
Stability analysis of nonlinear networked control systems with
asynchronous communication: A small-gain approach

W.P.M.H. Heemels D.P. Borgers N. van de Wouw D. Nešić A.R. Teel

Abstract— In this paper, we study the stability of decentral-
ized networked control systems (NCSs) in which the sensors,
controllers and actuators communicate through a finite number
of local networks. These local networks accommodate the
communication between local (decentralized) controllers at
uncertain transmission times and operate asynchronously and
independently of each other. In addition, each of the local
networks exhibits communication constraints that require the
presence of a protocol that decides which of the (local) network
nodes is allowed to transmit its corresponding information at
which transmission time. Due to the asynchronous nature of the
networks, most existing works on the stability analysis of NCSs
are not applicable as their stability characterizations assume
that there is only one global communication network, or at least
one global coordinator (or clock). Therefore, we present a novel
approach that leads to maximal allowable transmission intervals
for each of the individual local networks that guarantee the
global asymptotic stability of the overall closed-loop system.
The approach combines ideas from emulation-based stability
analysis for NCSs and techniques from the stability of large-
scale systems.

I. INTRODUCTION

Networked control systems (NCSs) are feedback control
systems, in which the control loops are closed over a shared
(wired or wireless) communication network. Compared to
traditional control systems, in which the sensors, controllers
and actuators are connected through dedicated (wired) point-
to-point connections, NCSs offer various advantages includ-
ing increased flexibility and maintainability of the system,
lower costs, and reduced wiring. However, NCSs also in-
troduce new challenges that need to be addressed before
the mentioned advantages can be harvested. Indeed, NCSs
are subject to network-induced communication imperfections
such as varying delays, dropouts, varying transmission in-
tervals, and so on. In addition, often there is a need for
network protocols to address communication constraints that
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prohibit that certain sensor, controller or actuator nodes
transmit their corresponding values simultaneously. All these
networked-induced imperfections and constraints may de-
grade the closed-loop performance of an NCS, or can even
lead to instability. As a consequence, it is important to
analyze the stability of NCSs and/or design controllers that
are robust to these network-induced phenomena.

In most papers on NCSs with network protocols, one
assumes that there is one global communication network,
or at least one global coordinator (or clock), see, e.g., [1],
[10], [14], [15], [20], [21]. Hence, all communications are
synchronized according to a global clock, and/or the derived
network specifications (e.g., in terms of maximal allowable
transmission intervals (MATIs)) are formulated globally.
Clearly, there are many situations in which such requirements
are too stringent. For instance, in the control of large-scale
systems there is often not one global communication network
but rather a number of local networks that act independently
of each other, because they are physically separated or
are using different non-interfering communication media
such as a wireless network and a (CAN) bus system. In
such situations, the update of measurement information and
control values over different local networks generally occurs
asynchronously, and it is less useful to formulate one global
MATI as a uniform requirement for all the local networks.
Indeed, in this context it is much more interesting and practi-
cally relevant to obtain a local MATI for each local network.
Also in other applications in which the network configuration
dynamically changes such as in platoons of vehicles that
communicate wirelessly, a global MATI is not functional
as it requires (timing) coordination of the communication
between members of the whole string of vehicles. Hence, in
many situations it is necessary to formulate local MATIs that
provide specifications on the local exchange of information
between sensors, controllers and actuators to guarantee stable
closed-loop behavior.

Unfortunately, there is not much literature addressing this
important problem. A notable exception is the work [2] that
considers NCSs in which sensors, actuators, and controllers
transmit through asynchronous communication links, each
introducing independent and identically distributed intervals
between transmissions. These NCSs are modeled as impul-
sive systems with several reset maps triggered by indepen-
dent stochastic renewal processes. Mean exponential stability
is fully characterized under the assumption of linear dynam-
ics and reset maps, while also local results are obtained in
the nonlinear context by using linearizations. Another line
of research in which nodes communicate asynchronously
can be found in the context of decentralized event-triggered
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control [4], [5], [8], [9], [11], [13], [16], [18], [19], [22]. In a
decentralized event-triggered implementation, local transmis-
sions are triggered by the violation of state/output-dependent
conditions thereby causing asynchronous communication by
the local nodes. However, the mentioned works adopt specific
assumptions as they focus either on (static) state feedback,
linear systems and/or still require a global clock or even
global communication if one local event-triggering condition
is violated. In particular, in the output-based case it is hard
to guarantee positive lower bounds on the local transmission
intervals (which could be used as local MATIs), although,
for example, the works [5], [19] provide such guarantees in
the context of linear systems. Unfortunately, the latter works
cannot deal with local communication constraints that require
the use of network protocols.
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Fig. 1: Decentralized networked control setup.

Therefore, the focus in this paper is on NCSs in which
a finite number of local communication networks operate
asynchronously (and with uncertain transmission intervals).
We consider a general nonlinear plant consisting of a number
of coupled subsystems each of which is being controlled by
its own local dynamic output-based controller, which, in turn,
operates over a local communication network (see Figure 1).
All local networks are equipped with their own local network
protocol. The objective is to determine local MATIs for
the networks that guarantee closed-loop stability for this
NCS configuration. The proposed approach will combine
ideas from [3], [10], [14], [15] on (emulation-based) stability
analysis for NCSs and techniques from the domain of large-
scale systems [12], [17]. Based on a systematic Lyapunov-
based method, the local MATIs guaranteeing stability will
be constructed.

Notation. By | · | and 〈·, ·〉 we denote the Euclidean norm
and the usual inner product of real vectors, respectively.
For N ∈ N we write the set {1, 2, . . . , N} as N̄ . For l
vectors xi ∈ Rni , i = 1, 2, . . . , l, we denote the vector
obtained by stacking all the vectors in one (column) vector
x ∈ Rn with n = n1 + n2 + . . . + nl by (x1, x2, . . . , xl),
i.e. (x1, x2, . . . , xl) = [x>1 , x

>
2 , . . . , x

>
N ]>. The vectors in

RN consisting of all ones and zeroes are denoted by 1N and
0N , respectively. By ∨ and ∧ we denote the logical ‘or’ and
‘and,’ respectively.

II. NCS SETUP AND PROBLEM FORMULATION

In this section, we introduce the networked control sys-
tem (NCS), a suitable hybrid model describing the overall
dynamics, and the problem formulation.

A. Networked control setup

We consider a collection of coupled continuous-time non-
linear subsystems P1,P2, . . . ,PN given by

Pi :

{
ẋp,i = fp,i(xp, ûi)

yi = gp,i(xp,i)
i ∈ N̄ , (1)

in which xp,i is the local state, ûi is the actual local control
input, and yi is the local output of subsystem Pi, i ∈ N̄ .
Note that the dynamics of Pi depend on the full state
xp = (xp,1, xp,2, . . . , xp,N ) ∈ Rnp of the overall system
thereby describing the coupling between the subsystems, see
Figure 1. In fact, the entire collection of subsystems can be
written compactly by

P :

{
ẋp = fp(xp, û)

y = gp(xp),
(2)

where û = (û1, û2, . . . , ûN ) ∈ Rnu and y =
(y1, y2, . . . , yN ) ∈ Rny . Hence, fp(xp, û) =
(fp,1(xp, û1), fp,2(xp, û2), . . . , fp,N (xp, ûN )) and
gp(xp) = (gp,1(xp,1), gp,2(xp,2), . . . , gp,N (xp,N )).

The plant (2) is controlled using a decentralized control
structure consisting of N local controllers Ci, i ∈ N̄ ,
which communicate with the sensors and actuators of the
plant via local communication networks N1,N2, . . . ,NN .
The decentralized control structure “parallels” the chosen
plant decomposition as in (1). This is depicted in Figure 1,
where the i-th controller receives measurements from and
sends control commands to the i-th subsystem only. The i-
th controller Ci is given by the equations1

Ci :

{
ẋc,i = fc,i(xc,i, ŷi)

ui = gc,i(xc,i)
i ∈ N̄ , (3)

in which xc,i is the controller state, ŷi is the vector of
the most recently received information on the output yi of
subsystem Pi, and ui is the control input generated by the
i-th controller Ci. Similar to the plant model, the overall
dynamics of the controller can be written compactly as

C :

{
ẋc = fc(xc, ŷ)

u = gc(xc),
(4)

where xc = (xc,1, xc,2, . . . , xc,N ) ∈ Rnc , ŷ =
(ŷ1, ŷ2, . . . , ŷN ) ∈ Rny and u = (u1, u2, . . . , uN ) ∈ Rnu .
The expressions for the functions fc and gc follow straight-
forwardly. Note that, in contrast with the full plant model (2),
the controller in (4) has a “block-diagonal” structure due to
the decentralized control setup in (3).

Remark II.1 Note that in absence of the network, i.e., ŷ = y
and û = u, the closed-loop system can be written as

ẋp = fp(xp, gc(xc)) (5a)
ẋc = fc(xc, gp(xp)). (5b)

1In Section V we will also show how static state feedback controllers
can be handled as well in the proposed framework. In the same spirit, also
static output feedback laws and dynamic controllers with feedthrough terms
can be considered. For ease of exposition, we present the results in the next
sections for the control structure given in (3).
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In absence of the network, the closed loop can also be
considered as the interconnection of N local feedback loops
consisting of Pi and Ci with ŷi = yi and ûi = ui, which
using the notation xi = (xp,i, xc,i), results in

ẋi = F̄i(x) (6)

with

F̄i(x) = (fp,i(xp, gc,i(xc,i)), fc,i(xc,i, gp,i(xp,i))) (7)

for i ∈ N̄ .

To complete the NCS setup we have to explain how the
communication networksN1,N2, . . . ,NN operate. The local
networks all operate independently of each other. Each local
network Ni has its own collection of transmission/sampling
times that satisfy 0 6 ti0 < ti1 < ti2 < . . . and there exists a
δ > 0 such that the transmission intervals tij+1 − tij satisfy
δ 6 tij+1 − tij 6 τ iMATI for all j ∈ N and all i ∈ N̄ ,
where τ iMATI denotes the maximally allowable transmission
interval (MATI) for the i-th local network Ni. Note that
δ > 0 can be taken arbitrarily small and it is only used
to prevent Zeno behavior in the hybrid model that will be
derived later. Clearly, due to hardware limitations in reality
such a lower bound δ > 0 on the transmission intervals
always exists. Each local network consists of a number of
communication nodes. In particular, a node of network Ni
consists of a collection of sensors or actuators related to
the i-th plant/controller combination Pi and Ci. Note that
multiple nodes can be associated with a subsystem. Local
communication constraints for each local network impose
that only one of these nodes can transmit at a transmission
time tij for some j ∈ N. In fact, at each transmission time
tij , j ∈ N, the i-th network protocol determines which
of the nodes corresponding to Ni is granted access to the
network and can communicate its corresponding values. The
sensors/actuators corresponding to the node that is granted
access collects its values of the entries in yi(tij) and/or ui(tij)
that will be sent over the communication network, and will
result in corresponding updates of ŷi(tij) and/or ûi(tij). In
describing these updates, it is convenient to use the network-
induced errors defined as

eui = ûi − ui and eyi = ŷi − yi, i ∈ N̄ . (8)

We also write ei = (eyi , e
u
i ), i ∈ N̄ , for compactness. Follow-

ing now the modeling setup in [10], [14], [15], we describe
the updates of ŷi(tij) and/or ûi(tij) at the transmission time
tij for node i by

ŷi((t
i
j)

+) = yi(t
i
j) + hy,i(j, e(t

i
j))

ûi((t
i
j)

+) = ui(t
i
j) + hu,i(j, e(t

i
j)), (9)

where the functions hi = (hy,i, hu,i) model the i-th network
protocol that can, for instance, be the Round Robin protocol,
the Try-Once-Discard (TOD) (sometimes also called the
Maximum-Error-First (MEF) protocol), or any other protocol
discussed in [14], [15]. In between transmissions we assume
that {

˙̂yi = f̂p,i(xp, xc, ŷi, ûi)

˙̂ui = f̂c,i(xp, xc, ŷi, ûi)
t 6= tij for j ∈ N, (10)

which describe the in-network processing. Often f̂p,i = 0
and f̂c,i = 0 are employed, corresponding to zero-order hold
operations.

B. Hybrid model
By combining the above model components, we will

obtain a hybrid system description, in terms of the formalism
in [6], consisting of the interconnection of N hybrid subsys-
tems. Indeed, the flow dynamics for the i-th interconnection
of Pi, Ci and Ni are given as

ẋi = Fi(x, ei)

ėi = Ei(x, ei)

τ̇i = 1

κ̇i = 0

, when τi ∈ [0, τ imati], (11a)

and the jump dynamics as

(x+
i , e

+
i , τ

+
i , κ

+
i ) = Gi(x, ei, τi, κi) when τi ∈ [δ, τ imati]

(11b)
with

Gi(x, ei, τi, κi) = (xi, hi(κi, ei), 0, κi + 1), (12)

for i ∈ N̄ . Explicit expressions for Fi and Ei are readily
derived from (1), (3), (9), and (10) and given by

Fi(x, ei) =

(
fp,i(xp, gc,i(xc,i) + eui )
fc,i(xc,i, gp,i(xp,i) + eyi )

)

Ei(x, ei) =

 f̂p,i(·)−
∂gp,i
∂xp

(xp)fp,i(xp, gc,i(xc,i) + eui )

f̂c,i(·)−
∂gc,i
∂xc

(xc)fc,i(xc,i, gp,i(xp,i) + eyi )

 (13)

in which for the sake of brevity we used

f̂p,i(·) = f̂p,i(xp, xc, gp,i(xp,i) + eyi , gc,i(xc,i) + eui )

f̂c,i(·) = f̂c,i(xp, xc, gp,i(xp,i) + eyi , gc,i(xc,i) + eui ).

Obviously, in the derivation of the expressions for Ei, i ∈ N̄ ,
differentiability properties of gp and gc were used.

For ease of reference, we also introduce a complete
interconnected hybrid model based on the above hybrid
submodels by using ξ = (x, e, τ, κ) in which x =
(x1, x2, . . . , xN ) ∈ Rnx with nx = np + nc, e =
(e1, e2, . . . , eN ) ∈ Rne with ne = ny + nu, τ =
(τ1, τ2, . . . , τN ) ∈ RN and κ = (κ1, κ2, . . . , κN ) ∈ RN .
To write the complete dynamics it is useful to introduce the
notation Γi ∈ RN×N to denote the matrix with the ii-th
entry (i-th diagonal entry) being 1 and all the other entries
being 0. In addition, it is useful to describe the jump map
of the complete system when only the i-th interconnection
of Pi, Ci and Ni is transmitting information. This results in

GNCS,i(ξ) =

(x, (e1, e2, . . . , ei−1, hi(κi, ei), ei+1, . . . , eN ), (I − Γi)τ, κ+ Γi1N ) .

Note that indeed this map describes the resets when the i-th
hybrid subsystem jumps according to (12), while the other
subsystems do not jump. Using the above notation we obtain
the overall dynamics

ξ̇ = FNCS(ξ), when ξ ∈ CNCS (14a)
ξ+ ∈ GNCS(ξ), when ξ ∈ DNCS. (14b)
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Here, FNCS(ξ) = (F (x, e), E(x, e),1N ,0N ) with
F (x, e) = (F1(x, e1), F2(x, e2), . . . , FN (x, eN )) and
E(x, e) = (E1(x, e1), E2(x, e2), . . . , EN (x, eN )), and

CNCS = Rnx+ne × [0, τ1
MATI ]× [0, τ2

MATI ]× . . .
. . .× [0, τNMATI ]× NN .

In addition,

GNCS(ξ) = {GNCS,i(ξ) | ξ ∈ Di},
where

Di = Rnx+ne × [0, τ1
MATI ]× [0, τ2

MATI ]× . . .
×[0, τ i−1

MATI ]×[δ, τ iMATI ]×[0, τ i+1
MATI ] . . .×[0, τNMATI ]×NN ,

and
DNCS =

⋃
i∈N̄
Di.

Remark II.2 Note that Di and Dj can be overlapping
also when i 6= j causing the right-hand side of (14b) to
be set-valued. This set-valuedness is related to the local
networks operating independently and jumps can even take
place simultaneously. Note that we model the jumps here
as occurring one after the other, which is without loss of
generality, as the net effect of two sequential jumps (at
the same (continuous) time instant t, but different hybrid
time instant (t, j), see [6]) is the same as the simultaneous
occurrence of two jumps.

C. Problem statement

The problem addressed in this paper can be summarized
as follows.

Problem II.3 Consider the interconnected hybrid system
model (14) that describes the NCS as in Fig 1. Suppose that
the controller (4) was designed for the plant (2) rendering
the closed-loop system (2), (4) with u = û and y = ŷ (or
equivalently, (5)) stable in some sense using small-gain ar-
guments. Determine values of τ1

MATI , τ2
MATI , . . . , τ

N
MATI ,

i.e., the maximum allowable transmission intervals (MATIs)
of the local networks, such that the NCS model given by
(14) is stable as well.

To explain the use of small-gain arguments mentioned in
Problem II.3, note that the decentralized controller design
of (4) for the interconnected plant (2) is often based on
small-gain kind of techniques to handle the complexity of
large-scale systems, see, e.g., the textbooks [12], [17]. In
this paper, we will use scalar Lyapunov functions (see, e.g.,
[12]), although we envision that other methods for stability of
interconnected systems can be applied as well. To be precise,
we will assume the existence of local Lyapunov functions
Vi : Rnxi → R>0, which are positive definite and satisfy,
along the evolution of the i-th network-free controller/plant
interconnection ẋi = Fi(x, 0) = F̄i(x), i ∈ N̄ , as in
Remark II.1, the inequality

〈∇Vi(xi), Fi(x, 0)〉 6 Si(x), (15)

where Si(x) can be arbitrary functions, but typically might
have the form Si(x) = −βii(|xi|)+

∑
j 6=i βij(|xj |) for some

K∞-functions βij , i, j ∈ N̄ . By requiring now that

N∑
i=1

Si(x) 6 −α(|x|) (16)

for some α ∈ K∞, we obtain for V (x) =
∑N
i=1 Vi(xi) that

N∑
i=1

〈∇Vi(xi), Fi(x, 0)〉 6 −α(|x|),

thereby showing that V is a Lyapunov function proving
global asymptotic stability (GAS) of the origin of the overall
network-free model. Hence, the decentralized controller (4)
should stabilize the plant (2) guaranteed via small-gain type
of arguments in the spirit just indicated. We would like to
use this small-gain type of setup as the starting point for
addressing Problem II.3 in an emulation-based setting.

Remark II.4 Note that in case (16) is replaced by the
condition

∑N
i=1 µiSi(x) 6 −α(|x|) for some µi ∈ R>0,

i ∈ N̄ , one can use the Lyapunov function V (x) =∑N
i=1 µiVi(xi). In fact, by replacing Vi by Ṽi := µiVi

leading to the Lyapunov function Ṽ (x) =
∑N
i=1 Ṽi(xi), the

above reasoning can exactly be followed. In other words,
just summing the local Lyapunov functions instead of taking
positive combinations is not a restriction.

III. STABILITY ANALYSIS

In order to establish our main result, we will introduce
several conditions first, which build, amongst others, upon
the small-gain type of conditions expressed at the end of the
previous section.

Condition III.1 Each local protocol given by hi, i ∈ N̄ ,
is UGAS (uniformly globally asymptotically stable), in the
sense that there exists a function Wi : N×Rnei → R>0 that
is locally Lipschitz in its second argument such that for all
ei ∈ Rnei and all κi ∈ N it holds that

αW,i(|ei|) 6Wi(κi, ei) 6 ᾱW,i(|ei|) (17a)
Wi(κi + 1, hi(κi, ei)) 6 λiW (κi, ei) (17b)

for K∞-functions αW,i, αW,i and scalars 0 < λi < 1, i ∈ N̄ .

Several protocols including the Round Robin protocol, the
Try-Once-Discard protocol and many others satisfy these
requirements, see [14], [15] for more details.

In addition, we assume the following condition is true.

Condition III.2 For all i ∈ N̄ the function Wi given in
Condition III.1 satisfies for almost all ei ∈ Rnei and all
κi ∈ N〈

∂Wi

∂ei
(κi, ei), Ei(x, ei)

〉
6 LiWi(κi, ei)+Hi(x) (18)

for some constant Li ∈ R>0 and function Hi : Rnx → R.
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Similarly, we will use local Lyapunov functions Vi, which
are associated with the i-th plant/controller combination, as
discussed at the end of Subsection II-C. Since ei 6= 0 in the
networked case as considered here, somewhat strengthened
conditions will be used expressing the effect of the network-
induced error on the decay rate of the local Lyapunov
function Vi (compare (15) with (20) below). In particular,
we will require that the following condition holds.

Condition III.3 For each i ∈ N̄ there exists a locally
Lipschitz continuous function Vi : Rnxi → R>0 satisfying
the bounds

αV,i(|x|) 6 Vi(xi) 6 αV,i(|xi|), (19)

and the condition

〈∇Vi(xi), Fi(x, ei)〉 6 [γi−εi]2W 2
i (κi, ei)+Si(x) (20)

for almost all x ∈ Rnx and all ei ∈ Rne for certain K∞-
functions αV,i, αV,i, scalars 0 < εi < γi, and function Si :
Rnx → R.

Now we are in the position to state our main result.

Theorem III.4 Suppose Conditions III.1, III.2 and III.3 hold
together with

N∑
i=1

Si(x) 6 −α(|x|)−
N∑
i=1

H2
i (x) (21)

for all x ∈ Rnx and some α ∈ K∞. If for all i ∈ N̄

τ iMATI 6


1

Liri
arctan( ri(1−λi)

2
λi

1+λi
(
γi
Li

)+1+λi
), γi > Li

1−λi
Li(1+λi)

, γi = Li
1

Liri
arctanh( ri(1−λi)

2
λi

1+λi
(
γi
Li

)+1+λi
), γi < Li,

(22)
where ri =

√
|( γiLi )2 − 1|, i ∈ N̄ , then the set A := {ξ ∈

Rnξ | x = 0 ∧ e = 0} is UGAS for the NCS model (14).

The proof can be found in [7]. Regarding this theorem, a
few comments are in order. Note that by taking ei = 0 the
flow dynamics of the local hybrid model (11) reduces to the
network-free case (6) in which ûi = ui and ŷi = yi, i.e.,
Fi(x, 0) = F̄i(x) for all x. In fact, in that case (20) implies
(15). Inequality (20) expresses even a stronger property than
(15) as it also indicates how this decrease of the Lyapunov
function V (on the level of Vi) is affected by the introduction
of non-zero network-induced errors ei. Loosely speaking, to
preserve stability in the networked case the term W 2

i (κi, ei)
has to be kept small by sufficiently fast transmissions as is
enforced through the MATI-constraints in (22).

Theorem III.4 can be slightly extended by allowing free-
dom in the Lyapunov functions Vi by scaling them, see
also Remark II.4. In fact, this freedom can be used to find
improved values for the MATIs τ iMATI , i ∈ N̄ . This will be
formalized through the following corollary.

Corollary III.5 Suppose Conditions III.1, III.2 and III.3
hold together with

N∑
i=1

ν2
i Si(x) 6 −α(|x|)−

N∑
i=1

H2
i (x) (23)

for all x ∈ Rnx and certain functions α ∈ K∞ and constants
νi ∈ R>0, i ∈ N̄ . If for i ∈ N̄

τ iMATI 6


1

Liri
arctan( ri(1−λi)

2
λi

1+λi
(
νiγi
Li

)+1+λi
), νiγi > Li

1−λi
Li(1+λi)

, νiγi = Li
1

Liri
arctanh( ri(1−λi)

2
λi

1+λi
(
νiγi
Li

)+1+λi
), νiγi < Li,

(24)
where ri =

√
|(νiγiLi

)2 − 1|, i ∈ N̄ , then the set A := {ξ ∈
Rnξ | x = 0 ∧ e = 0} is UGAS for the NCS model (14).

The proof can be found in [7]. The corollary can be used
to selected appropriate values for νi, i ∈ N̄ , to find the
best MATI bounds based on the proposed procedure. In this
context it is important to observe that for fixed γi and Li
the function in the right-hand side of (24) is a decreasing
function of νi. Hence, the smaller the νi the larger the
corresponding τ iMATI will be. In the next section, we make
this even more explicit for linear systems.

IV. LINEAR SYSTEMS

In case we consider linear plants and controllers in (1) and
(3), respectively, next to linear in-network processing (10),
it is straightforward to see that we obtain flow conditions in
the hybrid subsystems (11) of the form

ẋi = Aiixi +
∑
j 6=i

Aijxj +Biei (25)

ėi = Qix+Riei (26)

with Aij , Bi, Qi and Ri, i, j ∈ N̄ , constant matrices of
appropriate dimensions. For illustration purposes, we focus
here on the so-called TOD protocol for each of the local
networks, although a similar analysis can be carried out for
other protocols such as the Round-Robin protocol.

Let us start by considering the conditions on the protocol
as needed in Theorem III.4 with the conditions on the
protocol. Since we focus on the TOD protocol, from [14],
[15], we obtain that Wi(κi, ei) = |ei| satisfies the required
conditions. In particular, (17b) holds with λi =

√
`i−1
`i

in which `i is the number of nodes corresponding to the
network Ni. Focussing now on (18) we obtain〈

∂Wi

∂ei
, Qix+Riei

〉
6 |Qi|︸︷︷︸

=Li

Wi(κi, ei) + |Rix|︸ ︷︷ ︸
=Hi(x)

. (27)

The final condition is related to (20). Under the assumption
that Aii are Hurwitz matrices, using Vi(xi) = x>i Pixi we
can obtain

V̇i 6 −cii|xi|2 +
∑
j 6=i

cij |xj |2 + [γi − εi]2 |ei|2︸︷︷︸
W 2
i (κi,ei)

(28)
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for some cij ∈ R>0 and 0 < εi < γi for i, j ∈ N̄ . Note
that the functions Si in (20) are now given by Si(x) =
−cii|xi|2 +

∑
j 6=i cij |xj |2 for i ∈ N̄ . Combining inequality

(28) with |Rix|2 6
∑
l dil|xl|2 for some dil ∈ R>0, i, l ∈ N̄ ,

which obviously holds, translates the condition (21) into

−crr +
∑
l 6=r

clr < −
∑
j

djr for all r ∈ N̄ , (29)

which is obtained by inspecting the coefficients of |xr|2.
Hence, under (29) we can use (22) to obtain the local MATIs
τ iMATI , i ∈ N̄ .

Interestingly, Corollary III.5 can be used to show that if
the closed-loop system in the network-free case, i.e. e = 0,
is stable using small-gain arguments as in (16), then there
still exist positive local MATIs τ iMATI , i ∈ N̄ , such that
closed-loop stability is preserved. To show this, realize that
(16) with the local Lyapunov functions Vi as above would
be equivalent to

−cii +
∑
l 6=i

cli < 0 for all i ∈ N̄ . (30)

If (30) holds we can take in Corollary III.5 νi = ν large
enough to see that

−ν2cii +
∑
l 6=i

ν2cli < −
∑
j

dji for all i ∈ N̄ , (31)

is true, which is equivalent to (23). Hence, Corollary III.5
can be applied, thereby proving the claim. Of course, due to
(24) the required large ν will lead to small MATIs. Still this
shows in the linear case that if the network-free system was
stabilized by a decentralized output-based controller obtained
using small-gain arguments, in the networked case this still
can be achieved for (sufficiently small) positive values of
τ iMATI ∈ R>0, i ∈ N̄ .

Finally, Corollary III.5 can be used to improve the values
of τ iMATI , i ∈ N̄ , by looking for appropriate νi, i ∈ N̄
such that (31) holds. The conditions (31) are affine (LP-
type) inequalities that ν2

i should adhere to, for (24) to apply.
Hence, one can aim to minimize νi, i ∈ N̄ , such that these
inequalities are true, thereby obtain large(r) local MATIs
τ iMATI , i ∈ N̄ , based on (24). This will be illustrated in
the next section by a numerical example.

V. NUMERICAL EXAMPLE

To illustrate the above stability analysis, we consider the
problem of stabilizing two coupled cart-pendulum systems
Pi, i = 1, 2, with the pendula in their (unstable) upright
equilibrium, see Figure 2. Each subsystem consists of a
moving support (cart) with mass Mi, a rigid massless beam
of length li, and a point mass mi attached to the end of
the beam, i = 1, 2. The pendula are coupled via a linear
spring of stiffness k. The system is actuated via input forces
ûi, i = 1, 2, applied to the carts, which are stacked in
û = (û1, û2). Linearizing the pendula around their unstable
upright equilibria, we find, with M1 = M2 = 25, m1 =
m2 = 5, l1 = l2 = 2, k = 0.01 and gravitational acceleration
g = 10,

ẋ =

[
A11 A12

A21 A22

]
x+

[
B11 0
0 B22

]
û, (32)

Fig. 2: Schematic of the two coupled cart-pendulum systems.

where x = (x1, x2) with xi = (pi, ṗi, θi, θ̇i) the states of
subsystem Pi, i = 1, 2. The matrices Aij , Bij , i, j = 1, 2,
are given by A11 = A22, A12 = A21, B11 = B22 and

A11 =


0.0000 1 0.0000 0
2.9156 0 −0.0005 0
0.0000 0 0.0000 1
−1.6663 0 0.0002 0

 ,

A12 =


0.0000 0 0.0000 0
0.0011 0 0.0005 0
0.0000 0 0.0000 0
−0.0003 0 −0.0002 0

 ,
B11 =

[
0 −0.0042 0 0.0167

]>
.

Each subsystem has its own decentralized controller2

collocated with the actuator (and thus ûi = ui, i = 1, 2),
given by ui = Kix̂i, with

K1 = [ 11396 7196.2 573.96 1199.0 ] ,

K2 = [ 29241 18135 2875.3 3693.9 ] .

These gains are such that the sets of eigenvalues of
A11 +B11K1 and A22 +B22K2 are {−1,−2,−3,−4} and
{−2,−3,−4,−5}, respectively.

Each subsystem employs its own local network as in
Figure 1, over which the state values yi = xi are transmitted
to the controller at transmission times based on the TOD
protocol [14], [15]. In between transmissions we use zero
order hold (ZOH) for the signals x̂i. The flow dynamics of
the closed-loop hybrid model can then be written in the form

ẋ1 = (A11 +B11K1)x1 +A12x2 +B11K1e1, (33a)
ẋ2 = (A22 +B22K2)x2 +A21x1 +B22K2e2, (33b)
ė1 = −ẋ1, (33c)
ė2 = −ẋ2 (33d)

in which ei = x̂i − xi, i = 1, 2, are the network-induced
(state) errors.

The procedure to find local MATIs for the two local
networks Ni, i = 1, 2, is now systematic in nature, as
we will see. Since we use the TOD protocol we can use
Wi(κi, ei) = |ei| as indicated in Section IV and thus λi as
in Condition III.1 is equal to

√
`i−1
`i

with `i the number of
nodes in network Ni. Using now the derivation (27) leads
to the constants Li and the functions Hi as discussed in

2Note that the controller (3) chosen in the main setup of the paper is a
dynamic controller, while here we use a static state feedback. Still the exact
same reasoning can be applied to the present case as the closed-loop model
can be captured in the general form (14). As such the framework can easily
accommodate other setups than the one discussed in Section II.
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Condition III.2. Finally, to satisfy Condition III.3 we will use
the local Lyapunov functions Vi(xi) = x>i Pixi by solving

(Aii +BiiKi)
>Pi + Pi(Aii +BiiKi) = −3I. (34)

Using now standard manipulations based on (33), (34) we
can obtain the conditions (20) for some functions Si, i =
1, 2. Based on Corollary III.5, which leads to the affine
constraints (31) (as the equivalent of (23)), we can find
the smallest values for νi, i = 1, 2, that still satisfy these
constraints. This provides the largest τ iMATI , i = 1, 2,
resulting in stability using Corollary III.5 for the particular
choice of local Lyapunov functions Vi. The resulting MATIs
are shown in Figure 3 for varying number of nodes `i,
i = 1, 2, for each local network. It is clearly shown that,
as the number of nodes increases (and thus λi, i = 1, 2.
becomes larger), the resulting MATIs guaranteeing stability
become smaller, thereby requiring faster networks. This can
be expected based on the theory (particularly, (24)). Figure 3
also shows that τ1

MATI is generally larger than τ2
MATI in

this particular case. This is due to the fact that the feedback
according to K2 is more aggressive than the feedback related
to K1.

0 1 2 3 4 5
0

1 · 10−6

2 · 10−6

3 · 10−6

4 · 10−6

Number of nodes li

τ
M

A
T
I

τ1MATI

τ2MATI

Fig. 3: MATIs for the two networks considered in the coupled
pendulums example.

This example shows that different local MATIs guaran-
teeing closed-loop stability can be obtained in a systematic
manner following the procedure proposed in this paper.
Obviously, since the choice of the Lyapunov functions Vi
was rather arbitrary, larger MATIs could be obtained by
optimizing Pi and obtaining sharper bounds in (20). How
to perform this task optimally is future research.

VI. CONCLUSIONS

In this paper, we considered the problem of stability
analysis for networked control systems (NCSs) in which
the sensors, controllers and actuators communicate through
a finite number of asynchronous local networks, where
(local) transmission intervals are uncertain. Each of the local
networks exhibits communication constraints that require the
presence of a protocol that decides at a transmission time
which of the (local) nodes is allowed to transmit its respective
information. We provided a systematic method to obtain
local maximal allowable transmission intervals (MATIs) for
each of the individual communication networks that together
guarantee closed-loop stability properties.

Even though the considered problem is highly relevant, the
presented approach is one of the first addressing it. Therefore,
various topics for future research are still open. One topic
could be to investigate what choice of local Lyapunov

functions and parameters lead to the largest values for the
MATIs. In addition, it is of interest to see how the method can
in general be improved to obtain the least conservative results
and how for specific classes of systems with additional
structure (e.g., linear systems) more specialized methods can
be conceived.
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