T

∈ R
d−d+1, ∀k ∈

N, the vector of uncertainty parameters consisting of

the sampling interval hk and the control update in-

stants within the interval [sk, sk+1]. Moreover, ūk :=
[

uTk−1 uTk−2 . . . , uT
k−d

]T

represents a vector containing

past control inputs. The uncertain parameter vector θk is

taken from the uncertainty set Θ with

Θ = Θ(h, h,τ , τ) = {θ ∈ R
d−d+1 |h ∈ [h, h], tj ∈ [tj , tj ],

1 ≤ j ≤ d− d, 0 ≤ t1 ≤ . . . ≤ td−d ≤ h},
(5)

where tj and tj denote the minimum and maximum values

of tkj , j = 1, 2, . . . , d− d, respectively, given by

tj = min
ψj∈Ψj

tj(ψj), and tj = max
ψj∈Ψj

tj(ψj), (6)

for 1 ≤ j < d − d. Explicit expressions for tj and tj are

given in [25].

Let us now introduce the extended (augmented) state

vector ξk :=
[

xTk uTk−1 uTk−2 . . . uT
k−d

]T

=
[

xTk ūTk
]T ∈ R

n+dm. Then, the exact discrete-time plant

model can be written as:

ξk+1 =
[

xTk+1 uTk uTk−1 . . . uT
k−d+1

]T

=
[

F eθk

T(xk, ūk, uk) uTk uTk−1 . . . uT
k−d+1

]T

=: F̄ eθk
(ξk, uk).

(7)

In general the exact discrete-time model is unknown since the

plant is nonlinear and, consequently, we can not explicitly

compute the exact model (7). In order to design a stabil-

ising discrete-time controller, we construct an approximate

discrete-time plant model (using a discretisation scheme)

based on a nominal choice θ∗ for the uncertain parameters θk

given by θ∗ =
[

h∗ t∗1 t∗2 . . . t∗
d−d

]T

∈ Θ ⊂ R
d−d+1,

where h∗ ∈
(

h, h
]

is a nominal sampling interval and

t∗j ∈
[

tj , tj
]

, j ∈
{

1, 2, . . . , d− d
}

, are nominal control

update instants. Note that arbitrarily choosing the nominal

parameter vector θ∗ =
[

h∗ t∗1 t∗2 . . . t∗
d−d

]T

∈ Θ ⊂
R
d−d+1, such that h∗ ∈

(

h, h
]

and t∗j ∈
[

tj , tj
]

, j ∈
{

1, 2, . . . , d− d
}

, may lead to sequences of control update

instants that, when repeated for each sampling interval,

represent unfeasible sequences of control updates for the real

NCS. Therefore, we define

θ∗ :=
[

h∗ t∗1 t∗2 . . . t∗
d−d

]T

∈ R
d−d+1 (8)

with h∗ > 0 chosen arbitrarily and

t∗j :=







0, j ∈
{

0, 1, . . . , d− d∗ − 1
}

τ∗ − d∗h∗, j = d− d∗

h∗, j ∈
{

d− d∗ + 1, . . . , d− d+ 1
}

,

(9)

where τ∗ = η(h∗) ∈ [dh∗, dh∗], in which η(·) expresses

some continuous function from the nominal sampling in-

terval h∗ to the nominal delay τ∗, and d∗ := ⌊τ∗/h∗⌋.

Note that θ∗ now only depends on two nominal parameters;

namely h∗, which represents the nominal sampling interval,

and τ∗ = η(h∗), which represents the nominal delay. See

Figure 3 for a graphical explanation of the meaning of the

resulting nominal control update instants t∗j .

By exploiting a discretisation scheme we can now formu-

late the approximate discrete-time plant model as:

xk+1 = F aθ∗(xk, ūk, uk), (10)

which leads to

ξk+1 =
[

F aθ∗
T(xk, ūk, uk) uTk uTk−1 . . . uT

k−d+1

]T

=: F̄ aθ∗(ξk, uk)

(11)

and corresponds to the nominal parameter vector θ∗ defined

in (8), (9). Next, we design a controller given by uθ∗(ξ) for

a nominal distribution of the (past) control inputs over the

sampling interval [sk, sk+1) corresponding to the nominal

parameter vector θ∗ defined in (8), (9). The discrete-time

controller

uk = uθ∗(ξk) (12)

will now be designed to stabilise this approximate discrete-

time plant model (11) for a nominal parameter vector θ∗. In

sk = sk + tk1 = . . . = sk + tk
d−d∗−1

sk + t∗
d−d∗

= sk + τ∗ − d∗h∗

sk + tk
d−d∗+1

= . . . = sk + tk
d−d+1

= sk+1

uk−d∗−1

uk−d∗

Fig. 3: Graphical interpretation of t
∗

j .
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fact, since θ∗ only depends on h∗ and τ∗, uθ∗(ξ) in (12) is

a controller designed to stabilise the system for the nominal

sampling interval h∗ and nominal delay τ∗. Let us now define

the set of possible nominal parameters θ∗:

Θ∗

0 =Θ∗

0(h
∗

, d, d, η(·))
=

{

θ∗ ∈ R
d−d+1 |h∗ ∈ (0, h

∗

],

t∗j := 0, for j ∈
{

0, 1, . . . , d− d∗ − 1
}

,

t∗j := τ∗ − d∗h∗, for j = d− d∗,

t∗j := h∗, for j ∈
{

d− d∗ + 1, . . . , d− d+ 1
}

,

with τ∗ = η(h∗)
}

(13)

with η(h∗) ∈ [dh∗, dh∗] ∀h∗ ∈ (0, h
∗

], where h
∗

represents

the maximal nominal sampling interval for which we aim

to design stabilising controllers (stabilising the approximate

discrete-time plant (11)). In Section III, we will require

the approximate discrete-time plant model F̄ aθ∗(ξ, u), the

controller uθ∗(ξ) and the resulting approximate discrete-

time closed-loop system F̄ aθ∗(ξ, uθ∗(ξ)) to exhibit certain

properties for θ∗ ∈ Θ∗ ⊆ Θ∗

0 that will be used to guarantee

certain stability properties for the exact discrete-time closed-

loop system F̄ eθ (ξ, uθ∗(ξ)).
The problem considered in the paper can now be formu-

lated as follows. Given a nonlinear plant and a (family of)

discrete-time controllers, parametrised by and designed for a

range of nominal sampling intervals h∗ and a nominal delays

τ∗ = η(h∗), we aim to provide sufficient conditions for the

robust stability of the resulting sampled-data NCS in the

face of (time-varying) uncertainties in the sampling interval

and delays. In other words for each nominal parameter θ∗

(related to a pair (h∗, τ∗)) we aim to determine the bounds

h, h, τ and τ for which robust stability of the exact discrete-

time closed-loop system (7), (12) (and of the sampled-data

NCS (1), (2), (3), (12)) can be guaranteed.

III. GLOBAL EXPONENTIAL STABILITY OF THE NCS

In this section we aim to formulate conditions under which

the closed-loop sampled-data system (1), (2), (3), (12) is

globally exponentially stable (GES).

A. Sufficient conditions for GES

Let us adopt the following assumptions for a set of

nominal parameters Θ∗ satisfying Θ∗ ⊆ Θ∗

0(h
∗

, d, d, η(·))
with Θ∗

0(h
∗

, d, d, η(·)) as in (13) for some given h
∗

, d, d
and η(·).

Assumption 1

There exist a parametrised family of functions Vθ∗(ξ), a

parametrised family of controllers uθ∗(ξ), ai > 0, i = 1, 2, 3,

such that the following inequalities hold for some 1 ≤ p <∞:

Vθ∗(F̄
a
θ∗(ξ, uθ∗(ξ))) − Vθ∗(ξ)

h∗
≤ −a3|ξ|p,

a1|ξ|p ≤ Vθ∗(ξ) ≤ a2|ξ|p, ∀ξ ∈ R
n+dm, ∀θ∗ ∈ Θ∗.

(14)

This assumption requires that the control law uθ∗(ξ) globally

exponentially stabilises the approximate discrete-time plant

(formulated for the nominal parameter set θ∗). Note that

this assumption does not guarantee the stability of the exact

closed-loop plant model for time-varying θk ∈ Θ.

Assumption 2

The parametrised family of functions Vθ∗(ξ) is locally Lip-

schitz and satisfies the following condition uniformly over

θ∗ ∈ Θ∗: there exists an Lv > 0, such that supζ∈∂Vθ∗ (ξ) |ζ| ≤
Lv|ξ|p−1, ∀ξ ∈ R

n+dm, and ∀θ∗ ∈ Θ∗, with p in

accordance with Assumption 1.

Note that Assumption 2 is a reasonable assumption that

holds for a broad class of (possibly non-smooth) Lyapunov

functions (e.g. for p = 1, Lv reflects a global Lipschitz

constant and, for the case of quadratic Lyapunov functions

V = 1
2ξ
TPξ, with P = PT > 0, we have that p = 2 and

Lv = λmax(P )).

Assumption 3

The parametrised family of approximate nominal discrete-

time plant models F̄ aθ∗(ξ, u) is one-step consistent with the

parametrised family of exact nominal discrete-time plant

models F̄ eθ∗(ξ, u) uniformly over θ∗ ∈ Θ∗, i.e. there

exists ρ̂ ∈ K∞ such that |F̄ aθ∗(ξ, u) − F̄ eθ∗(ξ, u)| ≤
h∗ρ̂(h∗) (|ξ| + |u|) , ∀ξ ∈ R

n+dm, u ∈ R
m and ∀θ∗ ∈ Θ∗.

The notion of consistency is commonly used in the numerical

analysis literature, see e.g. [26], to address the closeness of

solutions of families of models (obtained by numerical in-

tegration). Moreover, the notion of one-step consistency has

been used before in the scope of the stabilisation of nonlinear

sampled-data systems based on approximate discrete-time

models [18], [19]. In [27], a one-step consistent integration

scheme is presented with which approximate discrete-time

plant models satisfying Assumption 3 can be constructed.

Assumption 4

The right-hand side f(x, u) of the continuous-time

plant model is globally Lipschitz, i.e. there exists

Lf > 0 such that |f(x1, u1) − f(x2, u2)| ≤
Lf (|x1 − x2| + |u1 − u2|) , ∀x1, x2 ∈ R

n, u1, u2 ∈ R
m.

Assumption 5

The parametrised family of discrete-time control laws uθ∗(ξ)
is linearly bounded uniformly over θ∗ ∈ Θ∗, i.e. there

exists Lu > 0 such that |uθ∗(ξ)| ≤ Lu|ξ|, ∀ξ ∈
R
n+dm, and ∀θ∗ ∈ Θ∗.

We note that these assumptions are natural extensions of the

assumptions used in the scope of the stabilisation of nonlin-

ear sampled-data systems (with constant sampling intervals

and no delays), see [18]. Assumption 3 bounds the difference

between the approximate and exact nominal discrete-time

plant models. Assumption 4 is typically needed to bound the

intersample behaviour, which, in turn, is needed to bound

the difference between the nominal and uncertain exact

discrete-time plant models. Moreover, the satisfaction of
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Lv (La)
p−1

h∗

(

h∗ρ̂(h∗) (1 + Lu) + ρθ

(

h∗,Mh,Mt1 , . . . ,Mt
d−d

))

≤ (1 − β)a3 (15)

ρθ

(

h∗,Mh,Mt1 , . . . ,Mt
d−d

)

:= eLfh
∗



(1 + max(1, Lu))
(

eLfMh − 1
)

+ 2Lf max(1, Lu)

d−d
∑

j=1

Mtj



 (16)

Assumption 1 guarantees GES of the approximate discrete-

time plant model, for any fixed θ∗ ∈ Θ∗, and avoids non-

uniform bounds on the overshoot and non-uniform conver-

gence rates for the solutions of the approximate nominal

discrete-time plant model, whereas Assumption 5 avoids

non-uniform bounds on the controls. Finally, Assumption 2

implies continuity of the Lyapunov function. It has been

shown in [18], [19] that if Assumptions 1, 2 and 5 are

not satisfied then the approximate closed-loop discrete-time

system does not exhibit sufficient robustness to account for

the mismatch between the approximate and exact discrete-

time models.

Based on these assumptions we can formulate a result

that provides sufficient conditions under which the closed-

loop uncertain exact discrete-time system (7), (12)

is GES. Hereto, consider the following definition:

La :=
(

2 + Lu + (1 + max(1, Lu)) (eLfh − 1)
)

+

h∗ρ̂(h∗) (1 + Lu).

Theorem 1

Consider the exact discrete-time plant model (7) with θk ∈
Θ(h, h, τ , τ ), ∀k ∈ N and Θ(h, h, τ , τ) as in (5). More-

over, consider the set Θ∗

0(h
∗

, d, d, η(·)) of nominal parameter

vectors as in (13) for given h
∗

, d, d and η(·). Furthermore,

consider lower and upper bounds on the sampling interval and

delay such that 0 < h < h∗ ≤ h and 0 ≤ τ ≤ τ∗ ≤ τ . The

following two statements hold:

• If Assumptions 1-5 are satisfied for Θ∗ = {θ∗}, for some

θ∗ ∈ Θ∗

0(h
∗

, d, d, η(·)), and if there exists 0 < β < 1
such that the inequality (15), on top of this page, is satis-

fied where the function ρ̂ follows from Assumption 3 and

ρθ is defined in (16) with Mh := max
h∈[h,h] |h − h∗|,

Mtj := max
tj∈[tj ,tj]

|tj − t∗j |, j = 1, 2, . . . , d− d, and

tj and tj defined in (6), then the closed-loop uncertain

exact discrete-time system (7), (12) is globally exponen-

tially stable for θk ∈ Θ(h, h, τ , τ), ∀k ∈ N;

• If Assumptions 1-5 are satisfied for Θ∗ =
Θ∗

0(h
∗

, d, d, η(·)), then there exists an h∗max ≤ h
∗

such

that for all h∗ ∈ (0, h∗max], there exist h(θ∗), h(θ∗),
τ (θ∗), τ (θ∗), with h(θ∗) < h(θ∗), τ(θ∗) < τ(θ∗),
and 0 < β < 1 satisfying (15). Consequently,

the family of closed-loop uncertain exact discrete-

time systems (7), (12) is globally exponentially

stable for all θ∗ ∈ Θ∗

0(h
∗

max, d, d, η(·)) and for

θk ∈ Θ(h(θ∗), h(θ∗), τ (θ∗), τ (θ∗)), ∀k ∈ N.

Proof: The proof is omitted for the sake of brevity and

can be found in [27].

The first statement of the theorem can be interpreted as

follows. If Assumptions 1-5 hold for a fixed θ∗ ∈ Θ∗ (i.e.

for a fixed nominal sampling interval h∗ and nominal delay

τ∗) and condition in (15) is satisfied for that fixed θ∗, then

system (7), (12) is GES for θk ∈ Θ(h, h, τ , τ), ∀k ∈ N (i.e.

for hk ∈
[

h, h
]

and τk ∈ [τ , τ ], ∀k ∈ N). Note that the

condition in (15) involves two distinct terms:

1) Lv (La)
p−1

ρ̂(h∗) (1 + Lu), which reflects the effect

of approximately discretising the nonlinear plant using

a nominal parameter vector θ∗ (i.e. corresponding to

a nominal sampling interval h∗ and a nominal delay

τ∗);

2)
Lv(La)p−1

h∗
ρθ

(

h∗,Mh,Mt1 , . . . ,Mt
d−d

)

, which re-

flects the effect of the uncertainty in the sampling

interval and delay.

In this case, only a single Lyapunov function Vθ∗(ξ) and

a single controller uθ∗(ξ) need to be found, which is a

relatively simple task. Note, however, that for a priori fixed

θ∗ there is no guarantee that condition (15) will be satisfied,

because the discretisation error (expressed by the term under

point 1) above) may be too large. If condition (15) is not

satisfied one has to resort to designing a Lyapunov function

Vθ∗(ξ) and a controller uθ∗(ξ) for a smaller nominal sam-

pling interval h∗ (and corresponding θ∗) and, subsequently,

checking whether condition (15) is satisfied. Although this

approach is beneficial in the sense that one only needs

the existence of a Lyapunov function and controller for a

fixed θ∗, it may lead to an iterative design procedure for

Lyapunov functions and controllers. Therefore, we formu-

lated the second statement of Theorem 1, which makes

explicit that we can always choose the nominal sampling

interval h∗, the uncertainty on the sampling interval h − h
and the uncertainty on the delay τ − τ sufficiently small

such that (15) is satisfied. Note that the definition of Θ∗

0

in (13) allows h∗ to be taken arbitrarily close to zero.

To validate such a statement, we required in the second

statement of Theorem 1 that Assumptions 1, 2, 3 and 5

hold for all θ∗ ∈ Θ∗

0. Hereto, in turn, we need to design

a parametrised family of controllers uθ∗(ξ) and construct

a parametrised family of Lyapunov functions Vθ∗(ξ). In

order to design (families of) control laws and Lyapunov

functions satisfying such an assumption, one may exploit,

for instance, (extensions of) the results presented in [28]

on backstepping designs for Euler approximate discrete-time
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models. When exploiting the second statement of Theorem 1,

one typically computes h(θ∗), h(θ∗), τ(θ∗), τ (θ∗) using (15)

for each fixed θ∗ ∈ Θ∗

0(h
∗

max, d, d, η(·)). Note that, even

for each fixed θ∗, different combinations of h(θ∗), h(θ∗),
τ (θ∗), τ (θ∗) may satisfy (15), which may be used to

investigate trade-offs between time-varying delays and time-

varying sampling intervals.

Remark 2

Based on the results on the global exponential stability of

the exact uncertain discrete-time model, we can also con-

clude that the sampled-data NCS (1), (2), (3), (12) is GES.

Namely, it can be shown that the intersample behaviour

is linearly globally uniformly bounded over the maximum

sampling interval h, see [27]. Next, we can use the re-

sults in [29] to conclude that the closed-loop sampled-data

NCS (1), (2), (3), (12) is globally exponentially stable.

IV. ILLUSTRATIVE EXAMPLE

Let us consider a NCS as depicted in Figure 1 with a

class of scalar nonlinear continuous-time plants of the form

ẋ = f(x) + u, where x ∈ R, u ∈ R, and f(x) is glob-

ally Lipschitz with Lipschitz constant Lfx. Consequently,

the right-hand side f(x) + u satisfies Assumption 4 with

Lf = max(1, Lfx). Let us consider the case without delays,

but with uncertain time-varying sampling intervals. For an

example with time-varying delays we refer to [27]. We use an

Euler discretisation scheme to construct the following family

of approximate discrete-time plant models: xk+1 = xk +
h∗(f(xk)+uk) =: F ah∗(xk, uk). It is straightforward to show

that this family of approximate discrete-time models satisfies

Assumption 3 with h∗ρ̂(h∗) =
Lfx

Lf

(

eLfh
∗ − 1 − Lfh

∗
)

.

Moreover, consider the following controllers

uk = −f(xk) − xk (17)

uk = −f(xk) − xk − h∗xk, (18)

where the first controller is independent of h∗ and could be

regarded as an example of an emulation-based controller,

whereas the second controller is clearly parametrised by

the nominal sampling interval h∗. Below, we will exploit

the candidate Lyapunov function V (x) = |x|, which is

independent of θ∗ and which clearly satisfies Assumption 2

with Lv = 1 and p = 1. Note that both controllers approach

each other for h∗ ↓ 0.

Let us first consider controller (17). This controller clearly

satisfies Assumption 5 with Lu = Lfx+1. In order to assess

the satisfaction of Assumption 1, we note that we can take

a1 = a2 = 1 and we evaluate

V (F ah∗(xk, uk)) − V (xk)

h∗
=

|xk + h∗(f(xk) + uk)| − |xk|
h∗

=

{

−|xk| if 0 < h∗ ≤ 1
(1 − 2

h∗
)|xk| if 1 ≤ h∗ ≤ 2

,

(19)

which can be used to conclude that the approximate closed-

loop discrete-time system, with controller (17), satisfies

Assumption 1 with p = 1 for 0 < h∗ ≤ 2 − ε, with ε > 0.

Let us next consider controller (18). This controller clearly

satisfies Assumption 5 with Lu = Lfx + 1 + h
∗

. In order to

assess the satisfaction of Assumption 1, we evaluate

V (F ah∗(xk, uk)) − V (xk)

h∗
=

|xk + h∗(f(xk) + uk)| − |xk|
h∗

=

{

(−1 − h∗)|xk| if 0 < h∗ ≤ 1
2 (
√

5 − 1)
−2+h∗+h∗2

h∗
|xk| if 1

2 (
√

5 − 1) ≤ h∗ ≤ 1
,

(20)

which can be used to conclude that the approximate closed-

loop discrete-time system, with controller (18), satisfies

Assumption 1 with p = 1 for 0 < h∗ ≤ 1 − ε, with ε > 0.

For both controllers, the second statement of Theorem 1

can now be exploited to conclude that there always exists

a sufficiently small nominal sampling interval and a suffi-

ciently small level of uncertainty on the sampling interval

such that the exact closed-loop sampled-data networked con-

trol system can be guaranteed to be globally exponentially

stable. This example also shows that the results proposed

in this paper can be used to study both emulation-based

controllers as well as discrete-time controllers parametrised

by the nominal sampling interval.

Next, let us use condition (15) in Theorem 1 to compute

(estimates of the) uncertainty bounds h, h on the sampling

interval, depending on h∗, that still guarantee GES of the

closed-loop system. Here, we consider the case of symmetric

uncertainty intervals for h around h∗, i.e. h∗ = (h + h)/2
represents the middle of the uncertainty interval [h, h]. We

note that condition (15) in Theorem 1 also allows to compute

asymmetric uncertainty intervals around h∗ (i.e. h∗ 6= (h+
h)/2). Bounds for h, h are depicted, depending on the choice

for h∗, in Figure 4 for the case that Lfx = 0.82. Figure 4

indicates that, for this particular example, the controller that

explicitly takes into account the nominal sampling interval

may allow for a larger uncertainty in the sampling interval

than the emulation-based controllers. However, we stress

here that this is by no means a generic fact and we note

that, firstly, the bounds given here only represent sufficient

conditions, which may exhibit a certain level of conservatism

and, secondly, that these bounds on the allowable jitter

depend on many factors such as the particular controller

designed, the particular integration scheme used to obtain
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h
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h

Lfx = 0.82

Fig. 4: Bounds h, h on the uncertainty of the sampling interval for
controllers (17), (18) for Lfx = 0.82.
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the approximate discrete-time plant model, the particular

Lyapunov function used to study stability etc. To assess the

possible conservatism of these results to some extent, we

consider the case in which f(x) = Lfxx, with Lfx = 0.82,

and the sampling interval is constant. In this case we can

straightforwardly compute an upperbound on the sampling

interval (because the discrete-time closed-loop system for

fixed h is linear), which is h ≈ 1.184 for controller (17)

and h ≈ 0.792 for controller (18). Considering the fact that

we consider an entire class of nonlinear systems and time-

varying sampling intervals, the bounds depicted in Figure 4

are not extremely conservative.

V. CONCLUSIONS

This paper presents a framework for the stabilising con-

troller design for nonlinear Networked Control Systems

(NCSs) with time-varying sampling intervals and time-

varying delays (that may be larger than the sampling in-

terval). We have developed a framework for the controller

design based on approximate discrete-time plant models. As

opposed to emulation-based approaches where the effects

of sampling-and-hold and delays are ignored in the phase

of controller design, we propose an approach in which the

controller design is based on approximate discrete-time mod-

els constructed for a nominal (non-zero) sampling interval

and a nominal delay. Subsequently, sufficient conditions for

the global exponential stability of the closed-loop NCS with

time-varying sampling intervals and delays are provided.

The results in this paper represent extensions to the exist-

ing literature in several ways. Firstly, the results presented in

this paper extend the results in [18], [19] on the controller

design for nonlinear sampled-data systems (with constant

sampling intervals and no delays) based on approximate

discrete-time models to the case of nonlinear sampled-data

systems with delays (this represents an extension even for the

case with constant delays). Moreover, the results in this paper

further extend these works in the sense that we allow for

time-varying uncertain sampling intervals and delays. From

a different perspective, the results in this paper extend the

results on discrete-time modelling and stability analysis for

linear NCSs with time-varying sampling intervals, delays

and packet dropouts in [7], [17] to the realm of nonlinear

systems.
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[28] D. Nešić and A. R. Teel, “Stabilization of sampled-data nonlinear sys-
tems via backstepping on their Euler approximate model,” Automatica,
vol. 42, no. 10, pp. 1801–1808, 2006.
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