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Abstract— Chatter is an instability phenomenon in machining
processes which must be avoided at all times. The occurrence
of chatter can be predicted using stability lobes diagrams.
In this paper a low-order active chatter control design is
proposed, which enables dedicated shaping of the chatter
stability boundary such that working points of higher machin-
ing productivity become feasible while avoiding chatter. The
control design problem is cast into a nonsmooth optimization
problem, which is solved using bundle methods. A static output
feedback controller is designed for an illustrative example,
which illustrates the power of the proposed methodology.

I. INTRODUCTION

The productivity in the manufacturing industry is limited

by the occurrence of a dynamic instability phenomenon

called chatter. Chatter results in an inferior workpiece quality

due to heavy vibrations of the cutter. The occurrence of

chatter can be visualized in stability lobes diagrams (SLD),

where the stability boundary between a stable cut and an

unstable cut is visualized in terms of spindle speed and depth

of cut. To increase the number of chatter-free working points,

and therewith the productivity of the milling process, it is

desired to alter the chatter stability boundary by means of

control.

The chatter stability boundary can be altered by actively

adapting the machine dynamics. Active chatter control in

milling has mainly been focused on active damping of the

machine dynamics [1], [2]. Damping the machine dynamics

results in a uniform increase of the stability boundary for all

spindle speeds.

To enable more dedicated shaping of the stability boundary

(e.g. lifting the SLD locally around a specific spindle speed),

the regenerative effect, which is the root cause for chatter,

should be taken into account during chatter controller design

as presented in [3], [4].

Except for the work in [2], [4], all research on active

chatter control is limited to low spindle speeds (i.e. below

5000 rpm). Moreover, all aforementioned research either

does not include the regenerative effect during controller de-

sign or utilizes high-order finite-dimensional approximations

of the milling model for controller design yielding high-order

controllers which is disadvantageous from an implementation

perspective.

This paper presents a controller design methodology,

which can guarantee chatter-free milling operations in an

a priori defined range spindle speed and depth of cut. The
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proposed approach takes into account the regenerative effect,

responsible for chatter, in the control design, which yields

models in terms of a set of delay differential equations

(DDEs) and allows for dedicated shaping of the SLD. More-

over, we refrain from employing finite-dimensional approx-

imations of the delay yielding high-order models and high-

order controllers as proposed in [4]. Instead, we propose a

design for low-order active chatter controllers for the milling

process using an infinite-dimensional model of the milling

process. The proposed methodology, firstly, will allow the

machinist to define a desired working range (in spindle speed

and depth of cut) and correspondingly shapes the SLD locally

in a dedicated fashion and, secondly, lets the user directly

impose the order of the controller.

In fixed-structure or fixed-order controller synthesis for

time delay systems, results are often obtained using a

Lyapunov-based approach, see e.g. [5]. Lyapunov-based ap-

proaches allow the incorporation of a more general class of

uncertainties, such as time-varying uncertainties. However,

the resulting optimization problems are in the form of bi-

linear matrix inequalities where the number of unknown

variables in general grows quadratically with the number of

states [6] which may lead to computational issues. Moreover,

generally the application of a Lyapunov approach leads

to conservative results. The usage of an eigenvalue based

approach can overcome these disadvantages as explained in

[7]. Therefore, we employ such an approach in this paper.

The paper is organized as follows. Section II presents a

the model of the milling process. The problem setting is

described in Section III. The problem will be cast into a

generalized plant formulation, which is discussed in Section

IV. Section V presents the low-order controller design pro-

cedure. Results for an illustrative example are presented in

Section VI. Finally, conclusions are drawn in Section VII.

II. THE MILLING PROCESS

This section presents a comprehensive model of the

milling process and discusses (chatter-related) stability prop-

erties of the model.

A. A comprehensive milling model

In Figure 1, a schematic representation of the milling pro-

cess is given. A block diagram of the milling process, with

controller, is given in Figure 2. As can be seen from the block

diagram, the milling process is a closed-loop position-driven

process. The setpoint of the milling process is the predefined

motion of the tool with respect to the workpiece, given in

terms of the static chip thickness hj,stat(t) = fz sin φj(t),
where fz is the feed per tooth and φj(t) the rotation angle

of the j-th tooth of the tool with respect to the y (normal)

axis (see Figure 1). However, the total chip thickness hj(t)
also depends on the interaction between the cutter and the
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Fig. 1: Schematic representation of the milling process.
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Fig. 2: Block diagram of the milling process.

workpiece. This leads to cutter vibrations resulting in a

dynamic displacement vt(t) =
[

vt,x(t) vt,y(t)
]T

of the tool,

see Figure 1, which is superimposed on the predefined tool

motion. This results in a wavy surface on the workpiece.

The next tooth encounters the wavy surface, left behind by

the previous tooth, and generates its own waviness. This is

called the regenerative effect and results in the block Delay

in Figure 2, see [8]. The difference between the current

and previous wavy surface is denoted as the dynamic chip

thickness hj,dyn(t) =
[

sin φj(t) cosφj(t)
]

(vt(t)−vt(t−τ))
with τ = 60/(zn) the delay, with z the number of teeth and n
the spindle speed in revolutions per minute (rpm). Hence, the

total chip thickness of tooth j, hj(t), is the sum of the static

and dynamic chip thickness: hj(t) = hj,stat(t) + hj,dyn(t).

The cutting force model (indicated by the Cutting block in

Figure 2) relates the total chip thickness to the forces acting

at the tool tip of the machine spindle. The forces in tangential

and radial direction for a single tooth j are described by the

following exponential cutting force model:

Ftj
(t) = gj

(

φj(t)
)

Kt ap hj(t)
xF ,

Frj
(t) = gj

(

φj(t)
)

Kr ap hj(t)
xF ,

(1)

where 0 < xF ≤ 1 and Kt, Kr > 0 are cutting parameters

which depend on the workpiece material, and ap is the axial

depth of cut. The function gj

(

φj(t)
)

describes whether a

tooth is in or out of cut:

gj

(

φj(t)
)

=

{

1, φs ≤ φj(t) ≤ φe ∧ hj(t) > 0,

0, else,
(2)

where φs and φe are the entry and exit angle of the cut,

respectively. Via trigonometric functions, the cutting force

can easily be converted to x(feed)- and y(normal)-direction.

Hence, cutting forces in x- and y-direction can be obtained

by summing over all z teeth:

F t(t) = ap

z−1
∑

j=0

gj

(

φj(t)
)

(

(

hj,stat(t)

+
[

sin φj(t) cosφj(t)
] (

vt(t) − vt(t − τ)
)

)xF

S(t)

[

Kt

Kr

])

,

(3)

where

S(t) =

[

− cosφj(t) − sinφj(t)
sinφj(t) − cosφj(t)

]

.

The cutting force interacts with the spindle and tool dy-

namics (block Spindle) in Figure 2. The machine dynamics

are modeled via a linear multi-input-multi-output (MIMO)

state-space model,

ẋ(t) = Ax(t) + BtF t(t) + BaF a(t),

vt(t) = Ctx(t), va(t) = Cax(t),
(4)

where x(t) is the state (the order of this model primarily

depends on the order of the spindle-tool dynamics model)

and cutting forces F t(t) =
[

Ft,x(t) Ft,y(t)
]T

are given

in (3), where Ft,x(t) and Ft,y(t) are the cutting forces

in x- and y-direction, respectively. The control forces are

given by F a(t) =
[

Fa,x(t) Fa,y(t)
]T

, where Fa,x(t) and

Fa,y(t) are the control forces acting in x- and y-direction,

respectively. Moreover, vt(t) and va(t) are the displacements

of the cutter and the measured displacements available for

feedback, respectively.

Substitution of (3) into (4) yields the nonlinear, non-

autonomous delay differential equations (DDE) describing the

milling process:

ẋ(t) = Ax(t) + Btap

z−1
∑

j=0

gj

(

φj(t)
)

(

(

hj,stat(t)+

[

sinφj(t) cosφj(t)
]

Ct

(

xt(t)−xt(t − τ)
)

)xF

S(t)

[

Kt

Kr

])

+ BaF a(t), va(t) = Cax(t).

(5)

B. Stability of the milling process

In the milling process the static chip thickness is periodic

with period time τ = 60/(zn). In general, the milling

model (5) has a periodic solution x∗(t) with period time τ .

When no chatter occurs, the periodic solution is (at least

locally) asymptotically stable and when chatter occurs it

is unstable. Therefore, the chatter stability boundary can

be found by studying the (local) stability properties of the

periodic solution. To this end, the milling model is linearized

about the periodic solution x∗(t) for zero control input (i.e.

F a(t) = 0) which yields the following linearized dynamics

in terms of perturbations x̃(t) (x(t) = x∗(t) + x̃(t)):

˙̃x(t) = Ax̃(t) + apBt

z−1
∑

j=0

Hj(t)Ct(x̃(t) − x̃(t − τ))

+ BaF a(t), ṽa(t) = Cax̃(t),

(6)
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where

Hj(t) = gjxF (fz sin φj)
xF−1

S(t)

[

Kt

Kr

]

[

sinφj cosφj

]

. (7)

As can be seen from (6) the linearized model is a nonau-

tonomous DDE. The focus in this work lies on full immersion

cuts, where the full width of the cutter is used for cutting.

As described in [9], for full immersion cuts it is sufficient to

average the dynamic cutting forces
∑z−1

j=0
Hj(t) over the tool

path such that the milling model becomes an autonomous

(time-invariant) DDE model. Since the cutter is only cutting

when φs ≤ φ ≤ φe the averaged cutting forces are given by

H̄ =
z

2π

∫ φe

φs

z−1
∑

j=0

Hj(φ)dφ. (8)

Then, the linear time-invariant model of the milling process

is obtained by combining (6) with Hj(t) = H̄ and H̄ given

in (8), such that:

˙̃x(t) = (A + apBtH̄Ct)x̃(t) − apBtH̄Ctx̃(t − τ)

+ BaF a(t), ṽa(t) = Cax̃(t).
(9)

The characteristic equation of the (uncontrolled) linear DDE

(9) is then given as

det(I − apGtt(iω)H̄(1 − e−iωτ )) = 0, (10)

where Gtt(iω) = Ct(iωI − A)−1
Bt represents the fre-

quency response function (FRF) from cutting forces at the

tooltip to tooltip displacements. By solving (10) for given

depth-of-cut ap and delay τ , as e.g. discussed in [9], the

stability lobes diagram (SLD) can be obtained. Based on an

SLD a machine operator can select working points in terms

of spindle speed and depth of cut for which a chatter free

milling operation can be performed.

III. PROBLEM STATEMENT

As discussed in the introduction, the aim of this paper is

to design a low-order, finite-dimensional linear controller K

to generate control inputs F a based on measurements ṽa,

which guarantees:

• robust stability of x̃ = 0 in (9) for uncertainties in depth

of cut ap and time delay τ ;

• performance by minimizing the total amount of actuator

energy needed to stabilize the milling process.

Herewith, chatter-free cutting operations can be guaranteed

in an a priori defined range of spindle speeds n and depth

of cut ap, and, moreover, the actuator forces will be limited

during the controller design, which is an important practical

performance requirement. Note that the perturbation vibra-

tions ṽa are used for feedback. In practice, ṽa(t) can be

obtained by using a chatter detection algorithm based on a

parametric model of the milling process, as presented in [10].
It is assumed that the fixed structure controller K, with

measured output ṽa ∈ R2 and control input F a ∈ R2, has

the following state-space description:

ξ̇(t) = Acξ(t) + Bcṽa(t),

F a(t) = Ccξ(t) + Dcṽa(t).
(11)

Herein, ξ ∈ Rnc , Ac ∈ Rnc×nc , Bc ∈ Rnc×2, Cc ∈ R2×nc

and Dc ∈ R2×2 with nc the order of the controller.

p

z

ṽa

q

r

F a

P

K

∆

Fig. 3: Generalized plant interconnection.

IV. GENERALIZED PLANT FORMULATION

In order to solve the problem stated in the previous

section, the model of the milling process will be extended

with uncertainties in depth of cut ap and spindle speed n.

Hereto, the control goal will be cast into the generalized

plant framework. Figure 3 shows the configuration of this

framework. The generalized plant P is a given system with

three sets of inputs and three sets of outputs. The signal

pair p, q denote the in-/outputs of the uncertainty channel.

The signal r represents an external input in which possible

disturbances, measurement noise and reference inputs are

stacked. The signal F a is the control input. The output

z can be considered as a performance variable while ṽa

denotes the measured outputs used for feedback. To derive

the generalized plant formulation, consider the linearized

time-invariant model of the milling process (9). Based on

the discussion above let us define the following uncertainty

sets:

ap = 1

2
āp(1 + δap

), τ = τ0 + δτ , (12)

where āp is the maximal depth of cut for which stable

cutting is desired, δap
∈ C, with |δap

| ≤ 1, τ0 = τ̄+τ

2
and

δτ ∈ τ̄−τ

2
[−1, 1] with 0 < τ ≤ τ̄ . Moreover, as described

in Section III, it is desired to limit the amount of actuator

forces. Therefore, the performance output is chosen as the

weighted control input z(s) = WKS(s)F a(s), s ∈ C, where

WKS is a stable weighting filter with the following state-

space realization:

ẋKS(t) = AKSxKS(t) + BKSF a(t),

z(t) = CKSxKS(t) + DKSF a(t).
(13)

Substituting (12) in (9) and by adding the performance

channel in-/output to the system and rearranging terms, the

state-space representation of the generalized plant P is given

as follows:

ẋP (t) = AP,0xP (t) + AP,1xP (t − τ0) + BP uP (t)

vP (t) = CP,0xP (t) + CP,1xP (t − τ0) + DP uP (t)
(14)

with the state vector xP (t) = [x̃T (t) xT
KS(t)]T , input vector

uP (t) = [qT (t) rT (t) FT
a (t)]T , output vector vP (t) =

[pT (t) zT (t) ṽT
a (t)]T . The uncertainty channel input p(t)

and output q(t) are defined as

p(t) = [pT

1
(t) pT

2
(t)]T , q(t) = [qT

1
(t) qT

2
(t)]T .

The definition of the state-space matrices of the generalized

plant can be found in the appendix of the paper. In the

following discussion also the transfer function description
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of the generalized plant will be used. The transfer function

description of the generalized plant P is given as follows:

P(s) =
(

CP,0 + CP,1e
−sτ0

)[

sI − AP,0

− AP,1e
−sτ0

]−1
BP + DP ,

(15)

s ∈ C. The (structured) uncertainty channel is then given as

follows:

q
1
(t) = (Dδτ

− 1) p
1
(t), q

2
(t) = δap

p
2
(t), (16)

where the operator Dτ is defined as Dτx(t) = x(t− τ). Let

∆(s) denote the Laplace transform of the uncertainty term

(16), such that q(s) = ∆(s)p(s) with

∆(s) = diag((e−sδτ − 1)I2, δap
I2) (17)

with identity matrix In ∈ Rn×n. It can be seen that the

uncertainty term, given above, depends on the frequency. In

[11] it is shown that the delay uncertainty e−sδτ − 1 can

be upper bounded by a (non-rational) frequency-dependent

upper bound κ(ω), given as follows

κ(ω) =

{

2 sin δτ ω
2

, ∀ω, 0 ≤ ω ≤ π/δτ

2, ∀ω ≥ π/δτ .
(18)

To reduce conservatism in the controller synthesis procedure,

which will be discussed in the next section, a rational

overapproximation ρ(s) of the upper bound κ(ω), such that

κ(ω) ≤ |ρ(iω)|, as discussed in [11], will be incorporated in

the generalized plant. As discussed in [4], for the high-speed

milling process, a tight over approximation in the frequency

range ω, 0 ≤ ω ≤ π/δτ is desired. Hence, ρ(s) is chosen

as follows:

ρ(s) = δτs/((δτ/3.456)s + 1). (19)

Let us define L(s) = diag(ρ(s)I2, I2). Then the (scaled)

generalized plant and uncertainty term is obtained as follows:

P̃(s) = diag(L(s), I2, I2)P(s), ∆̃ = ∆(s)L−1(s).

V. LOW-ORDER ACTIVE CHATTER CONTROL

Based on the discussion in the previous section, it can be

seen that the control problem is actually a robust performance

problem. It is well known from robust control theory, that a

robust performance problem can be easily transformed to a

robust stability problem by adding an additional uncertainty

block ∆P ∈ C2×2, ‖∆P ‖∞ ≤ 1, associated with the

performance channel, to the problem, see [12]. Then the

design of a controller, guaranteeing robust stability, requires

the following optimization problem to be solved:

min
K

sup
ω∈R

µ
∆̂

(

N
)

, subject to Ψ(K) < 0, (20)

with µ
∆̂

the structured singular value of N with respect to

expanded uncertainty set ∆̂ = diag(∆̃,∆P ), N the lower

fractional transformation (LFT) of P̃ and fixed structure

controller K (see [12] for the definition of LFTs), and Ψ(K)
the spectral abscissa function of the closed-loop system

defined as:

Ψ(K) := sup{Re(λ) :det(λI−Ā0−Ā1e
−λτ0)=0}, (21)

where

Ā0=

[

A + 1

2
āpBtH̄Ct 0

0 0

]

+

[

Ba 0

0 I

] [

Dc Cc

Bc Ac

] [

Ca 0

0 I

]

,

Ā1=

[

− 1

2
āpBtH̄Ct 0

0 0

]

.

The constraint on the objective function, defined above, is a

necessary condition to guarantee the existence of the H∞-

norm of N along with stability of the closed-loop feedback

system, see also [12].
It is well known that, in general, it is difficult to calculate

µ
∆̂

. However, an upper bound on µ
∆̂

can be obtained by

calculating the scaled H∞ norm of N [12]. Since the uncer-

tainties are modeled by complex uncertainties, a reasonable

approach to solve the problem is to apply D-K-iteration, see

[12].
For a given controller K, the problem of finding the

scaling matrix D, with the structure of D chosen such that

D∆̂ = ∆̂D holds, can be turned into convex optimization

problem which is generally solved pointwise in the frequency

domain. Since in this paper fixed structure controllers are

considered, the problem of finding K, for a given D,

in general results in a nonconvex, nonsmooth, constrained

optimization problem, given as follows:

min
K

f(K), subject to Ψ(K) < 0. (22)

with f(K) := supω∈R
σ̄
(

D(iω)ND(iω)−1
)

. Herein, σ̄ the

denotes the largest singular value. The nonsmooth depen-

dence of the objective function f(K) on the controller

parameters of K typically occurs when the maximum of

the objective function is located at two (or more) different

frequencies. Due to the nonsmoothness of (22), standard

optimization algorithms cannot be used to determine the

parameters of controller K, since they tend to switch about a

nonsmooth surface of the objective function f(K). Instead,

nonsmooth optimization techniques, based on bundle meth-

ods, will be used. The key assumption supporting the applica-

tion of bundle methods is that the continuous objective func-

tion is differentiable almost everywhere. Burke et. al. [13]

present a gradient bundle method, called gradient sampling,

where the user specifies, for given controller parameters of

K, the objective function f(K) in (22) and the gradient

(∇f(K)), when the objective function is differentiable.
The gradient sampling algorithm can be used to locally

minimize nonsmooth, nonconvex objective functions. In gen-

eral, the gradient sampling algorithm is quite expensive per

iteration. Therefore, Lewis and Overton have developed a hy-

brid algorithm, based on BFGS, for nonsmooth optimization

(HANSO) [14]. HANSO can in general be applied to finite-

dimensional systems with continuous objective functions.

As shown in [7, Chp. 9], the H∞-norm of a system with

time-delay exhibits continuity properties and is differentiable

almost everywhere which allows the application of HANSO

for the present system. From (22), it can be seen that the

problem of finding a fixed structure controller which guar-

antees robust performance of the milling process is actually

a constrained optimization problem. However, HANSO is

only able to deal with unconstrained optimization problems.

Therefore, the constrained optimization problem is converted
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TABLE I: Milling model parameters.

Parameter Value Parameter Value

mt,x = mt,y 0.015 kg Kt 462 [N/mm(1+xF )]
ma,x = ma,y 0.14 kg Kr 38.6 [N/mm(1+xF )]
ωt,x = ωt,y 2350 Hz xF 1 [-]
ωa,x = ωa,y 1400 Hz φs 0 [rad]
ζt,x = ζt,y 0.05 [-] φe π [rad]
ζa,x = ζa,y 0.12 [-] fz 0.2 mm/tooth

z 4 [-]

to an unconstrained optimization problem using a penalty

method, see [15]. The constrained optimization problem (22)

is replaced with the following unconstrained (nonsmooth)

optimization problem:

min
K

f̄(K), (23)

where f̄(K) = f(K) + γ max
(

0, Ψ(K)
)

, where γ is a

positive constant. The value of γ is in general iteratively

chosen, see [16] for rules on how to choose γ.

During an optimization step, in order to evaluate the

objective function (23) for given K and D, the (scaled)

H∞-norm of DND
−1 as well as spectral abscissa Ψ(K),

defined in (21), need to be calculated. Since, in this case, the

system is infinite-dimensional (due to the presence of the

time-delay), standard Hamiltonian approaches to calculate

the H∞-norm cannot be used. Hence, here the H∞-norm

will be determined pointwise across a grid of frequencies

ω =
[

ω1, ω2, . . . , ωN

]T
. The spectral abscissa is determined

using the DDE-BIFTOOL [17] software package, which

can be used to determine the right-most characteristic roots

of a linear time-invariant system with time-delays. More

information about computation of characteristic roots for

time-delay systems can be found in [7].

VI. RESULTS

In this section, a static output feedback controller (nc = 0,

in (11)) will be designed for the uncertain time-delay system

(9). The goal of this section is to illustrate the effectiveness

of the low-order control design approach. Hereto, consider

the parameters of the milling process as given in Table I. The

spindle dynamics is modeled by two decoupled subsystems

consisting of a two mass-spring-damper model in order to

capture the inherent compliance between the actuator/sensor

system (denoted by subscript a, with undamped eigenfre-

quency ωa and dimensionless damping ratio ζa) and the

cutting tool (denoted by subscript t, with undamped eigen-

frequency ωt and dimensionless damping ratio ζt). Here,

a linear cutting model is considered (i.e. xF = 1). The

structure of the controller matrix Dc ∈ R2×2 is chosen such

that it has a similar structure as the averaged cutting force

matrix H̄ which, for xF = 1, can be written as the sum of a

diagonal matrix kI and a skew-symmetric matrix, see also [9,

page 107]. Therewith, only two controller parameters need

to be synthesized, i.e. the controller matrix structure is given

as

Dc =

[

k1 −k2

k2 k1

]

. (24)
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of iteration number.

0 20 40 60 80 100

-25

-20

-15

-10

-5

0

k1 [(×100) N/mm]
k
2

[(
×

1
0
0

)
N

/m
m

]

optimum

Fig. 5: Contour plot of objective function along with opti-

mization result using nonsmooth optimization and standard

BFGS (gray) during three D-K-iterations of the algorithm.

The circles indicate the end of each K-step.

We chose to present such a case since it allows for a graphical

representation of the results.

The static output feedback controller is designed

such that it stabilizes milling operations between n ∈
[36000, 38000] rpm, for a depth of cut which is as large as

possible given the performance requirement on the weighted

controller output, where WKS = Kp, with Kp = 1 ·
10−6 mm/N. Moreover, the parameter of the penalty function

is set to γ = 100 and the initial sampling radius of the

gradient sampling algorithm ǫs = 0.1. Starting at the initial

controller parameters k1 = k2 = 0, the fixed structure

controller synthesis algorithm aims to find a minimizer for

the constrained optimization problem (22) by iterating over

D and K. The algorithm converges after three D-K steps

resulting in sup
ω∈R

σ̄
(

D(iω)N(iω)D−1(iω)
)

= 0.9911 there-

with guaranteeing robust performance for milling operations

between n ∈ [36000, 38000] rpm up to a depth of cut of

āp = 2.4375 mm. In Figure 4, the values of the objective

function during the K-step, i.e. supω∈R
σ̄
(

DlND
−1

l

)

+
γ max

(

0, Ψ(K)
)

with l = 1, 2, 3 the index of the corre-

sponding D-scale matrix functions Dl, are given as function

of iteration number. In Figure 5, a contour plot is depicted

where the upper bound on supω∈R
µ
∆̂

(

N(iω)
)

is calculated

for several values of k1 and k2. Moreover, the path of the

fixed structure controller synthesis algorithm in the feedback

gain parameter space is given, where the end points of each

K-step in the D-K-iteration process are indicated by a circle.

The obtained feedback gains that guarantee robust perfor-
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Fig. 6: Stability lobes diagram with and without static output

feedback controller.

mance of the milling process for the desired uncertainties

are given as k1 = 10072.7 N/mm, k2 = −24.70908 N/mm.

From the contour plot, it can be seen that during the D-K-

iteration the optimization converges to a (local) minimum,

with supω∈R
µ
∆̂

(

N(iω)
)

< 1, thereby guaranteeing robust

performance of the milling process. During the second D-K-

step, the optimization moves along a nonsmooth boundary of

the objective function (a nonsmooth boundary can be distin-

guished from the nonsmoothness of a contour). In the same

figure, the evaluation of the objective function by using the

default BFGS algorithm for smooth functions (see [16, Chp.

6], invoked using fminunc from MATLAB) is given in gray.

It can be seen that the standard BFGS algorithm gets stuck

exactly at a nonsmooth boundary of the objective function.

Stability lobes are determined for the case with and without

the static output controller, using the technique as outlined in

Section II-B. The SLDs are given in Figure 6. It can be seen

that the controller synthesis algorithm has created a peak in

the SLD exactly at the desired spindle speed range. Using

the static output feedback controller, the maximal depth of

cut indicated by the SLD āp,max, in the considered spindle

speed range, can be increased from ap,max = 1.595 mm to

ap,max = 3.037 mm (āp = 2.4375 mm) which is an increase

of more than 90%. Based on the discussion above, it can

be concluded that the proposed controller synthesis strategy

is able to effectively alter the SLD such that productivity

is significantly increased. This is even accomplished for the

least number of controller parameters.

VII. CONCLUSIONS

This paper proposes a control methodology to synthesize

fixed structure controllers which guarantee robust stability

and performance of the high-speed milling process (i.e. the

avoidance of chatter in a predefined area of depth of cut ap

and spindle speed n and limitation of the required actuator

forces). It is shown that the control synthesis problem can

be cast into a nonsmooth constrained optimization problem

which can be transformed to an unconstrained nonsmooth

optimization problem using a penalty function. The uncon-

strained optimization problem is solved using D-K-iteration.

The K-step is solved by utilizing a dedicated nonsmooth

optimization algorithm based on bundle methods.The ap-

proach enables the design of relatively low-order controllers,

which is desirable from a practical point of view. The

presented results illustrate the power of the proposed control

methodology.

APPENDIX

The state-space matrices of the generalized plant, given in

(14), are defined as follows:

AP,0 =

[

A0 0

0 AKS

]

, AP,1 =

[

A1 0

0 0

]

,

BP =

[

− 1

2
āpBtH̄ BtH̄ 0 B̄a

0 0 0 BKS

]

,

CP,0 =









0 0
1

2
āpCt 0

0 CKS

Ca 0









, CP,1 =









Ct 0

− 1

2
āpCt 0

0 0

0 0









,

DP =









0 0 0 0

− 1

2
āpI 0 0 0

0 0 0 DKS

0 0 I 0









,

where A0 := A + 1

2
āpBtH̄Ct, A1 := − 1

2
āpBtH̄Ct.
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